1 Emerging Trends in Biopolymers for Food Packaging
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams. -
SARAN™ Polyvinylidene Chloride (PVDC) Resins
Product Safety Assessment SARAN™ Polyvinylidene Chloride (PVDC) Resins Product Safety Assessment documents are available at www.dow.com/productsafety/assess/finder.htm. Select a Topic: Names Product Overview Manufacture of Product Product Description Product Uses Exposure Potential Health Information Environmental Information Physical Hazard Information Regulatory Information Additional Information References Names CAS Nos. 25038-72-6, 9011-06-7 Vinylidene chloride copolymer SARAN polyvinylidene chloride (PVDC) resins Vinylidene chloride/methyl acrylate copolymer SARAN resins Vinylidene chloride/vinyl chloride copolymer Back to top Product Overview SARAN™ resins are white, odorless granules.1 These resins are polyvinylidene chloride (PVDC) copolymers made from polymerizing vinylidene chloride with comonomers like vinyl chloride and alkyl acrylates.2 For further information, see Product Description. SARAN resins are used extensively in packaging applications for food, pharmaceuticals, hygiene products, and sterilized medical products. They offer excellent barrier performance to moisture, oxygen, and odors.3 For further information, see Product Uses. Because SARAN resins are used extensively in food packaging, it is possible for consumers to come into contact with them. Workplace exposure is also possible.4 For further information, see Exposure Potential. SARAN resins are essentially nonirritating to the eyes and skin. Dust from SARAN products may cause temporary mechanical irritation to the skin and eyes under extreme conditions. However, the products are considered to present no significant health hazard.5 For further information, see Health Information. SARAN resins are expected to be inert in the environment. They are unlikely to accumulate in the food chain, and are practically nontoxic to aquatic organisms on an acute basis.6 For further information, see Environmental Information. -
Blown Films for Chilled and Frozen Food Packaging Applications
polymers Article Evaluation of the Suitability of Poly(Lactide)/Poly(Butylene-Adipate-co-Terephthalate) Blown Films for Chilled and Frozen Food Packaging Applications Arianna Pietrosanto, Paola Scarfato * , Luciano Di Maio , Maria Rossella Nobile and Loredana Incarnato Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; [email protected] (A.P.); [email protected] (L.D.M.); [email protected] (M.R.N.); [email protected] (L.I.) * Correspondence: [email protected] Received: 20 December 2019; Accepted: 12 March 2020; Published: 3 April 2020 Abstract: The use of biopolymers can reduce the environmental impact generated by plastic materials. Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) prove to have adequate performances for food packaging applications. Therefore, the present work deals with the production and the characterization of blown films based on PLA and PBAT blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food packaging materials, thus extending their range of applications. The blends were fully characterized: they showed the typical two-phase structure, with a morphology varying from fibrillar to globular in accordance with their viscosity ratio. The increase of PBAT content in the blends led to a decrease of the barrier properties to oxygen and water vapor, and to an increase of the toughness of the films. The mechanical properties of the most ductile blends were also evaluated at 4 C and 25 C. The ◦ − ◦ decrease in temperature caused an increase of the stiffness and a decrease of the ductility of the films to a different extent, depending upon the blend composition. -
Plastic Materials List Original.Xlsx
Partec Institute 1030 Cavendish Rd. Mt. Gravatt East. Brisbane Qld 4122 Ph 07 3849 7878. www.partec.qld.edu.au ABREVIATIONS OF POLYMER MATERIALS AAS acrylonitrile acrylic styrene PE polyethylene ABS acrylonitrile butadiene styrene PEO poly (ethylene oxide) AES acrylonitrile ethylene ester PEP polyethylene propylene A/MMA acrylonitrile / methyl methacrylate PESU polyether sulphone AS acrylonitrile styrene PET polyethylene terephthalate ASA acrylonitrile styrene acrylate PETP crystaline pet (tetramethylene terephthalate) BMC bulk moulding compound PEX polyethylene crosslinked CA cellulose acetate PF phenol formaldehyde resin CAB cellulose acetate butyrate PI polyimide CAP cellulose acetate propionate PIB polyisobutylene CF cresol formadehyde PMMA polymethyl methacrylate CLPE chlorinated polyethylene PMP poly (4-methylpentene- I ) CLPVC /CPVC chlorinated polyvinyl chloride POB polypoxybenzoate CMC carboxymethyl cellulose POM polyoxymethylene (polyacetal) CN cellulose nitrate PP polypropylene CP cellulose propionate PPC polypropylene compound CPE chlorinated polyethylene PPE polypropylene ethylene CS casein PPF polypropylene foam DAP diallyl phthalate PPO polyphenylene oxide modified DMC dough molding compound PPDX polypropylene oxide EC ethyl cellulose PPS polyphenylene sulphide E/EA, EEA ethylene / ethyl acetate PPSU polyphenylene sulphone EEBC polyester (ether ester block copolymer) PS polystyrene E / MA ethylene methacrylate acid PSU polysulphone EP epoxide, epoxy resin PTFE polytetrafluoethylene EPS polystyrene - expandable ethylene -
Table 1. SOME NAMES and ABBREVIATIONS of Plastics and Elastomers
TABlE 1. SOME NAMES AND ABBREVIATIONS OF PlASTICS AND ElASTOMERS. Common name Abbreviation Acetal (homopolymer and copolymer) POM-H and POM-K Acrylate styrene acrylonitrile ASAorAAS Acrylate modified styrene acrylonitrile ASAorAAS Acrylic acid ester rubber ACM Acrylonitrile butadiene rubber or nitrile butadiene rubber NBR Acrylonitrile butadiene styrene ABS Acrylonitrile styrene/chlorinated polyethylene ACS Acrylonitrile methyl methacrylate AMMA Acrylonitrile styrene/EPR rubber or, acrylonitrile ethylene propylene styrene AES Alpha methyl styrene AMS Atactic polypropylene APPorPP-A Butadiene rubber or, cis-1,4-polybutadiene rubber or, polybutadiene rubber BR Butadiene styrene block copolymer BDS Butyl rubber IIR Bulk molding compound BMC Casein formaldehyde CF Cellulose acetate CA Cellulose acetate butyrate CAB Cellulose acetate propionate CAP Cellulose nitrate CN Chlorinated polyethylene CPEorCM Chlorinated polyvinyl chloride CPVC or, PVC-C Chloro-polyethylene or, chlorinated polyethylene. CM or CPE or, PE-C Chloroprene rubber or, polychloroprene rubber CR Chlorotrifluoroethylene ethylene copolymers ECfFE Cis-polyisoprene or, cis-1,4-polyisoprene IR Coumarone indene resins CIR Diallyl phthalate DAP Diallyl isophthalate DAIP Dough molding compound DMC Elastomeric alloy melt processable rubber EA-MPR Elastomeric alloy thermoplastic vulcanizate EA-TPV Epichlohydrin rubber CHR Epoxy or, epoxide EP Epoxy or, epoxide, with glass fiber EPGF Ethyl cellulose EC Ethylene acryic acid EAA Ethylene propylene diene monomer (an EPR terpolymer) EPDM -
Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products. -
Iiihiihiii Iiii
IIIHIIHIIIUS005470624A IIII United States Patent (19) 11) Patent Number: 5,470,624 Oreglia et al. 45 Date of Patent: Nov. 28, 1995 54) OSTOMY FILM 4,525,396 6/1985 Takasa et al. ............................. 428/35 4,606,970 8/1986 ... 428/301 75) Inventors: Aurelio Oreglia, Como; Paolo Vietto, 4,687,692 8/1987 ... 428/137 Legnano, both of Italy 4,975,316 12/1990 ... 428/247 5,110,643 5/1992 73) Assignee: W. R. Grace & Co.-Conn., Duncan, FOREIGN PATENT DOCUMENTS S.C. 061.459 7/1988 Australia. 0600363 12/1988 Australia. 21 Appl. No.: 419,786 0621,048 4/1989 Australia. 22 Filed: Apr. 11, 1995 O167956 1/1986 European Pat. Off.. 0273611 7/1988 European Pat. Off.. Related U.S. Application Data 0318025 5/1989 European Pat. Off.. 60-206622 10/1985 Japan. 62) Division of Ser. No. 363,565, Dec. 22, 1924, which is a 2023494 1/1980 United Kingdom. continuation of Ser. No. 951,034, Sep. 24, 1992, abandoned, 2064333 6/1981 United Kingdom. which is a continuation of Ser. No. 626,368, Dec. 12, 1990, 2115291 9/1983 United Kingdom. abandoned. 21221.34 1/1984 United Kingdom . 213843. 10/1984 United Kingdom. (30) Foreign Application Priority Data 221 1196 6/1989 United Kingdom. Dec. 13, 1989 (GB) United Kingdom ................... 892.8221 O164438 12/1989 WIPO. (51). Int. Cl.' ........................... B29D 23/00; B32B 27/36; Primary Examiner-George F. Lesmes D04H 1/58 Assistant Examiner-Kathryne E. Shelborne 52 U.S. Cl. ....................... 428/36.1; 428/36.2; 428/36.6; Attorney, Agent, or Firm-Thomas C. -
High Performance Ester Plasticizers
High Performance Ester Plasticizers Abstract Traditional elastomer polymers, such as nitrile, polychloroprene, chlorinated polyethylene and chlorosulfonated polyethylene, have for years used moderate- to low- performance ester plasticizers. However, longevity requirements for rubber articles made from these elastomers have created a need for higher-performance ester plasticizers. With the increasing high-temperature demands required by automotive, other elastomers such as acrylic, high-saturated nitrile, epichlorohydrin and ethylene propylene diene monomer EPDM are replacing the more traditional elastomers. Plasticizers commonly used for the traditional and the high-temperature polymers are extractable, incompatible or too volatile. This paper provides information on plasticizers that are designed for traditional elastomers and high-performance polymers. The test data will include heat aging, extraction by hydrocarbons and low-temperature as molded after aging. The information provided indicates that the permanence of the plasticizer after these various agings is the key to the retention of physical properties. Introduction End uses for elastomer compounds are quite diverse, but they can be loosely categorized as being either general performance or higher performance applications. Each of these performance categories requires a different set of considerations in terms of compounding with ester plasticizers. An ester plasticizer, in its simplest concept, is a high-boiling organic solvent that when added to an elastomeric polymer reduces stiffness and permits easier processing.1 For general performance applications, compounders require moderate performance in several areas without particular emphasis on any one. Some general performance ester plasticizers used in the marketplace today are DOA, DIDA, DIDP, DOP, DINP and other phthalates and adipates made from straight-chain alcohols of 7–11 carbons in length. -
5183861.Pdf (200.1Kb)
l|||||llllllll||||||ll||||l|||||||||||||||llllllllllIllllllllllllllllllllll . U5005183861A Ulllted States Patent [19] [11] Patent Number: - 5,183,861 Riffle et a1. ’ [45] Date of Patent: Feb. 2, 1993 [54] POLYALKYLOXAZOLINE/POLYLACIONE [56] References Cited ANDCOPOLYMERS, USES PROCESSES FOR MAKING 1 US. PATENT DOCUMENTS 3,375,231 3/1968 Fukui et al. ......................... 525/415 . 4659 777 4/1987 Riflle et a1. 525/100 [75] Inventors: JudySinging“; S. lefle; Andrew Gurudus E. D. Brink, an of 4,910,268 ’ ’ 3/1990 Kobayash: - 525/411 Blacksburg, Va. OTHER PUBLICATIONS J. Appl. Polymer Sci, vol. 31, 1189-1197 (1986). [73] Assignee: Virginia Tech Intellectual Properties, Primary Examiner—~Ana L. Carrillo Inc., Blacksburg, Va. Attorney, Agent, or Firm—Richard P. Fennelly; Louis [211 App]. No.: 355,709 A' Moms [57] ABSTRACT [22] Filed: May 23, 1989 Block copolymers of polyoxazoline and polylactone moieties can be used as polymeric compatibilizers for [51] Int. Cl.5 .............................................. C08G 63/91 polyamides and polyolefins. [52] US. Cl. ............................... 525/413; 525/415 [58] Field of Search 525/413, 415 4 Claims, No Drawings 5,183,861 1 POLYALKYLOXAZOLINE/POLYLACT ONE ~ —[N-CH2CH21,.. COPOLYMERS, PROCESSES FOR MAKING, AND C(O)R USES R is aryl, alkyl or hydrogen. The subscript n can BACKGROUND OF THE INVENTION where range from a minimum of about 5 to a maximum of 1. Field of the Invention about 1000. The present invention relates to novel copolymers For example, poly(2-ethyloxazoline)/polycaprolac- suitable for use as polymeric compatibilizers. 10 tone block copolymers possessing the general structure 2. Description of the Prior Art described above can be synthesized by first polymeriz- The blending of certain types of copolymer composi- ing ethyl oxazoline using benzyl iodide as the initiator, tions (e.g., block copolymers) with other polymers ei- then terminating the reaction product with potassium This produces a primary hy- ther homopolymers or copolymers, is an industrially hydroxide or ammonia. -
United States Patent (19) 11 Patent Number: 4,585,701 Bartoszek Et Al
United States Patent (19) 11 Patent Number: 4,585,701 Bartoszek et al. (45) Date of Patent: Apr. 29, 1986 54) COMPOSITES OF POLYVINYLIDENE 3,524,906 8/1970 Schmitt et al. ...................... 525/199 FLUORDE ALLOYS AND 3,968, 196 7/1976 Wiley .............. ... 264/171. THERMOPLASTC POLYMERS AND THEIR 4,051,293 9/1977 Wiley .............................. 428/421 X PREPARATION 4,215,177 7/1980 Strassel ........................ 428/424.6 X 4,221,757 9/1980 Strassel ............................... 264/171 75 Inventors: Edward J. Bartoszek, Jeffersonville, 4,226,904 10/1980 Olivier et al... ... 156/322 X Pa.; Steven F. Mones, Newark, Del. 4,289,560 9/1981. Simons ............ ... 156/244.18 73) Assignee: Pennwalt Corporation, Philadelphia, 4,291,099 9/1981 Strassel ... ... 428/421 4,317,860 3/1982 Strassel ....... ... 428/42 Pa. 4,317,861 3/1982 Kidoh et al. ........................ 428/421 21) Appl. No.: 580,483 FOREIGN PATENT DOCUMENTS 22 Filed: Feb. 15, 1984 0060421 9/1982 European Pat. Off. ............ 264/171 51 Int. Cl'.............................................. B32B 27/08 OTHER PUBLICATIONS 52 U.S. C. ...................................... 428/421; 264/37; 264/171; 264/176 R; 428/424.2; 428/424.6; Pennwalt Technical Data Sheet, "KYNAR(R)/Acrylic 428/424.8 Alloys RC-9637 and RC-9638', 7/22/80. 58 Field of Search .................. 428/421, 424.6, 424.2, 428/424.8; 525/199; 264/171, 176 R, 37; Primary Examiner-Thomas J. Herbert 156/322, 244.18 (57) ABSTRACT 56) References Cited Composites of polyvinylidene fluoride alloys, and in U.S. PATENT DOCUMENTS compatible thermoplastic polymers are prepared by 3,253,060 5/1966 Koblitz et al. -
A Glimpse of Biodegradable Polymers and Their Biomedical Applications
Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger e-Polymers 2019; 19: 385–410 Self-dual Leonard pairs Review Article Open Access https://doi.org/10.1515/spma-2019-0001 Received May 8, 2018; accepted September 22, 2018 Tejas V. Shah and Dilip V. Vasava* Abstract: Let F denote a eld and let V denote a vector space over F with nite positive dimension. Consider A glimpse of biodegradablea pair A, A∗ of diagonalizable polymersF-linear maps and on V ,their each of which acts on an eigenbasis for the other one in an irreducible tridiagonal fashion. Such a pair is called a Leonard pair. We consider the self-dual case in which biomedical applicationsthere exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ https://doi.org/10.1515/epoly-2019-0041 duality. In particular,NIPAM we - displayN-isopropylacrylamide an invertible F-linear map T on V such that the map X TXT− is the duality Received December 04, 2018; accepted March 29, 2019. → A A∗. We expressDEAMT -as N, a N-diethyl polynomial acrylamide in A and A∗. We describe how T acts on ags, decompositions, ↔ NVC - N-vinylcaprolactam Abstract: Over the past two decades, biodegradableand 24 bases for V. MVE - Methyl vinyl ether polymers (BPs) have been widely used in biomedical Keywords: LeonardPEO pair,- poly(ethylene tridiagonal matrix, oxide) self-dual applications such as drug carrier, gene delivery, tissue PPO - poly(propylene oxide) engineering, diagnosis, medical devices, and antibac- Classication: 17B37,15A21AAc - Acrylic acid terial/antifouling biomaterials. -
PVDC – New Developments, New Opportunities
PVDC – New Developments, New Opportunities Kirk Paisley SolVin, a division of Solvay Advanced Polymers, L.L.C. Alpharetta, Georgia Introduction The information in this presentation will provide basic background information on the use of PVDC resins and coatings in packaging applications. It will also give data on new grades of PVDC resins and latex, which can lead to the development of new packaging films by flexible packaging converters and film manufacturers. Background Polyvinylidene chloride (PVDC) resins and coatings have been a part of the flexible packaging world for more than 50 years, with a unique combination of functional characteristics that has found numerous applications. It is available in a variety forms: • Aqueous dispersions, or latex, for coating on a number of different film and paper substrates, • Extrudable powders, for monolayer or multilayer films and sheet, and • Soluble powders, for solvent-based coatings on films. Extrudable PVDC Powder Soluble PVDC Powder Aqueous PVDC Dispersion According to 2004 estimates1, approximately 160,000 metric tons of PVDC are used annually around the world in extruded, coextruded, coated and laminated structures. In a study of high barrier packaging films released in late 20052, PVDC was reported to be the leading barrier polymer in high performance packaging films. For example, in dry food packaging, PVDC-coated BOPP films hold a 53% share of barrier films used to package dry foods. Also, the forecasted growth for PVDC-coated PET films is a healthy 9% per year, driven primarily