Automatic Detection and Quantitative Assessment of Peculiar Galaxy Pairs in Sloan Digital Sky Survey

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Detection and Quantitative Assessment of Peculiar Galaxy Pairs in Sloan Digital Sky Survey Automatic detection and quantitative assessment of peculiar galaxy pairs in Sloan Digital Sky Survey Lior Shamir1?, John Wallin2 1. Dept. of Comp. Sci., Lawrence Technological University 21000 W Ten Mile Rd., Southfield, MI 48075, USA 2. Dept. of Physics and Astronomy, Middle Tennessee State University 1301 E Main St, Murfreesboro, TN 37130, USA ABSTRACT We applied computational tools for automatic detection of peculiar galaxy pairs. We first <18 that had more than one point spread function, and then applied a machine learning algorithm that detected detected in SDSS DR7 ∼400,000 galaxy images with i magnitude roducing a short ∼26,000 galaxy images that had morphology similar to the morphology of galaxy mergers. That dataset was mined using a novelty detection algorithm, p list of 500 most peculiar galaxies as quantitatively determined by the algorithm. Manual examination of these galaxies showed that while most of the galaxy pairs in the list were not necessarily peculiar, numerous unusual galaxy pairs were detected. In this paper we describe the protocol and computational tools used for the detection of peculiar mergers,Key words: and provide Galaxy: examples general of– galaxies: peculiar interactionsgalaxy pairs –that galaxies: were detected. peculiar – astronom- ? ail: [email protected] Em ical databases:catalogs 1 INTRODUCTION studies is the possibility of superpositions between galaxies in Interactions between galaxies are associated with galaxy recentthe same interaction group. If theand galaxies the system in a close is pair have peculiar morphologies, there is a high confidence that there has been a morphology (Springel & Hernquist 2005; Bower et al. 2006), quasars (Hopkins et al. 2005), enhanced rates of star formation not just a chance superposition. However since there has been no clear objective Numerous(Di Matteo etmanuallyal. 2007; Bridgecrafted et catalogues al. 2007), quasars and classification (Hopkins et al. 2005), and activity in galactic nuclei (Springel et al. 2008). way to define when a galaxy is “peculiar” (Naim & Lahavinteracting 1996), pairs.the objective criteria of velocity and projected distance has been the best way of analyzing a large sample of schemes of- galaxy mergers have been proposed and published (Arp 1966; Struck 1999; Schombert, Wallin & Struck 1990; automaticVorontsov detectionVelyaminov of 1959,galaxy 1977;mergers, Arp and& Madorestudied 1987).galaxy Early efforts to identify and catalog peculiar galaxies used Cotini et al. (2013) developed and utilized a method for photographic surveys. The difficulty of defining a set of Theobjective Cata criteria for peculiar galaxies can be illustrated by the merger population to show a link between mergers and classification schemes that have been used in these catalogs. galaxies with supermassive black holes. log of Interacting Galaxies VorontsovVelyaminov- More recent work on interacting systems has focused on (1959, 1977) contained - 335 objects and placed peculiar pairs of galaxies with similar redshifts examinedand small these projected close galaxies into six primary categories: “HII regions”, “M51 type”, distances taken from the Sloan Digital Sky Survey. In these “Nests”, “Pairs”, “Pseudo Rings”, “Comets”, and “Enigmatic.” papers, the authors have systematically The Arp Atlas of Peculiar Galaxies (Arp 1966) was a catalog of pairs for evidence of an increased star formation rate (Ellison 332 peculiar and interacting- systems. There were four primary interaction.et al. 2008), Theelevated confounding nuclear effectactivity in (Ellisonthese et al. 2010), and overlapping categories for these objects including Spirals, other c measurable effects that might be associated with Galaxies, E and E like Galaxies, and Double Galaxies. Within 2 Shamir & Wallin - these groups, there were 37 other subgroups including “ring by first computing the Otsu threshold (Otsuely testing1979). eachThe Otsugray galaxies”, “three arm spirals”, “galaxies with jets”,’ and “double method determines the threshold above which a pixel is galaxies with wind effects.” Given the range ataloguesof naming of considered a foreground pixel by iterativ conventions and morphologies, the question of when a galaxy value, and computing the variance of the pixels dimmer than is “peculiar” has remained difficult to quantify. C that value and the variance of the pixels brighter than the galaxy interactions have traditionally been produced by candidate threshold. The gray value that provides the manual inspection of galaxy images by a few dedicated minimum of the sum of the variances is the Otsu threshold scientists. However as data sets have grown, the Galaxy Zoo (Otsu 1979). The Otsu threshold separates the foreground and project (and including Galaxy Zoo II and the broader backgroundThe set pixels of foreground regardless pixelsof linear is mappingthen separated of the pixels into Zooniverse efforts) have incorporated “citizen scientist” intensity values. - volunteers to classify galaxy morphologies from SDSS data - (Lintott et al. 2008, 2011). Such manual analysis of galaxies foreground pixelsobjects such by that counting each foreground the 4 connected pixel Ix,y objects using crowdsourcing was used for analyzing properties of (Shamirgroup O satisfies2011a). Thethe condition4 connected objects are simply groups of merging galaxies (Darg et al. 2010; Casteels et al. 2013). within the catalogs, the time needed to construct them is immense. Arp & Ix,y O Ix,y+1 O|Ix,y 1 O|Ix+1,y O|Ix 1,y O Aside from the questions about the completeness of these foreground pixel in the− group has at − ∀foreground∈ ∃( pixel.∈ ∈ ∈ ∈ ). That is, each hemMadore (1987) reported that it took ∼14 years to compile and least one neighboring produce their catalog of ∼6400 mergers in the southern isphere. In the era of robotic telescopes and digital sky If more than one object is found, the image is flagged as a surveys acquiring images of many billions of galaxies detectioncandidate algorithmfor a galaxy (Shamir merger. & NemIf only one object is found, the morphology(Djorgovski ofet mostal. 2013; galaxy Borne mergers 2013), is manually crafted object is scanned for peaks using a point spread function catalogues of mergers becomes impractical. While the iroff 2005a,b), andWolf if moreopen known, some galaxy than one peak is found the image is considered a potential mergers have peculiar morphology. Here we describe the galaxy merger. The peak detection code is part of the detection of peculiar galaxy mergers by a computer algorithm source image analysis package (Shamir et al. 2006; Shamir mining galaxy images acquired by Sloan Digital Sky Survey. holes.2012a). It should be noted that the same technique can also be used for automatic detection of recoiling supermassive black 2 METHOD . 5 potential The separation of objects6 with more than one peak oreduced the set of ∼ 3 2×10 images to ∼ 432×10 Galaxy mergers feature complex morphology that involves the galaxy mergers. However, many of these images are not images shape of two or more interacting galaxies, as well as the detectedf interacting as potential galaxies. galaxy Figure mergers. 1 shows a few examples of distance and position of the galaxies in the system. Here we objects classified as galaxies by SDSS pipeline and were also analyze images from from Sloan Digital Sky Survey (Schneider . rily galaxy et al. 2003). i 6 As the figure shows, images with two objects or with < In the first step, we downloaded ∼ 37 × 10 objects objects with two detected PSFs are not necessa dentified by SDSS as galaxies (object type = 3) with i magnitude mergers. To find galaxy mergers we used the Wndchrm image 18. Each galaxy image was of dimensionality- of 120×120 analysis software tool (Shamir et al. 2008a; Shamir 2013b), magnitudepixels, downloaded thr directly using DR7 Catalog Archive Server which was originally developed for analysis of microscopy (CAS) as jpg images, and converted to 8 bit TIFF format. The images (Shamir et al. 2008b, 2010a), but was also found images lasted 28eshold days. is used to reduce the number of images to informative for the analysis of galaxy images (Shamir 2009), a smaller set of the brightest objects. Downloading all these and in particular for analyzing the morphology of galaxy descriptorsmergers (Shamir for each et image, al. 2013a). so that Wndchrmeach image works is represented by first preliminaAfter the images were downloaded, a preliminary test was extracting a very large set of numerical image content applied to each image to filter possible artefacts. The ry test rejected images in which 80% or more of the shape,by a colour,vector textures,of 2883 fractals, numerical polynomial values. decomposition These content of pixels were brighter than- 120, or images that 80% or more of descriptors provide a comprehensive set that reflects these the pixels were of the same colour (green, blue or red) after applying a fuzzy logic based colour classification transform the image, and statistics of the pixel value distribution. The (Shamir 2006). The test was based on the SDSS colour mapping content descriptors are extracted from the raw images, but also (Lupton et al. 2004), in which large swathes of a single. colour from transforms of the images (e.g., FFT, Wavelet, Chebyshev, are often signs of detector saturation, and can therefore be6 Wndcgradient), as well as combinations of transforms (e.g., FFT consideredThen, artefacts. After rejecting the artefacts, ∼ 3 2 × 10 transform of the Wavelet transform). A detailed description of objects were left. hrm can be found in (Shamir et al. 2008a, 2010b, 2013a). had more thanwe appliedone point an spread algorithm function to determine in it. The detection whether ofa Wndchrm performs colour analysis by using the RGB channels certain image has two neighboring objects, or that an object (Shamir et al. 2010b). That type of analysis might be less accurate than analyzing the FITS images of each colour channel two separate objects was detected by first applying the Otsu separately, but it allows colour analysis without the need to binary transform (Otsu 1979) to separate the foreground from download multiple FITS files for each celestial object, and the background pixels.
Recommended publications
  • The Large Scale Universe As a Quasi Quantum White Hole
    International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience.
    [Show full text]
  • Monthly Newsletter of the Durban Centre - March 2018
    Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively.
    [Show full text]
  • Stacking Emission Lines from Distant Galaxies
    DF A study of galaxy evolution: stacking emission lines from distant galaxies JEAN-BAPTISTE JOLLY Department of Space Earth and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2019 Thesis for the degree of Licentiate of Engineering A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly DF Department of Space Earth and Environment Division of Astronomy and Plasma Physics Chalmers University of Technology Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly © Jean-Baptiste Jolly, 2019. Division of Astronomy and Plasma Physics Department of Space Earth and Environment Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Contact information: Jean-Baptiste Jolly Onsala Space Observatory Chalmers University of Technology SE–439 92 Onsala, Sweden Phone: +46 (0)31 772 55 44 Email: [email protected] Cover image: This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hub- ble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky. Credit: NASA, ESA and the HST Frontier Fields team (STScI) Printed by Chalmers Reproservice Gothenburg, Sweden 2019 A study of galaxy evolution: stacking emission lines from distant galaxies Jean-Baptiste Jolly Department of Space Earth and Environment Chalmers University of Technology Abstract To draw up a thorough description of galaxy evolution exhaustive observations are needed, of distant but mainly of faint galaxies.
    [Show full text]
  • The Evolution of Galaxy Morphology
    The Morphological Evolution of Galaxies Roberto G. Abraham Sidney van den Bergh Dept. of Astronomy & Dominion Astrophysical Observatory Astrophysics Herzberg Institute of Astrophysics University of Toronto National Research Council of Canada 60 St. George Street Victoria, British Columbia Toronto, Ontario M5S 3H8, V9E 2E7, Canada Canada ABSTRACT Many galaxies appear to have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology started to deviate significantly (and systematically) from that of nearby galaxies at redshifts, z, as low as z = 0.3. This corresponds to a time ~3.5 Gyr in the past, which is only ~25% of the present age of the Universe. Beyond z = 0.5 (5 Gyr in the past) spiral arms are less well-developed and more chaotic, and barred spiral galaxies may become rarer. By z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble’s traditional “tuning fork” system is meaningless. On the other hand, some characteristics of galaxies do not seem to have changed much over time. The co-moving space density of luminous disk galaxies has not changed significantly since z = 1, indicating that while the general appearance of these objects has continuously changed with cosmic epoch, their overall numbers have been conserved. Attempts to explain these results with hierarchical models for the formation of galaxies have met with mixed success. denoted Sa, Sb, and Sc (SBa, SBb, SBc in of Hubble’s classification system are Introduction the case of barred spirals). A final “catch- based on the idea that most matter in the all” category for irregular galaxies is also Universe is not in stellar or gaseous form, Nearby galaxies are usually classified on included.
    [Show full text]
  • Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
    Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust.....................................
    [Show full text]
  • Quantum Relativity Enhanced by Friedmann and Lemaître and Called the “FLRW” Or “Lambda-CDM” Model of the Universe
    Abstract The original Robertson-Walker (R&W) solution to a homogenous and isotropic universe was Quantum Relativity enhanced by Friedmann and Lemaître and called the “FLRW” or “Lambda-CDM” model of the universe. Lambda stands for dark energy (cosmological constant), CDM stands for cold dark matter. (From small to all) However, the R&W solution does not abide by Noether’s laws of energy conservation, leading cosmologists to state that: “energy conservation is a local statement”. The R&W solution needs = repair for Noether’s demands on energy and momentum conservation. This repair involves the reinterpretation of time in the cosmic past and the introduction of three- Repairing Robertson-Walker’s Solution instead of the two-dimensional curvature as described in the original R&W solution. The repair also involves the extension of the principle of “comoving coordinates” as introduced by R&W. The comoving coordinates of R&W explain an expanding universe within which distances between Quantum Relativity (for Space-time) galaxies remain the same in coordinates, while the unit meter [m] expands. The authors extend the unit meter [m] expansion to the units second [s], kilogram [kg], and + Coulomb [C], the S-MKC system, in order to ensure an invariant speed of light “c” and an invariant Newton constant “G”. By keeping the constants of nature and the laws of nature invariant to location and time, we ensure adhering to Noether’s laws of energy-momentum conservation and Merging with Bohr’s quantum theory to the perfect cosmological principle. The unit second expansion by the cosmic-factor “λ” (λ = H.t, in which “H” is the Hubble constant) Quantum Relativity (for Quanta) explains the cosmic inflation of redshift plus one (z + 1).
    [Show full text]
  • Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies Permalink https://escholarship.org/uc/item/0fv151p6 Author Davis, Darren Robert Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Automated Quantification of Arbitrary Arm-Segment Structure in Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Darren Robert Davis Dissertation Committee: Professor Wayne Hayes, Chair Professor Deva Ramanan Professor Aaron Barth 2014 c 2014 Darren Robert Davis TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE xi ABSTRACT OF THE DISSERTATION xiii 1 Introduction 1 1.1 Background . 1 1.2 Uses of Spiral Structure Information . 3 1.3 Primary Contributions . 7 2 Related Work 10 2.1 Morphological Classification . 10 2.2 Bulge, Disk, and Bar Fitting . 12 2.3 Spiral Arm Pitch Angle Measurement . 13 2.4 Automated Fitting of Restricted Spiral Models . 15 2.5 Human-Interactive Detailed Spiral Fitting . 17 2.6 Large-Scale Manual Determination of Spiral Galaxy Structure . 19 2.7 An Unfulfilled Need for Automated Fitting of General Spiral Structure . 20 3 Extracting Spiral Arm-Segment Structure 22 3.1 Representing Arm-Segment Structure . 22 3.2 Image Brightness Transformation . 31 3.3 Image Standardization . 35 3.4 Foreground Star Removal . 41 3.5 Orientation Field Generation . 48 3.5.1 Determining the Orientation Field Vectors . 49 3.5.2 Enhancing Sensitivity to Spiral Arms via the Unsharp Mask .
    [Show full text]
  • Dark Energy Camera Captures Detailed View of Striking Peculiar Galaxy 31 August 2021
    Dark Energy Camera captures detailed view of striking peculiar galaxy 31 August 2021 that hide the bright center of the galaxy. This dust is the result of a past galactic collision, in which a giant elliptical galaxy merged with a smaller spiral galaxy. As well as large amounts of gas and dust, Centaurus A's dust lane contains widespread star formation, as indicated by the red clouds of hydrogen and by the large number of faint blue stars visible at each end of the dust lane. The proximity and brightness of Centaurus A—it is one of the closest giant galaxies to Earth—make it one of the best-studied objects in the southern The galaxy Centaurus A, which lies over 12 million light- hemisphere night sky. Since its discovery in 1826, years away in the direction of the southern-hemisphere scientists have studied the galaxy exhaustively with constellation Centaurus (The Centaur), is the leading many different kinds of telescopes, revealing a light of this striking image. This image provides a variety of intriguing features. Radio telescopes spectacular view of the luminous glow of stars and dark reveal a colossal jet of matter spewing outward tendrils of dust that hide the bright center of the galaxy. from the heart of the galaxy. This jet is accelerated This dust is the result of a past galactic collision, in to almost half the speed of light by a supermassive which a giant elliptical galaxy merged with a smaller black hole at the center of Centaurus A, and its spiral galaxy. As well as large amounts of gas and dust, Centaurus A’s dust lane contains widespread star bright emissions at radio wavelengths make this formation, as indicated by the red clouds of hydrogen galaxy one of the most prominent radio sources in and by the large numbers of faint blue stars visible at the night sky.
    [Show full text]
  • New Data on Young and Old Black Holes and Other Unexpected Creatures
    New data on young and old black holes and other unexpected creatures A. D. Dolgov Novosibirsk State University, Novosibirsk, Russia ITEP, Moscow, Russia 8th International Conference on New Frontiers in Physics 21-30 August, 2019 Conference Center of the Orthodox Academy of Creta Crete, Greece A. D. Dolgov New data on BH and others August, 21-30, 2019 1 / 41 Recent astronomical data, which keep on appearing almost every day, show that the contemporary, z ∼ 0, and early, z ∼ 10, universe is much more abundantly populated by all kind of black holes, than it was expected even a few years ago. They may make a considerable or even 100% contribution to the cosmological dark matter. Among these BH: massive, from a fraction of M up to & 10M , 6 9 supermassive (SMBH), M ∼ (10 − 10 )M , 3 5 intermediate mass (IMBH) M ∼ (10 − 10 )M , Conventional mechanism of creation of these PHs is not efficient. Most natural is to assume that these black holes are primordial, PBH. Existence of such abundant primordial black holes was predicted a quarter of century ago (A.D., J.Silk, 1993). Not only abundant PBHs but also observed now peculiar primordial stars, are predicted. A. D. Dolgov New data on BH and others August, 21-30, 2019 2 / 41 Types of BH by creation mechanism I. Astrophysical BHs: created by stellar collapse when star exhausted its nuclear fuel. Expected masses are just above the neutron star masses 3M and normally they are quite close to it. Instead, the mass spectrum of BH in the Galaxy has maximum at M ≈ 8M with the width: ∼ (1 − 2)M .
    [Show full text]
  • Rotation and Mass in the Milky Way and Spiral Galaxies
    Publ. Astron. Soc. Japan (2014) 00(0), 1–34 1 doi: 10.1093/pasj/xxx000 Rotation and Mass in the Milky Way and Spiral Galaxies Yoshiaki SOFUE1 1Institute of Astronomy, The University of Tokyo, Mitaka, 181-0015 Tokyo ∗E-mail: [email protected] Received ; Accepted Abstract Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results. Full resolution copy is available at URL: http://www.ioa.s.u-tokyo.ac.jp/∼sofue/htdocs/PASJreview2016/ Key words: Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy: structure – galaxies: fundamental parameters – galaxies: kinematics and dynamics – galaxies: structure – dark matter 1 INTRODUCTION rotation curves of the Milky Way and spiral galaxies, respec- tively, and describe the general characteristics of observed rota- tion curves. The progress in the rotation curve studies will be Rotation of spiral galaxies is measured by spectroscopic ob- also reviewed briefly. In section 4 we review the methods to de- arXiv:1608.08350v1 [astro-ph.GA] 30 Aug 2016 servations of emission lines such as Hα, HI and CO lines from termine the mass distributions in disk galaxies using the rotation disk objects, namely population I objects and interstellar gases.
    [Show full text]
  • Mapping Luminous Blue Compact Galaxies with VIRUS-P Morphology, Line Ratios, and Kinematics
    A&A 547, A24 (2012) Astronomy DOI: 10.1051/0004-6361/201219598 & c ESO 2012 Astrophysics Mapping luminous blue compact galaxies with VIRUS-P Morphology, line ratios, and kinematics L. M. Cairós1,N.Caon2,3, B. García Lorenzo2,3,A.Kelz1,M.Roth1, P. Papaderos4, and O. Streicher1 1 Leibniz-Institut für Astrophysik, An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [luzma;akelz;mmroth;ole]@aip.de 2 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de la Laguna, 38206 La Laguna, Tenerife, Spain e-mail: [nicola.caon;bgarcia]@iac.es 4 Centro de Astrofísica and Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] Received 14 May 2012 / Accepted 29 August 2012 ABSTRACT Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims. We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods. We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J.
    [Show full text]
  • Resolved Nuclear Kinematics Link the Formation and Growth of Nuclear Star Clusters with the Evolution of Their Early and Late-Type Hosts
    Draft version July 20, 2021 Typeset using LATEX twocolumn style in AASTeX63 Resolved nuclear kinematics link the formation and growth of nuclear star clusters with the evolution of their early and late-type hosts Francesca Pinna ,1 Nadine Neumayer ,1 Anil Seth ,2 Eric Emsellem ,3 Dieu D. Nguyen ,4 Torsten Boker¨ ,5 Michele Cappellari ,6 Richard M. McDermid,7 Karina Voggel,8 and C. Jakob Walcher9 1Max Planck Institute for Astronomy, D-69117 Heidelberg, Germany 2Department of Physics and Astronomy, University of Utah, UT 84112, USA 3European Southern Observatory, D-85748 Garching bei Muenchen, Germany 4National Astronomical Observatory of Japan (NAOJ), National Institute of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 5European Space Agency/STScI, MD21218 Baltimore, USA 6Department of Physics, University of Oxford, OX1 3RH, UK 7Research Centre for Astronomy, Astrophysics, and Astrophotonics, Macquarie University, Sidney, NSW 2109, Australia 8Universite de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, 67000 Strasbourg, France 9Leibniz-Institut f¨urAstrophysik Potsdam (AIP) D-14482 Potsdam Submitted to ApJ Abstract We present parsec-scale kinematics of eleven nearby galactic nuclei, derived from adaptive-optics assisted integral-field spectroscopy at (near-infrared) CO band-head wavelengths. We focus our analysis on the balance between ordered rotation and random motions, which can provide insights into the dominant formation mechanism of nuclear star clusters (NSCs). We divide our target sample into late- and early-type galaxies, and discuss the nuclear kinematics of the two sub-samples, aiming at probing any link between NSC formation and host galaxy evolution. The results suggest that the dominant formation mechanism of NSCs is indeed affected by the different evolutionary paths of their hosts across the Hubble sequence.
    [Show full text]