Phylogeny of Water Birds Inferred from Mitochondrial DNA Sequences of 2 Nine Protein Coding Genes 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PTAČÍ FYLOGENEZE Dovnitř Patří Šplhavci
E Afroaves – řada linií této skupiny je velmi rozrůzněna v Africe a pro Afriku stepokur kropenatý typická (vlhy, zoborožci, mandelíci), ale fosilie africký původ nepodporují. Mnoho (Pterocles burchelli) linií bylo řazeno do řádu srostloprstých, ale ten není monofyletický, poněvadž PTAČÍ FYLOGENEZE dovnitř patří šplhavci. Patří sem i myšáci (Coliiformes) a trogoni. F Australaves – obdobně jako u Afroaves dnes sice řada linií žije jen FYLOGENEZE NA HRUBÉ ÚROVNI A PTAČÍ ŘÁDY v australasijské oblasti, ale fosilní zástupci byli nalezeni všude možně, takže o původu skupiny těžko něco soudit. Zobrazený fylogenetický stromeček zahrnuje jen velké skupiny, přičemž co je „velká“ skupina, je docela arbitrární. Aby vůbec bylo možné dělat O Passerimorphae (nebo Psittacopasserae) – papoušci korektní fylogenetické analýzy, nesmí být těch skupin moc a zároveň je potřeba, aby to byly skupiny, o nichž se předpokládá, že jsou a pěvci sdílejí řadu znaků, například schopnost učit se zpěvu, která byla monofyletické. Reálně se totiž sekvenují samozřejmě jednotliví zástupci (tedy jeden druh, respektive přímo jeden jedinec z dané skupiny), považovaná za klíčovou pro jejich sloučení (pokládala se za znak vzniklý jen a potřebujeme tedy, aby skutečně skupinu reprezentovali. Proto by nestačilo brát zástupce tradičních ptačích řádů, které známe z učebnic, jednou u jejich společného předka, tedy synapomorfii). Ovšem vzhledem k tomu, jelikož se ukázalo, že řada z nich monofyletických není. Tradiční „dravci“ byli například polyfyletičtí, poněvadž zahrnovali monofyletickou že u pěvců je s jistotou známa jen ve skupině Oscines (zpěvní) a navíc se vyskytuje skupinu složenou z orlů, jestřábů, káňat apod. (včetně kondorů), ale taky sokolovité (poštolky, sokoly apod.), kteří jsou ve skutečnosti blízce také u zcela nezávislých kolibříků, musela vzniknout víckrát konvergentně, a to příbuzní pěvcům a papouškům. -
The Tarsometatarsus of the Middle Eocene Loon Colymbiculus Udovichenkoi
– 17 – Paleornithological Research 2013 Proceed. 8th Inter nat. Meeting Society of Avian Paleontology and Evolution Ursula B. Göhlich & Andreas Kroh (Eds) The tarsometatarsus of the Middle Eocene loon Colymbiculus udovichenkoi GERALD MAYR1, LEONID GOROBETS2 & EVGENIJ ZVONOK3 1 Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany; E-mail: [email protected] 2 Taras Shevchenko National University of Kiev, Dept. of Ecology and Environmental Protection, Kiev, Ukraine 3 Institute of Geological Sciences of NAS of Ukraine, Branch of Paleontology and Stratigraphy, Kiev, Ukraine Abstract — We describe the previously unknown tarsometatarsus of the earliest unambiguously identified loon, Colymbiculus udovichenkoi, from the Middle Eocene of the Ukraine. Except for being more elongate and apart from details of the hypotarsus morphology, the bone resembles the tarsometatarsus of the Early Miocene Colym- boides minutus. We consider the hypotarsus morphology of Colymbiculus to be plesiomorphic for Gaviiformes. Colymboides and crown group Gaviiformes are each characterized by an autapomorphic hypotarsus morphology, which precludes the former from being directly ancestral to the latter. The similarities shared by C. udovichenkoi and C. minutus, including their small size, are likely to be plesiomorphic for Gaviiformes. Although the disap- pearance of small stem group Gaviiformes may be related to the retreat of loons to cold Northern latitudes, more data are needed to firmly establish this hypothesis. We finally note that early Paleogene stem group Gaviiformes markedly differ from putative Late Cretaceous loons, whose identification needs to be verified by further fossil specimens. Key words: Colymbiculus, Colymboides, fossil birds, Gaviiformes, Eocene, Lutetian, Ukraine Introduction 1982 from the Early Miocene of the Czech Republic (ŠVEC 1982), the earliest stem line- Loons (Gaviiformes) have a fairly comprehen- age representative, being distinctly smaller than sive Neogene fossil record (OLSON 1985; MAYR its modern congeners. -
Bird Vulnerability Assessments
Assessing the vulnerability of native vertebrate fauna under climate change, to inform wetland and floodplain management of the River Murray in South Australia: Bird Vulnerability Assessments Attachment (2) to the Final Report June 2011 Citation: Gonzalez, D., Scott, A. & Miles, M. (2011) Bird vulnerability assessments- Attachment (2) to ‘Assessing the vulnerability of native vertebrate fauna under climate change to inform wetland and floodplain management of the River Murray in South Australia’. Report prepared for the South Australian Murray-Darling Basin Natural Resources Management Board. For further information please contact: Department of Environment and Natural Resources Phone Information Line (08) 8204 1910, or see SA White Pages for your local Department of Environment and Natural Resources office. Online information available at: http://www.environment.sa.gov.au Permissive Licence © State of South Australia through the Department of Environment and Natural Resources. You may copy, distribute, display, download and otherwise freely deal with this publication for any purpose subject to the conditions that you (1) attribute the Department as the copyright owner of this publication and that (2) you obtain the prior written consent of the Department of Environment and Natural Resources if you wish to modify the work or offer the publication for sale or otherwise use it or any part of it for a commercial purpose. Written requests for permission should be addressed to: Design and Production Manager Department of Environment and Natural Resources GPO Box 1047 Adelaide SA 5001 Disclaimer While reasonable efforts have been made to ensure the contents of this publication are factually correct, the Department of Environment and Natural Resources makes no representations and accepts no responsibility for the accuracy, completeness or fitness for any particular purpose of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of this publication. -
Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. -
Phylogenetic Patterns of Size and Shape of the Nasal Gland Depression in Phalacrocoracidae
PHYLOGENETIC PATTERNS OF SIZE AND SHAPE OF THE NASAL GLAND DEPRESSION IN PHALACROCORACIDAE DOUGLAS SIEGEL-CAUSEY Museumof NaturalHistory and Department of Systematicsand Ecology, University of Kansas, Lawrence, Kansas 66045-2454 USA ABSTRACT.--Nasalglands in Pelecaniformesare situatedwithin the orbit in closelyfitting depressions.Generally, the depressionsare bilobedand small,but in Phalacrocoracidaethey are more diversein shapeand size. Cormorants(Phalacrocoracinae) have small depressions typical of the order; shags(Leucocarboninae) have large, single-lobeddepressions that extend almost the entire length of the frontal. In all PhalacrocoracidaeI examined, shape of the nasalgland depressiondid not vary betweenfreshwater and marine populations.A general linear model detectedstrongly significant effectsof speciesidentity and gender on size of the gland depression.The effectof habitat on size was complexand was detectedonly as a higher-ordereffect. Age had no effecton size or shapeof the nasalgland depression.I believe that habitat and diet are proximateeffects. The ultimate factorthat determinessize and shape of the nasalgland within Phalacrocoracidaeis phylogenetichistory. Received 28 February1989, accepted1 August1989. THE FIRSTinvestigations of the nasal glands mon (e.g.Technau 1936, Zaks and Sokolova1961, of water birds indicated that theseglands were Thomson and Morley 1966), and only a few more developed in species living in marine studies have focused on the cranial structure habitats than in species living in freshwater associatedwith the nasal gland (Marpies 1932; habitats (Heinroth and Heinroth 1927, Marpies Bock 1958, 1963; Staaland 1967; Watson and Di- 1932). Schildmacher (1932), Technau (1936), and voky 1971; Lavery 1972). othersshowed that the degree of development Unlike most other birds, Pelecaniformes have among specieswas associatedwith habitat. Lat- nasal glands situated in depressionsfound in er experimental studies (reviewed by Holmes the anteromedialroof of the orbit (Siegel-Cau- and Phillips 1985) established the role of the sey 1988). -
Status of the Double-Crested Cormorant (Phalacrocorax Auritus) in North America
STATUS OF THE DOUBLE-CRESTED CORMORANT (PHALACROCORAX AURITUS) IN NORTH AMERICA PREPARED BY: LINDA R. WIRES FRANCESCA J. CUTHBERT DALE R. TREXEL ANUP R. JOSHI UNIVERSITY OF MINNESOTA DEPARTMENT OF FISHERIES AND WILDLIFE 1980 FOLWELL AVE. ST. PAUL, MN 55108 USA MAY 2001 PREPARED UNDER CONTRACT WITH *U.S. FISH AND WILDLIFE SERVICE *CONTENT MATERIAL OF THIS REPORT DOES NOT NECESSARILY REPRESENT THE OPINIONS OF USFWS Recommended citation: Wires, L.R., F.J. Cuthbert, D.R. Trexel and A.R. Joshi. 2001. Status of the Double-crested Cormorant (Phalacrocorax auritus) in North America. Final Report to USFWS. FINAL DRAFT Executive Summary i EXECUTIVE SUMMARY Introduction: Since the late-1970s, numbers of Double-crested Cormorants (Phalacrocorax auritus) (DCCO) have increased significantly in many regions of North America. A variety of problems, both real and perceived, have been associated with these increases, including impacts to aquaculture, sport and commercial fisheries, natural habitats, and other avian species. Concern is especially strong over impacts to sport and commercial fishes and aquaculture. Because of increasing public pressure on U.S. government agencies to reduce DCCO conflicts, the USFWS is preparing an Environmental Impact Statement (EIS), and in conjunction with the U.S. Department of Agriculture/Wildlife Services (USDA/WS) and state resource management agencies, will develop a national management plan for the DCCO. This assessment will be used to prepare the EIS and management plan. Populations and trends: The DCCO breeding range in North America is divided into five geographic areas. Since at least 1980, numbers have clearly increased in three of the breeding areas: Canadian and U.S. -
Birds (DNA'dna Hybridization/Mtdna Sequences/Phylogeny/Systematics)
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 9861-9865, October 1994 Evolution Molecules vs. morphology in avian evolution: The case of the "pelecaniform" birds (DNA'DNA hybridization/mtDNA sequences/phylogeny/systematics) S. BLAIR HEDGES* AND CHARLES G. SIBLEyt *Department of Biology and Institute of Molecular Evolutionary Genetics, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802; and t433 Woodley Place, Santa Rosa, CA 95409 Contributed by Charles G. Sibley, June 20, 1994 ABSTRACT The traditional avian Order Pelecaniformes the three front toes has evolved in groups with separate is composed of birds with all four toes connected by a web. This origins-e.g., ducks, gulls, flamingos, and albatrosses. Could "totipalmate" condition is found in ca. 66 living species: 8 the totipalmate condition, which occurs in fewer species, also pelicans (Pelecanus), 9 boobies and gannets (Sula, Papasula, have multiple origins? Sibley and Ahlquist (2) reviewed the Morus), ca. 37 cormorants (Phalacrocorax) , 4 anhingas or literature from 1758 to 1990. darters (Anhinga), 5 frigatebirds (Fregata), and 3 tropicbirds There have been many morphological studies of the pele (Phaethon). Several additional characters are shared by these caniforms; those of Lanham (3), Saiff(4), and Cracraft (5) are genera, and their monophyly has been assumed since the among the most recent. Lanham (3) recognized their diversity beginning of modern zoological nomenclature. Most ornithol but concluded that the totipalmate birds form a natural order. ogists classify these genera as an order, although tropicbirds He assigned Phaethon and Fregata to separate suborders, have been viewed as related to terns, and frigatebirds as the other genera to the suborder Pelecani, and suggested that relatives of the petrels and albatrosses. -
Nests of Anhinga Novaehollandiae As Nuclei for the Breeding of Phalacrocoracidae
Commemorative volume for the 80th birthday of Willem Vervoort in 1997 Nests of Anhinga novaehollandiae as nuclei for the breeding of Phalacrocoracidae G.F. Mees Mees, G.F. Nests of Anhinga novaehollandiae as nuclei for the breeding of Phalacrocoracidae. Zool. Verh. Leiden 323, 31.xii.1998: 417-425, figs 1-2.— ISSN 0024-1652/ISBN 90-73239-68-0. G.F. Mees, 31 West Street, Busselton 6280, Western Australia. Key words: Phalacrocoracidae; Anhinga novaehollandiae; Western Australia. In the years 1992/1998, in Busselton, W Australia, nesting of two species of cormorant, Phalacrocorax melanoleucos and P. sulcirostris, always took place in close proximity to inhabited nests of Anhinga novaehollandiae. Evidently, nests of the latter strongly attracted cormorants about to start nesting. Although this attraction had been noted before (Vestjens, 1975), strangely, it was ignored in later stan• dard works. Introduction The nesting of large water-birds, notably species of Phalacrocoracidae, Ardeidae and Plataleidae, in mixed colonies is well-known, and indeed, being obvious, has been so for many centuries. The question of how such mixed colonies originate, whether there is a particular secquence in the establishment of the different species, or, in simple language: what attracts what, has rarely been posed and is difficult to answer as it requires observations right from the beginning of establishment. Yet, to me, this elusive question seems of great interest. As a small contribution, I present here my observations on the relations and interactions between nesting Anhinga novaehollandiae (Gould, 1847) and two species of cormorant, Phalacrocorax melanoleucos (Vieillot, 1817) and Phalacrocorax sulcirostris (Brandt, 1837), made in Busselton, West• ern Australia. -
2020 North Carolina Ornithology List
2020 North Carolina Ornithology List Kingdom – ANIMALIA Phylum – CHORDATA Key: Sub Phylum – VERTEBRATA Regional level (62 in total) Class – AVES Addition for State level (110 in total) Family Grou p (Family Name) Addition for National level (160 in total) Common Name [Scientific name is in italics] ORDER: Anseriformes Ibises and Spoonbills ORDER: Charadriiformes Ducks, Geese, and Swans (Anatidae) (Threskiornithidae) Lapwings and Plovers (Charadriidae) Northern Shoveler Roseate Spoonbill Platalea ajaja American Golden-Plover Green-winged Teal Killdeer Charadrius vociferus Canvasback ORDER: Suliformes Oystercatchers (Haematopodidae) Hooded Merganser Cormorants (Phalacrocoracidae) American Oystercatcher Black-bellied Whistling-Duck Double-crested Cormorant Stilts and Avocets (Recurvirostridae) Snow Goose Chen caerulescens Phalacrocorax auritus Black-necked Stilt Canada Goose Branta canadensis Darters (Anhingidae) American Avocet Recurvirostra Trumpeter Swan Anhinga Anhinga anhinga americana Wood Duck Aix sponsa Frigatebirds (Fregatidae) Sandpipers, Phalaropes, and Allies Mallard Anas platyrhynchos Magnificent Frigatebird (Scolopacidae) Cinnamon Teal Anas cyanoptera American Woodcock Scolopax minor ORDER: Ciconiiformes Spotted Sandpiper ORDER: Galliformes Deep-water Waders (Ciconiidae) Ruddy Turnstone Partridges, Grouse, Turkeys, and Old Wood stork Dunlin Calidris alpina World Quail Wilson’s Snipe (Phasianidae ) ORDER: Falconiformes Gulls, Terns, and Skimmers Ring-necked Pheasant Caracaras and Falcons (Falconidae) (Laridae) Ruffed Grouse -
2020 National Bird List
2020 NATIONAL BIRD LIST See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. Kingdom – ANIMALIA Great Blue Heron Ardea herodias ORDER: Charadriiformes Phylum – CHORDATA Snowy Egret Egretta thula Lapwings and Plovers (Charadriidae) Green Heron American Golden-Plover Subphylum – VERTEBRATA Black-crowned Night-heron Killdeer Charadrius vociferus Class - AVES Ibises and Spoonbills Oystercatchers (Haematopodidae) Family Group (Family Name) (Threskiornithidae) American Oystercatcher Common Name [Scientifc name Roseate Spoonbill Platalea ajaja Stilts and Avocets (Recurvirostridae) is in italics] Black-necked Stilt ORDER: Anseriformes ORDER: Suliformes American Avocet Recurvirostra Ducks, Geese, and Swans (Anatidae) Cormorants (Phalacrocoracidae) americana Black-bellied Whistling-duck Double-crested Cormorant Sandpipers, Phalaropes, and Allies Snow Goose Phalacrocorax auritus (Scolopacidae) Canada Goose Branta canadensis Darters (Anhingidae) Spotted Sandpiper Trumpeter Swan Anhinga Anhinga anhinga Ruddy Turnstone Wood Duck Aix sponsa Frigatebirds (Fregatidae) Dunlin Calidris alpina Mallard Anas platyrhynchos Magnifcent Frigatebird Wilson’s Snipe Northern Shoveler American Woodcock Scolopax minor Green-winged Teal ORDER: Ciconiiformes Gulls, Terns, and Skimmers (Laridae) Canvasback Deep-water Waders (Ciconiidae) Laughing Gull Hooded Merganser Wood Stork Ring-billed Gull Herring Gull Larus argentatus ORDER: Galliformes ORDER: Falconiformes Least Tern Sternula antillarum Partridges, Grouse, Turkeys, and -
Articles on Lice Published During 2015. Abdulla BS. Morphological
Articles on lice published during 2015. Abdulla BS. Morphological study and prevalence of head lice (Pediculus humanus captis) (Anoplura: Pediculidae) infestation among some primary school students in Erbil City, Kurdistan region. Zanco Journal of Pure and Applied Sciences 2015; 27; 29-36. Abd El Raheem TA, El Sherbiny NA, Elgameel A, El-Sayed GA, Moustafa N, Shahen S. Epidemiological comparative study of pediculosis capitis among primary school children in Fayoum and Minofiya governorates, Egypt. Journal of Community Health 2015; 40: 222- 226. doi: 10.1007/s10900-014-9920-0. Ahmad A, Arya G, Bansal N, Saxena AK. Stray notes on two phthirapteran species occurring on Indian grey Horn Bill, Tockus birostris Scopoli (Coraciformes: Bucerotidae). Journal of Parasitic Diseases 2015; 39: 761-765. doi: 10.1007/s12639-013-0409-z. Epub 2013 Dec 10. Ahmad A, Gupta N, Saxena AK, Gupta DK. Population levels of Phthiraptera on domestic ducks (Anas platyrhynchos) (Anseriformes: Anatidae). Journal of Parasitic Diseases 2015; 39: 567-571. doi: 10.1007/s12639-013-0398-y. Epub 2013 Nov 19. Alahmed A, Shobrak M, Kheir S, Nasser M. Little known chewing lice (Phthiraptera) infesting crab plover Dromas ardeola Paykull, 1805 (Charadriiformes: Dromadidae) from the Red Sea. Acta Tropica 2015; 150: 171-175. doi: 10.1016/j.actatropica.2015.07.025. Epub 2015 Jul 29. Alemu S, Kemal J. The properties of selected medicinal plants against Bovicola ovis and Amblyomma varigatum: A Review. European Journal of Applied Sciences 2015; 7: 277-290. doi: 10.5829/idosi.ejas.2015.7.6.101174 Allen JM, Burleigh JG, Light JE, Reed DL. Effects of 16S rDNA sampling on estimates of endosymbiont lineages in sucking lice. -
Data Types and the Phylogeny of Neoaves
Article Data Types and the Phylogeny of Neoaves Edward L. Braun * and Rebecca T. Kimball * Department of Biology, University of Florida, Gainesville, FL 32611, USA * Correspondence: ebraun68@ufl.edu (E.L.B.); rkimball@ufl.edu (R.T.K.) Simple Summary: Some of the earliest studies using molecular data to resolve evolutionary history separated birds into three main groups: Paleognathae (ostriches and allies), Galloanseres (ducks and chickens), and Neoaves (the remaining ~95% of avian species). The early evolution of Neoaves, however, has remained challenging to understand, even as data from whole genomes have become available. We have recently proposed that some of the conflicts among recent studies may be due to the type of genomic data that is analyzed (regions that code for proteins versus regions that do not). However, a rigorous examination of this hypothesis using coding and non-coding data from the same genomic regions sequenced from a relatively large number of species has not yet been conducted. Here we perform such an analysis and show that data type does influence the methods used to infer evolutionary relationships from molecular sequences. We also show that conducting analyses using models of sequence evolution that were chosen to minimize reconstruction errors result in coding and non-coding trees that are much more similar, and we add to the evidence that non-coding data provide better information regarding neoavian relationships. While a few relationships remain problematic, we are approaching a good understanding of the evolutionary history for major avian groups. Abstract: The phylogeny of Neoaves, the largest clade of extant birds, has remained unclear despite intense study.