Biomolecules-10-01137-V2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Biomolecules-10-01137-V2.Pdf biomolecules Review Viral Ubiquitin and Ubiquitin-Like Deconjugases—Swiss Army Knives for Infection Maria Grazia Masucci Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden; [email protected] Received: 13 July 2020; Accepted: 31 July 2020; Published: 1 August 2020 Abstract: Posttranslational modifications of cellular proteins by covalent conjugation of ubiquitin and ubiquitin-like polypeptides regulate numerous cellular processes that are captured by viruses to promote infection, replication, and spreading. The importance of these protein modifications for the viral life cycle is underscored by the discovery that many viruses encode deconjugases that reverse their functions. The structural and functional characterization of these viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infections and the host’s antiviral defense. Given the growing body of evidence demonstrating their key contribution to pathogenesis, the viral deconjugases are now recognized as attractive targets for the design of novel antiviral therapeutics. Keywords: ubiquitin-like deconjugase; herpesvirus; coronavirus; virus cycle; innate immunity; type I IFN 1. UbL Signaling Networks Viruses have shaped the fate of human societies throughout history. Understanding how these potentially life-threatening pathogens establish infection and how they interact with their hosts is our best strategy for acquiring the means to control the diseases they cause. Being obligatory intracellular parasites, viruses face a double challenge. On one side, they need to commandeer the molecular machinery of the host cell to support the production of new virus particles, while on the other side, they must hold back the multifaceted cellular and organismal defenses that are triggered by infection. These challenges are met by the expression of specialized viral products that hijack or manipulate critical cellular functions. Many of these viral pathogenicity factors are multifunctional proteins that mimic the activity of cellular counterparts whose activity controls key aspects of normal cell physiology. Virtually all cellular processes are regulated by posttranslational modifications that dictate the function, subcellular localization, and interactions of effector proteins. Among those, the covalent attachment of small polypeptides of the ubiquitin family (henceforth collectively referred to as ubiquitin-like polypeptides, UbLs) provides a flexible means to control the activity and fate of the modified substrate. Cell functions that orchestrate the outcome of infection such as the cell cycle, cell survival and programmed cell death, gene expression, protein trafficking and degradation, autophagy, and the immune response are all dependent on UbL modifications [1]. It is therefore not surprising that viruses have evolved means to interfere with the UbL signaling networks in order to secure a cellular environment conducive to their own replication and spread. The UbLs are a family of structurally related small polypeptides that share a β-grasp fold organization consisting of a mixed β-sheet structure with a central α-helix [2]. To date, seventeen human UbLs have been reported to be conjugated to other molecules. In addition to ubiquitin (Ub), the UbLs include the small ubiquitin-related modifier (SUMO)-1, -2, and -3; NEDD8 (neural precursor cell expressed, developmentally downreagulated-8); ISG15 (interferon stimulated gene-15); UFM1 (ubiquitin-fold modifier-1); URM1 (ubiquitin-related modifier-1); FAT10 (HLA-F adjacent transcript Biomolecules 2020, 10, 1137; doi:10.3390/biom10081137 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, 1137 2 of 24 Biomoleculescell expressed,2020, 10 developmentally, 1137 downreagulated-8); ISG15 (interferon stimulated gene-15); UFM12 of 24 (ubiquitin-fold modifier-1); URM1 (ubiquitin-related modifier-1); FAT10 (HLA-F adjacent transcript 10); MNSFβ (monoclonal nonspecific suppressor factor β); and the LC3 (microtubule-associated light 10);chain-3) MNSF andβ (monoclonal GABARAP nonspecific(γ-aminobutyric suppressor acid receptor factor β );associated and the LC3 protein) (microtubule-associated family of modifiers light [3]. chain-3)The attachment and GABARAP of UbLs to (γ their-aminobutyric protein or, acidin th receptore case of associatedthe LC3/GABARAP protein) familyfamily, of lipid modifiers substrates [3]. Theis mediated attachment by an of UbLsenzymatic to their cascade protein that or, starts in the wi caseth ofprocessing the LC3/ GABARAPof the UbL family,precursor lipid by substrates a specific isprotease, mediated which by an generates enzymatic a cascadeC-terminal that Gly starts residue with processing required for of theconjugation. UbL precursor The bymature a specific UbL protease,becomes whichthe substrate generates of an a C-terminal activating Glyenzyme residue (E1) required that forms for a conjugation. high-energy The thiolester mature bond UbL becomeswith the theC-terminal substrate Gly of anand activating then loads enzyme the activated (E1) that UbL forms on the a high-energy catalytic Cys thiolester residue bond of a conjugating with the C-terminal enzyme Gly(E2). and The then E2 transfers loads the the activated UbL to UbL the substrate on the catalytic with th Cyse help residue of a ligase of a conjugating (E3) that promotes enzyme (E2). the transfer The E2 transfers[4,5] (Figure the UbL1). As to a the rule, substrate each UbL with conjugation the help of syst a ligaseem involves (E3) that distinct promotes sets the of transfer dedicated [4,5 E1,] (Figure E2, and1). AsE3, aenzymes rule, each but UbL enzyme conjugation sharing system is not uncommon involves distinct and E3 sets ligases of dedicated with mixed E1, specificity E2, and E3, for enzymes Ub and butISG15, enzyme e.g., sharingTRIM25 is(Tripartite not uncommon motif-25) and [6]; E3 ligasesubiquitin with and mixed NEDD8, specificity e.g., MDM2 for Ub and(Mouse ISG15, double e.g., TRIM25minie-2) (Tripartite[7]; or Ub motif-25)and SUMO, [6]; e.g., ubiquitin TOPORS and (T NEDD8,OP1 binding e.g., MDM2 Arginine/Serin (Mouse doublee rich protein), minie-2) TRAF7 [7]; or Ub(TNF and receptor SUMO, associated e.g., TOPORS factor-7), (TOP1 UHRF2 binding (Ubiquitin Arginine like/Serine with rich PHD protein), and RING TRAF7 finger (TNF domain-2), receptor associatedand TRIM27 factor-7), [8–11] have UHRF2 been (Ubiquitin described. like with PHD and RING finger domain-2), and TRIM27 [8–11] have been described. Figure 1. Schematic illustration of the UbL activation, conjugation and deconjugation cycle. The covalent attachmentFigure 1. Schematic of UbLs to theirillustration substrates of the involves UbL sequentialactivation catalytic, conjugation reactions and that deconjugation initiate with processingcycle. The ofcovalent the UbL attachment precursor byof aUbLs specific to their UbL protease.substrates The involves mature sequential UbL is activated catalytic by reactions an activating that enzymeinitiate (E1)with and processing then transferred of the UbL to aprecursor conjugating by a enzyme specific (E2) UbL that, protease. with the The help mature of a substrate-specific UbL is activated ligaseby an (E3),activating transfer enzyme the activated (E1) and UbL then to transferred the "-amino to residuea conjugating of a Lys enzyme on the target(E2) that, protein with via the a help covalent of a isopeptidesubstrate-specific bond. ligase Additional (E3), tr UbLsansfer can the be activated linked to UbL the to previous the ε-amino one toresidue form chains.of a Lys UbL-specificon the target proteasesprotein via can a reversecovalent the isopeptide modification, bond. supplementing Additional UbLs the cellularcan be linked pools of to free the UbLs.previous The one attachment to form ofchains. a Ub UbL-specific moiety to the proteases N-terminal can Met1reverse or the to anmodi internalfication, Lys supplementing residue of the the previous cellularUb pools (K6, of K11,free k27,K29,K33,K48UbLs. The attachment or K63) of resultsa Ub moiety in the formation to the N-term of topologicallyinal Met1 or di fftoerent an internal poly-Ub Lys chains residue that, of upon the recognitionprevious Ub by (K6, signal K11, transducers k27,K29,K33,K48 contain or dedicated K63) results binding in the domains, formation target of topologically the substrates different various fatespoly-Ub and chains cellular that, functions upon recognition by signal transducers contain dedicated binding domains, target the substrates various fates and cellular functions Ubiquitin is the first recognized and best-known member of the family. The covalent attachment of Ub, ubiquitination,Ubiquitin is the is first mediated recognized by specific and best-known combinations member of E2s and of the E3s family. that promote The covalent the formation attachment of a peptideof Ub, ubiquitination, bond between is the mediated C-terminal by Glyspecific and thecomb N-terminalinations of Met E2s or and the E3s"-amino that promote group of the a Lys formation residue inof thea peptide substrate. bond In between addition the to theC-terminal attachment Gly ofand a singlethe N-terminal Ub to one Met (mono-Ub) or the ε-amino or several group (multi-Ub) of a Lys Lysresidue residues, in the poly-Ub substrate. chains In additi can beon formed to the uponattachment attachment of a single of a new Ub Ub to moietyone (mono-Ub) to Met1 or or Lys6, several 11, 27, 29, 33, 48, or 63 of the first conjugated Ub. In the poly-Ub chain, Ub is usually attached to the same Biomolecules 2020, 10, 1137 3 of 24 (multi-Ub) Lys residues, poly-Ub chains can be formed upon attachment of a new Ub moiety to Met1 Biomolecules 2020, 10, 1137 3 of 24 or Lys6, 11, 27, 29, 33, 48, or 63 of the first conjugated Ub. In the poly-Ub chain, Ub is usually attached to the same Lys residue on each Ub in the chain but mixed-linkage and branched poly-Ub chains may beLys more residue common on each than Ub originally in the chain thought but mixed-linkage[12] (Figure 1). and The branched attachment poly-Ub of Ub chainsor poly-Ub may bechains more generatescommon new than interaction originally thoughtsurfaces [ 12in ]the (Figure modified1).
Recommended publications
  • Ubiquitination, Ubiquitin-Like Modifiers, and Deubiquitination in Viral Infection
    Ubiquitination, Ubiquitin-like Modifiers, and Deubiquitination in Viral Infection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Isaacson, Marisa K., and Hidde L. Ploegh. “Ubiquitination, Ubiquitin- like Modifiers, and Deubiquitination in Viral Infection.” Cell Host & Microbe 5, no. 6 (June 2009): 559-570. Copyright © 2009 Elsevier Inc. As Published http://dx.doi.org/10.1016/j.chom.2009.05.012 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/84989 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Cell Host & Microbe Review Ubiquitination, Ubiquitin-like Modifiers, and Deubiquitination in Viral Infection Marisa K. Isaacson1 and Hidde L. Ploegh1,* 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA *Correspondence: [email protected] DOI 10.1016/j.chom.2009.05.012 Ubiquitin is important for nearly every aspect of cellular physiology. All viruses rely extensively on host machinery for replication; therefore, it is not surprising that viruses connect to the ubiquitin pathway at many levels. Viral involvement with ubiquitin occurs either adventitiously because of the unavoidable usur- pation of cellular processes, or for some specific purpose selected for by the virus to enhance viral replica- tion. Here, we review current knowledge of how the ubiquitin pathway alters viral replication and how viruses influence the ubiquitin pathway to enhance their own replication. Introduction own ubiquitin ligases or ubiquitin-specific proteases, it seems Ubiquitin is a small 76 amino acid protein widely expressed in reasonable to infer functional relevance, but even in these cases, eukaryotic cells.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • SARS-Cov-2) Papain-Like Proteinase(Plpro
    JOURNAL OF VIROLOGY, Oct. 2010, p. 10063–10073 Vol. 84, No. 19 0022-538X/10/$12.00 doi:10.1128/JVI.00898-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Papain-Like Protease 1 from Transmissible Gastroenteritis Virus: Crystal Structure and Enzymatic Activity toward Viral and Cellular Substratesᰔ Justyna A. Wojdyla,1† Ioannis Manolaridis,1‡ Puck B. van Kasteren,2 Marjolein Kikkert,2 Eric J. Snijder,2 Alexander E. Gorbalenya,2 and Paul A. Tucker1* EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany,1 and Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, Netherlands2 Received 27 April 2010/Accepted 15 July 2010 Coronaviruses encode two classes of cysteine proteases, which have narrow substrate specificities and either a chymotrypsin- or papain-like fold. These enzymes mediate the processing of the two precursor polyproteins of the viral replicase and are also thought to modulate host cell functions to facilitate infection. The papain-like protease 1 (PL1pro) domain is present in nonstructural protein 3 (nsp3) of alphacoronaviruses and subgroup 2a betacoronaviruses. It participates in the proteolytic processing of the N-terminal region of the replicase polyproteins in a manner that varies among different coronaviruses and remains poorly understood. Here we report the first structural and biochemical characterization of a purified coronavirus PL1pro domain, that of transmissible gastroenteritis virus (TGEV). Its tertiary structure is compared with that of severe acute respiratory syndrome (SARS) coronavirus PL2pro, a downstream paralog that is conserved in the nsp3’s of all coronaviruses.
    [Show full text]
  • A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Vadim Gladyshev Publications Biochemistry, Department of 2009 A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues Stefano M. Marino University of Nebraska-Lincoln, [email protected] Vadim N. Gladyshev University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biochemgladyshev Part of the Biochemistry, Biophysics, and Structural Biology Commons Marino, Stefano M. and Gladyshev, Vadim N., "A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues" (2009). Vadim Gladyshev Publications. 100. https://digitalcommons.unl.edu/biochemgladyshev/100 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Vadim Gladyshev Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues Stefano M. Marino, Vadim N. Gladyshev* Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, United States of America Abstract Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions.
    [Show full text]
  • Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
    Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1
    [Show full text]
  • Molecular Modelling for Enzyme-Inhibition: a Search for a New Treatment for Cataract and New Antimicrobials and Herbicides
    Molecular Modelling for Enzyme-Inhibition: A Search for a New Treatment for Cataract and New Antimicrobials and Herbicides A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Biochemistry at the University of Canterbury Christchurch New Zealand Blair Gibb Stuart March 2010 Contents CONTENTS ACKNOWLEDGEMENTS 1 ABSTRACT AND PUBLISHED WORK 2 1 INTRODUCTION 6 1.1 Calpain and the cataract hypothesis 6 1.2 Proteases 7 1.3 Calpains 10 1.4 Structure of the eye, cataract and the importance of an anti-cataract drug 14 1.5 The β-strand: important for protease recognition 15 1.6 Computer modelling programs 17 1.7 References 20 2 DEVELOPMENT OF A CALPAIN MODEL FOR DOCKING STUDIES 27 2.1 Introduction 27 2.1.1 Overview of calpain model development 27 2.2 Calpain X-ray crystal structures 28 2.2.1 The first published structures 28 2.2.2 Calpain constructs 1KXR and 1MDW 30 2.3 Exploring the calpain construct 1KXR to develop a viable model for Glide docking experiments 33 2.4 The InducedFit docking model 37 Contents 2.5 Conclusion 37 2.6 References 39 3 MOLECULAR MODELING OF ACYCLIC INHIBITORS 43 3.1 Introduction 43 3.1.1 Natural inhibitors 43 3.1.2 Modified natural inhibitors 45 3.1.3 Lead compound: SJA-6017 46 3.2 Docking studies of known inhibitors 46 3.2.1 Compounds of Inoue et al 46 3.2.2 Docking results for the Inoue et al compounds 50 3.3 Docking Studies of SJA-6017 analogues 58 3.3.1 N-Heterocyclic dipeptides 58 3.3.2 Docking results of N-heterocyclic dipeptides 60 3.4 Docking studies of diazo and
    [Show full text]
  • Biochemical Investigation of the Ubiquitin Carboxyl-Terminal Hydrolase Family" (2015)
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Biochemical investigation of the ubiquitin carboxyl- terminal hydrolase family Joseph Rashon Chaney Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, Biophysics Commons, and the Molecular Biology Commons Recommended Citation Chaney, Joseph Rashon, "Biochemical investigation of the ubiquitin carboxyl-terminal hydrolase family" (2015). Open Access Dissertations. 430. https://docs.lib.purdue.edu/open_access_dissertations/430 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Joseph Rashon Chaney (QWLWOHG BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Doctor of Philosophy )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Angeline Lyon Christine A. Hrycyna George M. Bodner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\R. E. Wild 04/24/2015 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Dissertation Submitted to the Faculty of Purdue University by Joseph Rashon Chaney In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 Purdue University West Lafayette, Indiana ii All of this I dedicate wife, Millicent, to my faithful and beautiful children, Josh and Caleb.
    [Show full text]
  • Structural Basis for the Removal of Ubiquitin and Interferon-Stimulated Gene 15 by a Viral Ovarian Tumor Domain-Containing Protease
    Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease Terrence W. Jamesa,1, Natalia Frias-Stahelib,1,3, John-Paul Bacika, Jesica M. Levingston Macleodb, Mazdak Khajehpourc, Adolfo García-Sastreb,d,e, and Brian L. Marka,2 aDepartment of Microbiology, and cDepartment of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2 Canada; and bDepartment of Microbiology, dDepartment of Medicine, Division of Infectious Diseases, and eGlobal Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY 10029 Edited by J. Wade Harper, Harvard, Boston, MA, and accepted by the Editorial Board December 7, 2010 (received for review September 7, 2010) The attachment of ubiquitin (Ub) and the Ub-like (Ubl) molecule of cellular target proteins similarly to Ub (9). Although conjuga- interferon-stimulated gene 15 (ISG15) to cellular proteins mediates tion is essential (8), several possible antiviral mechanisms have important innate antiviral responses. Ovarian tumor (OTU) domain recently been proposed for ISG15 (10). proteases from nairoviruses and arteriviruses were recently found Ub and ISG15 conjugation can be reversed by deubiquitinating to remove these molecules from host proteins, which inhibits Ub enzymes (DUBs). Ovarian tumor (OTU) domain proteases are and ISG15-dependent antiviral pathways. This contrasts with the papain-like cysteine DUBs that have been identified in eukar- Ub-specific activity of known eukaryotic OTU-domain proteases. yotes, bacteria, and viruses (11). We have assayed a number of Here we describe crystal structures of a viral OTU domain from eukaryotic OTU-domain-containing proteins for deubiquitinat- the highly pathogenic Crimean–Congo haemorrhagic fever virus ing and deISGylating activity, including human A20, Cezanne, (CCHFV) bound to Ub and to ISG15 at 2.5-Å and 2.3-Å resolution, otubain1, and otubain2 (12) and the Saccharomyces cerevisiae respectively.
    [Show full text]
  • Expression of Cysteine Proteinases and Cystatins in Parasites and Use of Cysteine Proteinase Inhibitors in Parasitic Diseases
    Expression of cysteine proteinases and cystatins in parasites and use of cysteine proteinase inhibitors in parasitic diseases. Part I: Review Helminths Article Sherif M. Abaza Parasitology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt ABSTRACT Cysteine proteinase (CP) is a new era as well as interesting topic in several publications during the last two decades. CPs enable several different biological activities in parasite biology and pathogenesis such as digestion of host proteins for nutrition, invasion through cellular and tissue barriers, processing secondary protein modifications for parasite survival as well as manipulation of the host immune system (immunomodulation). In this regard, CPs, like heat shock proteins, are suggested to be virulence factors and serodiagnostic markers. Therefore, CPs data are utilized as drug targets or vaccine candidates through use of their inhibitors as well as in diagnosis of several parasitic diseases. MEROPS is an on-line database for classification, characterization and structural properties of all identified proteinases and their inhibitors. Parasites express not only proteolytic enzymes for their survival and long persistence, but also inhibitors; cystatins, serpins and aspins to inhibit cysteine, serine and aspartic proteinases, respectively, both of the host and their own. On the other hand, CPs inhibitors (CPIs) are either general, inhibiting members of all classes of proteinases, or specific; inhibiting only one class of proteinases. However, a new classification was adopted in 2007, according to their structure; either with low molecular weight peptidomimetic inhibitors or those composed of one or more peptide chains. In spite of that, the majority of research studies used the old classification, general and specific CPIs.
    [Show full text]
  • Arxiv:1212.4161V1 [Q-Bio.BM] 17 Dec 2012
    Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments Cristian Micheletti Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy; e-mail: [email protected] (Dated: October 30, 2018) The growing interest for comparing protein internal dynamics owes much to the realization that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexi- bility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an ac- count of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship. Link to published article in Physics of Live Reviews: http://dx.doi.org/10.1016/j.plrev.2012.10.009 PACS numbers: I. INTRODUCTION tend to conserve very precisely functional structural el- ements and the location of the active site where differ- Over the past decades enormous efforts have been ent amino acids can be recruited for different function[10, made to clarify the sequence ! structure ! function 28, 115, 123, 169]. More recently it has also emerged that relationships for proteins and enzymes. In particular specific features of protein internal dynamics that impact the sequence ! structure connection has been exten- biological activity and functionality can also be subject sively probed by dissecting the detailed physico-chemical to evolutionary conservation[21, 87, 137, 181, 182].
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • ZINF Bericht 1 General Remarks & Teaser Final 08 Dec 2020.Indd
    SCIENTIFIC REPORT 2018-2019 RESEARCH CENTER FOR INFECTIOUS DISEASES (ZINF) ZINF NUMBERS ABOUT THE ZINF 2018-2019 The Research Center for Infectious Diseases (ZINF) is a MULTI-DISCIPLINARY NETWORK of researchers in Würzburg addressing molecular principles of host-pathogen interactions. It brings together experts from MICROBIOLOGY, PARASITOLOGY, VIROLOGY, IMMUNOLOGY, CHEMISTRY, and CLINICAL PRACTICE and facilitates cross-faculty communication, initiation of joint research activities, as well as recruitment of extramural funding. -V\UKLKPU ^P[OÄUHUJPHSZ\WWVY[MYVT[OL-LKLYHS4PUPZ[Y`VM9LZLHYJOHUK ;LJOUVSVN`HUK HM[LY^HYKZ [OL )H]HYPHU :[H[L 4PUPZ[Y` MVY 9LZLHYJO HUK (Y[ [OL ZINF represents the OLDEST ACADEMIC INSTITUTION in Germany devoted to interdisciplinary research on infectious diseases. With 35 professors in infection biology, infectious diseases research is a key area of biomedical research at the Julius 4H_PTPSPHUZ <UP]LYZP[` VM > YaI\YN 14< ;OL A05- NYLH[S` ILULÄ[Z MYVT Z[YVUN PU[LYHJ[PVUZHJYVZZMHJ\S[PLZJSPUPJZHUKYLZLHYJOPUZ[P[\[PVUZV\[ZPKL[OL14< ( JVYL JVTWVULU[ VM [OL A05- OHZ ILLU P[Z YOUNG INVESTIGATOR GROUP WYVNYHT [OH[ VќLYZ H \UPX\L LU[Y` MVY `V\UN YLZLHYJOLYZ PU[V [OLPY V^U ZJPLU[PÄJ career. Research of the independent ZINF junior groups covered in the period of this report focuses on organoids as new infection models, high-throughput technologies [VZ[\K`[OLTVKLVMHJ[PVUVMHU[PIPV[PJJVTIPUH[PVUZYLN\SH[VY`95(TVSLJ\SLZPU anaerobic pathogens and in the microbiome, structural biology of mycobacteria, as well as the role of the microbiota in fungal infections. ;OLA05-PZHJLU[YHSZJPLU[PÄJMHJPSP[`VM[OL14<> YaI\YNHUKOHZL]VS]LKPU[VHU internationally recognized and accredited institution.
    [Show full text]