Cluster Lenses Kneib and Nataranjan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cinemática Estelar, Modelos Dinâmicos E Determinaç˜Ao De
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE POS´ GRADUA¸CAO~ EM F´ISICA Cinem´atica Estelar, Modelos Din^amicos e Determina¸c~ao de Massas de Buracos Negros Supermassivos Daniel Alf Drehmer Tese realizada sob orienta¸c~aoda Professora Dra. Thaisa Storchi Bergmann e apresen- tada ao Programa de P´os-Gradua¸c~aoem F´ısica do Instituto de F´ısica da UFRGS em preenchimento parcial dos requisitos para a obten¸c~aodo t´ıtulo de Doutor em Ci^encias. Porto Alegre Mar¸co, 2015 Agradecimentos Gostaria de agradecer a todas as pessoas que de alguma forma contribu´ıram para a realiza¸c~ao deste trabalho e em especial agrade¸co: • A` Profa. Dra. Thaisa Storchi-Bergmann pela competente orienta¸c~ao. • Aos professores Dr. Fabr´ıcio Ferrari da Universidade Federal do Rio Grande, Dr. Rogemar Riffel da Universidade Federal de Santa Maria e ao Dr. Michele Cappellari da Universidade de Oxford cujas colabora¸c~oes foram fundamentais para a realiza¸c~ao deste trabalho. • A todos os professores do Departamento de Astronomia do Instituto de F´ısica da Universidade Federal do Rio Grande do Sul que contribu´ıram para minha forma¸c~ao. • Ao CNPq pelo financiamento desse trabalho. • Aos meus pais Ingon e Selia e meus irm~aos Neimar e Carla pelo apoio. Daniel Alf Drehmer Universidade Federal do Rio Grande do Sul Mar¸co2015 i Resumo O foco deste trabalho ´eestudar a influ^encia de buracos negros supermassivos (BNSs) nucleares na din^amica e na cinem´atica estelar da regi~ao central das gal´axias e determinar a massa destes BNSs. -
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
An Outline of Stellar Astrophysics with Problems and Solutions
An Outline of Stellar Astrophysics with Problems and Solutions Using Maple R and Mathematica R Robert Roseberry 2016 1 Contents 1 Introduction 5 2 Electromagnetic Radiation 7 2.1 Specific intensity, luminosity and flux density ............7 Problem 1: luminous flux (**) . .8 Problem 2: galaxy fluxes (*) . .8 Problem 3: radiative pressure (**) . .9 2.2 Magnitude ...................................9 Problem 4: magnitude (**) . 10 2.3 Colour ..................................... 11 Problem 5: Planck{Stefan-Boltzmann{Wien{colour (***) . 13 Problem 6: Planck graph (**) . 13 Problem 7: radio and visual luminosity and brightness (***) . 14 Problem 8: Sirius (*) . 15 2.4 Emission Mechanisms: Continuum Emission ............. 15 Problem 9: Orion (***) . 17 Problem 10: synchrotron (***) . 18 Problem 11: Crab (**) . 18 2.5 Emission Mechanisms: Line Emission ................. 19 Problem 12: line spectrum (*) . 20 2.6 Interference: Line Broadening, Scattering, and Zeeman splitting 21 Problem 13: natural broadening (**) . 21 Problem 14: Doppler broadening (*) . 22 Problem 15: Thomson Cross Section (**) . 23 Problem 16: Inverse Compton scattering (***) . 24 Problem 17: normal Zeeman splitting (**) . 25 3 Measuring Distance 26 3.1 Parallax .................................... 27 Problem 18: parallax (*) . 27 3.2 Doppler shifting ............................... 27 Problem 19: supernova distance (***) . 28 3.3 Spectroscopic parallax and Main Sequence fitting .......... 28 Problem 20: Main Sequence fitting (**) . 29 3.4 Standard candles ............................... 30 Video: supernova light curve . 30 Problem 21: Cepheid distance (*) . 30 3.5 Tully-Fisher relation ............................ 31 3.6 Lyman-break galaxies and the Hubble flow .............. 33 4 Transparent Gas: Interstellar Gas Clouds and the Atmospheres and Photospheres of Stars 35 2 4.1 Transfer equation and optical depth .................. 36 Problem 22: optical depth (**) . 37 4.2 Plane-parallel atmosphere, Eddington's approximation, and limb darkening .................................. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Stacking Emission Lines from Distant Galaxies
DF A study of galaxy evolution: stacking emission lines from distant galaxies JEAN-BAPTISTE JOLLY Department of Space Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Thesis for the degree of Licentiate of Engineering A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly DF Department of Space Earth and Environment Division of Astronomy and Plasma Physics Chalmers University of Technology Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly © Jean-Baptiste Jolly, 2019. Division of Astronomy and Plasma Physics Department of Space Earth and Environment Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Contact information: Jean-Baptiste Jolly Onsala Space Observatory Chalmers University of Technology SE–439 92 Onsala, Sweden Phone: +46 (0)31 772 55 44 Email: [email protected] Cover image: This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hub- ble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky. Credit: NASA, ESA and the HST Frontier Fields team (STScI) Printed by Chalmers Reproservice Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly Department of Space Earth and Environment Chalmers University of Technology Abstract To draw up a thorough description of galaxy evolution exhaustive observations are needed, of distant but mainly of faint galaxies. -
The Evolution of Galaxy Morphology
The Morphological Evolution of Galaxies Roberto G. Abraham Sidney van den Bergh Dept. of Astronomy & Dominion Astrophysical Observatory Astrophysics Herzberg Institute of Astrophysics University of Toronto National Research Council of Canada 60 St. George Street Victoria, British Columbia Toronto, Ontario M5S 3H8, V9E 2E7, Canada Canada ABSTRACT Many galaxies appear to have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology started to deviate significantly (and systematically) from that of nearby galaxies at redshifts, z, as low as z = 0.3. This corresponds to a time ~3.5 Gyr in the past, which is only ~25% of the present age of the Universe. Beyond z = 0.5 (5 Gyr in the past) spiral arms are less well-developed and more chaotic, and barred spiral galaxies may become rarer. By z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble’s traditional “tuning fork” system is meaningless. On the other hand, some characteristics of galaxies do not seem to have changed much over time. The co-moving space density of luminous disk galaxies has not changed significantly since z = 1, indicating that while the general appearance of these objects has continuously changed with cosmic epoch, their overall numbers have been conserved. Attempts to explain these results with hierarchical models for the formation of galaxies have met with mixed success. denoted Sa, Sb, and Sc (SBa, SBb, SBc in of Hubble’s classification system are Introduction the case of barred spirals). A final “catch- based on the idea that most matter in the all” category for irregular galaxies is also Universe is not in stellar or gaseous form, Nearby galaxies are usually classified on included. -
Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust..................................... -
Quantum Relativity Enhanced by Friedmann and Lemaître and Called the “FLRW” Or “Lambda-CDM” Model of the Universe
Abstract The original Robertson-Walker (R&W) solution to a homogenous and isotropic universe was Quantum Relativity enhanced by Friedmann and Lemaître and called the “FLRW” or “Lambda-CDM” model of the universe. Lambda stands for dark energy (cosmological constant), CDM stands for cold dark matter. (From small to all) However, the R&W solution does not abide by Noether’s laws of energy conservation, leading cosmologists to state that: “energy conservation is a local statement”. The R&W solution needs = repair for Noether’s demands on energy and momentum conservation. This repair involves the reinterpretation of time in the cosmic past and the introduction of three- Repairing Robertson-Walker’s Solution instead of the two-dimensional curvature as described in the original R&W solution. The repair also involves the extension of the principle of “comoving coordinates” as introduced by R&W. The comoving coordinates of R&W explain an expanding universe within which distances between Quantum Relativity (for Space-time) galaxies remain the same in coordinates, while the unit meter [m] expands. The authors extend the unit meter [m] expansion to the units second [s], kilogram [kg], and + Coulomb [C], the S-MKC system, in order to ensure an invariant speed of light “c” and an invariant Newton constant “G”. By keeping the constants of nature and the laws of nature invariant to location and time, we ensure adhering to Noether’s laws of energy-momentum conservation and Merging with Bohr’s quantum theory to the perfect cosmological principle. The unit second expansion by the cosmic-factor “λ” (λ = H.t, in which “H” is the Hubble constant) Quantum Relativity (for Quanta) explains the cosmic inflation of redshift plus one (z + 1). -
7.5 X 11.5.Doubleline.P65
Cambridge University Press 978-0-521-75618-1 - High Energy Astrophysics, Third Edition Malcolm S. Longair Index More information Name index Abell, George, 99, 101 Cappelluti, Nico, 729 Abraham, Robert, 733 Carter, Brandon, 434 Abramovitz, Milton, 206, 209 Caswell, James, 226 Adams, Fred, 353, 369 Cavaliere, Alfonso, 110 Amsler, Claude, 275 Cesarsky, Catherine, 187, 189 Anderson, Carl, 29, 30, 163 Challinor, Anthony, 115, 259 Arnaud, Monique, 110 Chandrasekhar, Subrahmanyan, 302, 429, 434, Arnett, David, 386 455 Arzoumanian, Zaven, 420 Charlot, Stephane,´ 729, 730, 747 Auger, Pierre, 29 Chwolson, O., 117 Cimatti, Andrea, 736, 748 Babbedge, T., 740 Clayton, Donald, 386 Backer, Donald, 417, 418 Clemmow, Phillip, 267 Bahcall, John, 55, 57, 58 Colless, Matthew, 108, 109 Bahcall, Neta, 105 Compton, Arthur, 231 Balbus, Steven, 455 Cordes, James, 420 Band, David, 264 Cowie, Lennox, 733, 736, 743, 745 Barger, Amy, 745 Cox, Donald, 357 Beckwith, Steven, 737, 744 Becquerel, Henri, 146 Damon, Paul, 297 Bekefi, George, 193 Davies, Rodney, 376 Bell(-Burnell), Jocelyn, 19, 406 Davis, Leverett, 373 Bennett, Charles, 16 Davis, Raymond, 32, 54, 55 Bethe, Hans, 57, 163, 166, 175 de Vaucouleurs, Gerard,´ 77, 78 Bignami, Giovanni, 197 Dermer, Charles, 505 Binney, James, 106, 153 Deubner, Franz-Ludwig, 51 Blaauw, Adriaan, 754 Diehl, Roland, 287 Blackett, Patrick, 29 Dirac, Adrian, 29 Blain, Andrew, 743 Djorgovski, George, 88 Bland-Hawthorn, Jonathan, 733 Dougherty, John, 267 Blandford, Roger, 251 Draine, Bruce, 351, 372, 373, 375, Blumenthal, George, 163, 175, -
The GALEX Ultraviolet Virgo Cluster Survey (Guvics) VII
A&A 611, A42 (2018) https://doi.org/10.1051/0004-6361/201731795 Astronomy & © ESO 2018 Astrophysics The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35? S. Boissier1, O. Cucciati2, A. Boselli1, S. Mei3,4,5, and L. Ferrarese6 1 Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Bologna, via Gobetti 93/3, 40129 Bologna, Italy 3 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France 4 Université Paris Denis Diderot, Université Paris Sorbonne Cité, 75205 Paris Cedex 13, France 5 Jet Propulsion Laboratory, California Institute of Technology, Cahill Center for Astronomy & Astrophysics, Pasadena, CA, USA 6 National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada Received 18 August 2017 / Accepted 23 December 2017 ABSTRACT Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000–2500 Å range, called “UV upturn”. The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aims. We provide constraints on the existence of the UV upturn up to redshift ∼0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods. We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. -
Properties of Brightest Cluster Galaxies As a Function of Cluster Classification Type
J. Korean Earth Sci. Soc., v. 36, no. 5, p. 427−436, September 2015 ISSN 1225-6692 (printed edition) http://dx.doi.org/10.5467/JKESS.2015.36.5.427 ISSN 2287-4518 (electronic edition) Properties of Brightest Cluster Galaxies as a Function of Cluster Classification Type 1,2 1, Heungjin Eom and Hyunjin Shim * 1 Department of Earth Science Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea 2 Gunwi High School, 254-6 Guncheong-ro, Gunwi-up, Gunwi-gun, Kyungsangbukdo 716-801, Korea Abstract: We classified Abell clusters using the magnitude differences between two or three bright member galaxies and investigated how such classification was correlated with the properties of brightest cluster galaxies (BCGs). S-type BCGs being clearly brighter than the rest of the member galaxies were likely to be red, luminous, and evolved as early type galaxies. On the other hand, T-type BCGs being not dominant at all were less luminous than early type galaxies. A small fraction of BCGs was currently forming stars, and all of the star-forming BCGs were T-type BCGs. Active galactic nuclei were most frequent for S-type BCGs. Through these quantitative analyses of the BCG properties, we discussed the possible scenario of BCG formation and the differences between S-type and T-type of BCGs. Keywords: galaxy clusters, brightest cluster galaxy, galaxy evolution Introduction 1986). BCGs are elliptical galaxies (Dubinski, 1998), which are further divided into several types; gE, D, Es Recent studies have shown that environment plays and cD galaxies (Kormendy, 1989). These are in an important role for a galaxy to evolve and grow general the most massive galaxy that reside in the (e.g., Bahcall et al., 2003; De Lucia et al., 2006). -
The Montréal-Ohio-Victoria Échelle Spectrograph (MOVIES)
The Montréal-Ohio-Victoria Échelle Spectrograph (MOVIES) Feasibility Study Final Report Submitted to the Gemini Observatories by the MOVIES team October 19, 2015 The MOVIES team Principal Investigator: Alan McConnachie, NRC Herzberg Project Scientist: Richard Pogge, Ohio State University Project Manager: Les Saddlemyer, NRC Herzberg Université de Montréal • Lead: Rene Doyon • Project Manager: Olivier Hernandez • Etienne Artigau (Detectors) Ohio State University • Lead: Richard Pogge • Project Manager: Tom O’Brien • Mark Derwent (Mechanical) NRC Herzberg • Lead: Alan McConnachie • Project Manager/Engineer: Les Saddlemyer • Tim Hardy (Electronics) • John Pazder (Optics) • Jennifer Dunn (Software) • Mara Taylor (Acquisition) • Ruben Sanchez-Janssen (Calibration) Science team • Etienne Artigau (UdM) • Rene Doyon (UdM) • Patrick Dufour (UdM) • Wes Fraser (NRC-H/Queens University, Belfast) • Pascale Hibon (Gemini) • Julie Hlavacek-Larrondo (UdM) • Chris Kochanek (OSU) • David Lafreniere (UdM) • Lison Malo (CFHT) • Alan McConnachie (NRC-H) • Tony Moffat (UdM) • Richard Pogge (OSU) • Mara Taylor (NRC-H) • Ruben Sanchez-Janssen (NRC-H) • Nicole St-Louis (UdM) • Chris Wilott (NRC-H) 2 Contents The MOVIES team .............................................................................................................. 2 Université de Montréal .................................................................................................... 2 Ohio State University .....................................................................................................