Sustainable Biofuels: Prospects and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Biofuels: Prospects and Challenges Sustainable biofuels: prospects and challengesSustainable biofuels: prospects January 2008 The Royal Society RS Policy document 01/08 Sustainable biofuels: prospects and challenges Policy document 01/08 January 2008 ISBN 978 0 85403 662 2 This report can be found at royalsociety.org Cover image: splash of liquid. Copyright © Stockxpert Sustainable biofuels: prospects and challenges ISBN 978 0 85403 662 2 © The Royal Society 2008 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG Email: [email protected] Typeset by The Clyvedon Press Ltd, Cardiff, UK Sustainable biofuels: prospects and challenges Contents page Summary 1 1 Introduction 5 1.1 Wider context 5 1.2 The study 7 2 Feedstock 9 2.1 Overview 9 2.2 Diversity of feedstocks 10 2.3 Land use and ecosystem issues 13 2.4 Research and development for feedstock improvement: current strategies 15 3 Conversion and biorefineries 19 3.1 Overview 19 3.2 Supply, preparation and pre-treatment of raw materials 20 3.3 Bioethanol and biobutanol production 23 3.4 Biodiesel 24 3.5 Synthetic biofuels 25 3.6 Biorefineries 28 3.7 Developments 29 4 End use and distribution 31 4.1 Overview 31 4.2 Relative differences between different fuels and their usage 32 4.3 Fuel standards and specifications 33 4.4 Engine modifications and performance 34 4.5 Atmospheric emissions from the use of biofuels 35 4.6 Conclusions and recommendations 36 5 Evaluating the impact of biofuels 37 5.1 Overview 37 5.2 Life-cycle assessment 37 5.3 Limitations and opportunities in life-cycle assessment 38 5.4 Biofuels and greenhouse gas emissions 39 5.5 Land use 40 5.6 Water consumption 42 5.7 Wider pollution issues 45 5.8 Biodiversity 46 5.9 Conclusions and recommendations 47 6 Policy 49 6.1 Wider policy context 49 6.2 Commercial motivations and innovation 49 6.3 Energy security and mitigation of climate change 50 6.4 Climate change and land use 51 6.5 Policy instruments for biofuels 52 6.6 Transport fuels and transport policy more generally 53 6.7 Policy and research 54 6.8 Public dialogue and communication 54 6.9 Conclusions 55 The Royal Society Sustainable biofuels | January 2008 | iii 7 Research and development 57 7.1 Feedstocks 57 7.2 Conversion and biorefineries 58 7.3 End use and distribution 59 7.4 Evaluating environmental impacts 59 7.5 Policy 59 8 Conclusions and recommendations 61 References 65 Working group membership 73 Annex 1 Abbreviations and glossary 75 Annex 2 Call for evidence response and workshop attendees 79 iv | January 2008 | Sustainable biofuels The Royal Society Summary Sustainable biofuels, prospects and challenges efficiency, as well as moderating the demand and need for transport. Given that biofuels are already in the market, Our climate is changing and there is now scientific, social however, it is vital that policies that promote biofuel and political recognition that this is very likely a development also address the environmental, economic consequence of increasing anthropogenic greenhouse and social impacts, so that they are made to perform their gas (GHG) emissions. Transport now accounts for about task effectively. Our conclusion that biofuels are potentially 20% of global anthropogenic carbon dioxide emissions an important part of the future is therefore tempered with and 25% of emissions in the United Kingdom (UK), and the following caveats: these figures are growing faster than for any other sector. If the UK is to reach its target of reducing emissions by • First, the term ‘biofuel’ covers a wide variety of 60% by 2050 then cuts will need to be made in the products with many different characteristics and a transport sector. wide range of potential savings in terms of greenhouse gas emissions: each biofuel must be However, access to energy underpins our current way of assessed on its own merits. life and the hopes of peoples around the world for improved lives. Mobility is a core component of these • Second, each assessment must address the aspirations. Transport has become the main driver for environmental and economic aspects of the increasing global primary oil demand, which is predicted complete cycle – growth of the plant, transport to to grow by 1.3% per year up to 2030, reaching 116 the refinery, the refining process itself (including million barrelsa per day (up from 84 million barrels per day potential by-products such as specialty chemicals), in 2005). The transport sector in particular relies almost wastes produced, distribution of the resultant fuel entirely on oil, which is predicted to become increasingly to consumers, end use, and potential for pollution. scarce and costly in the next few decades and supplies of Such assessments would help to determine the extent which are vulnerable to interruption. to which different biofuels are carbon neutral. Biofuels – fuels derived from plant materials – have the • Third, widespread deployment of biofuels will have potential to address these two issues. At first sight they major implications for land use, with associated appear to be carbon-neutral (the carbon they emit to the environmental, social and economic impacts that atmosphere when burned is offset by the carbon that must in turn be assessed. Here, in particular, plants absorb from the atmosphere while growing), unintended consequences may reduce or override renewable (fresh supplies can be grown as needed) and the expected benefits. capable of being cultivated in many different environments. In addition they are an integral part of the • Fourth, the assessments must address the global and emerging ‘bio-economy’, where plant material is used to regional impacts, not just local ones. produce specific chemicals and bulk industrial chemicals. In the future these may increasingly replace chemicals A coherent biofuels policy must address and balance all derived from fossil oil. The full picture, however, is much these factors if biofuels are to make a sustainable more complex as different biofuels have widely differing contribution to reducing climate change and improving environmental, social and economic impacts. energy security. Biofuels are already entering the market, driven amongst Our study draws attention to the above caveats but does other things by their potential to improve energy security not go into detailed analysis. Nevertheless it is vital that and to contribute to climate change mitigation. While in other studies fully assess these issues because such certain conditions the best use of the plant material – information will give a more complete picture of the biomass – is to burn it to produce heat and electricity, extent to which biofuels are sustainable. We have focused biofuels are one of the few technologies currently available in this report primarily on the research and development that have the potential to displace oil and provide benefit that would be needed to improve the efficiency of to the transport system. There are real opportunities to biofuels. Our analysis suggests that there is considerable develop efficient biofuel supply chains that can deliver potential to improve the performance of biofuels. This substantial greenhouse gas savings. Biofuels on their own requires applying incentives for low carbon biofuels and cannot deliver a sustainable transport system and must be will also accelerate the development of a range of developed as part of an integrated package of measures, technologies across the biofuel supply chain to ensure that which promotes other low carbon options and energy more efficient technologies are brought into the market. a One barrel = 163.6 litres The Royal Society Sustainable biofuels | January 2008 |1 Feedstocks and conversion processes negate any of the intended future climate benefits, as well as having major impacts on conservation of Biofuels are currently produced from the products of biodiverse habitats. Switching already cultivated land to conventional food crops such as the starch, sugar and oil producing biofuel feedstocks could create shortages in feedstocks from crops that include wheat, maize, sugar the previously grown crops. Planting uncultivated land cane, palm oil and oilseed rape. Any major switch to could put pressure on such purposes as conservation of biofuels from such crops would create a direct biodiversity, and amenity use. Developments in the competition with their use for food and animal feed, and agricultural sector for food and non-food crops will have in some parts of the world we are already seeing the important implications for water usage and availability. economic consequences of such competition. The input of artificial fertiliser to increase yield must be carefully regulated or reduced to prevent emissions of Future biofuels are likely to be produced from a much nitrous oxide, a potent greenhouse gas, either directly broader range of feedstocks including the lignocellulose from the area of application or from drainage waters in dedicated energy crops, such as perennial grasses, and downstream. Such opportunity costs and side effects from forestry, the co-products from food production, and have to be fully factored into any decision to assign land domestic vegetable waste. Advances in the conversion to biofuel feedstocks. processes will almost certainly improve the efficiency and reduce the environmental impact of producing biofuels, The UK has 24.25 million hectaresb (Mha) of land, of from both existing food crops and from lignocellulose which 6 Mha is arable and 2.4 Mha forest.
Recommended publications
  • The Impact of Ethanol Use on Food Prices and Greenhouse-Gas Emissions Pub
    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE A CBO PAPER APRIL 2009 The Impact of Ethanol Use on Food Prices and Greenhouse-Gas Emissions Pub. No. 3155 A CBO PAPER The Impact of Ethanol Use on Food Prices and Greenhouse-Gas Emissions April 2009 The Congress of the United States O Congressional Budget Office Notes Unless otherwise indicated, all years referred to in this report are calendar years. On the cover: Cornfield, copyright JupiterImages; bowl of breakfast cereal, photo by Scott Bauer, courtesy of the U.S. Department of Agriculture; and grocery store and traffic, images by Maureen Costantino. Preface The production and use of ethanol in the United States have been steadily increasing since 2001, boosted in part by long-standing production subsidies. That growth has exerted upward pressure on the price of corn and, ultimately, on the retail price of food, affecting both individual consumers and federal expenditures on nutritional support programs. It has also raised questions about the environmental consequences of replacing gasoline with ethanol. This Congressional Budget Office (CBO) analysis, which was prepared at the request of Representatives Ron Kind, Rosa DeLauro, and James McGovern, examines the relationship between increasing production of ethanol and rising prices for food. In particular, CBO esti- mated how much of the rise in food prices between April 2007 and April 2008 was due to an increase in the production of ethanol and how much that increase in prices might raise federal expenditures on food assistance programs. CBO also examined how much the increased use of ethanol might lower emissions of greenhouse gases.
    [Show full text]
  • Evaluation of the Combustion Characteristics of Four Perennial Energy Crops (Arundo Donax, Cynara Cardunculus, Miscanthus X Giganteus and Panicum Virgatum)
    2nd World Conference on Biomass for Energy, Industry and Climate Protection, 10-14 May 2004, Rome, Italy EVALUATION OF THE COMBUSTION CHARACTERISTICS OF FOUR PERENNIAL ENERGY CROPS (ARUNDO DONAX, CYNARA CARDUNCULUS, MISCANTHUS X GIGANTEUS AND PANICUM VIRGATUM) Jonas Dahl & Ingwald Obernberger Institute of Resource Efficient and Sustainable Systems, Graz University of Technology, Inffeldgasse 25, A - 8010 Graz, Austria, Tel.: +43 (0)316 481300, Fax: +43 (0)316 481300 4; E-mail: [email protected] ABSTRACT: The perennial crops giant reed, switchgrass, miscanthus and cardoon were investigated in laboratory- scale and pilot-scale combustion test runs. Laboratory-scale test runs were conducted in a fixed bed pot reactor monitoring the temperature in the fuel bed and the release of gaseous components while pilot-scale test runs where conducted in a 150 kWth rotating grate fired combustion plant measuring formed emissions of CO, NOX, SO2, HCl, and particulates as well as performing deposit probe measurements. The results revealed that the high concentration of ash and slag forming elements such as Si, K and Ca cause severe problems regarding slagging if not specially considered during combustion. Moreover, high concentrations of N are another challenge regarding measures in order to avoid high emissions of NOx. Moreover, also HCl and SO2 emissions are considerably higher compared to wood fuels due to the higher concentrations of Cl and S in these fuels. Keywords: biomass characteristics, biomass conversion, cynara cardonculus, giant reed, switchgrass, miscanthus 1 INTRODUCTION combustion unit (nominal boiler capacity 150 kWth) were carried out with larger amounts (2-4 tons) of Due to the limited availability of wood fuels, in pelletised switch grass and chopped giant reed and southern Europe, high yield energy crops could give an chopped miscanthus (MI).
    [Show full text]
  • Market Demand for Non-Food Crops
    Market demand for non-food crops Inventarisation of the present situation Harriëtte Bos, Wolter Elbersen, Karin Molenveld, WageningenUR, the Netherlands Carlos Cadórniga Valiño, INIA, Spain Efi Alexopoulou, CRES, Greece Report 4FCrops task 1.3 Colophon Title Market demand for non food crops Author(s) Harriëtte Bos , Wolter Elbersen, Carlos Cadórniga Valiño, Efi Alexopoulou AFSG number AFSG number ISBN -number ISBN number Date of publication Date of publication Confidentiality No OPD code OPD code Approved by Name of approving official Agrotechnology and Food Sciences Group P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 475 024 E-mail: [email protected] Internet: www.afsg.wur.nl © Agrotechnology and Food Innovations b.v. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. The quality management system of Agrotechnology and Food Innovations b.v. is certified by SGS International Certification Services EESV according to ISO 9001:2000. 2 © Agrotechnology and Food Innovations b.v., member of Wageningen UR Summary This report summarizes the results of task 1.3 of the 4FCrops project. Methods In this report an estimation is presented of the present day non-food markets for renewable materials. These markets cover a wide range of products, ranging from paper and wood to specialty chemicals and high value added plastics. Estimation of the market size was made starting from the Eurostat data of manufactures goods.
    [Show full text]
  • Advanced Biofuel Policies in Select Eu Member States: 2018 Update
    © INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION POLICY UPDATE NOVEMBER 2018 ADVANCED BIOFUEL POLICIES IN SELECT EU MEMBER STATES: 2018 UPDATE This policy update provides details on the latest measures that select European ICCT POLICY UPDATES Union (EU) member states, namely Denmark, Germany, Italy, the Netherlands, SUMMARIZE Sweden, and the United Kingdom, are taking to support advanced alternative fuels. REGULATORY AND OTHER EU POLICY BACKGROUND DEVELOPMENTS In 2018, the European Union (EU) set its climate and energy objectives for 2030. RELATED TO CLEAN They included a greenhouse gas (GHG) reduction of at least 40% and a minimum of a TRANSPORTATION 32% share of renewable energy consumption across all sectors.1 GHG emissions in the WORLDWIDE. European transportation sector have declined by only 3.8% since 2008, compared to an 18% decrease, or more, in all other sectors, indicating that the decarbonization of transportation should be a priority for the future.2 Biofuels are one of the options considered to increase renewable energy and decrease the carbon intensity of the transportation sector. Through the use of directives and national legislation, the EU has incentivized both the adoption of conventional food-based biofuels and advanced biofuels, which are made from non-food feedstocks. Such incentives date to 2009, when the EU Renewable Energy Directive (RED) mandated that by 2020, 10% of energy used in the transportation sector should come from renewable energy sources (RES).3 In 2015, the RED was 1 Jacopo Giuntoli, Final recast Renewable Energy Directive for 2021-2030 in the European Union, (ICCT: Washington, DC, 2018), https://www.theicct.org/publications/final-recast-renewable-energy-directive- 2021-2030-european-union 2 EUROSTAT (Greenhouse gas emissions by source sector (env_air_gge), accessed November 2018), https://ec.europa.eu/eurostat.
    [Show full text]
  • Ecology and Management of Arundo Donax, and Approaches to Riparian Habitat Restoration in Southern California
    ECOLOGY AND MANAGEMENT OF ARUNDO DONAX, AND APPROACHES TO RIPARIAN HABITAT RESTORATION IN SOUTHERN CALIFORNIA. Gary P. Bell The Nature Conservancy of New Mexico, 212 E. Marcy Street, Suite 200, Santa Fe, NM 87501 USA Abstract By far the greatest threat to the dwindling riparian resources of coastal southern California is the alien grass species known as Arundo donax. Over the last 25 years the riparian forests of coastal southern California have become infested with A. donax which has spread by flood-fragmentation and dispersal of vegetative propagules. Arundo donax dramatically alters the ecological/successional processes in riparian systems and ultimately moves most riparian habitats towards pure stands of this alien grass. By current estimates there are tens of thousands of acres of A. donax along the major coastal drainage systems of southern California, including the Santa Ana, Santa Margarita, Ventura, Santa Clara, San Diego, and San Luis Rey rivers. The removal of A. donax from these systems provides numerous downstream benefits in terms of native species habitat, wildfire protection, water quantity and water quality. Introduction Arundo L. is a genus of tall perennial reed-like grasses (Poaceae) with six species native to warmer parts of the Old World. Arundo donax L. (giant reed, bamboo reed, giant reed grass, arundo grass, donax cane, giant cane, river cane, bamboo cane, canne de Provence), is the largest member of the genus and is among the largest of the grasses, growing to a height of 8 m (Fig. 1). This species is believed to be native to freshwaters of eastern Asia (Polunin and Huxley 1987), but has been cultivated throughout Asia, southern Europe, north Africa, and the Middle East for thousands of years and has been planted widely in North and South America and Australasia in the past century (Perdue 1958, Zohary 1962).
    [Show full text]
  • Ornamental Grasses for Kentucky Landscapes Lenore J
    HO-79 Ornamental Grasses for Kentucky Landscapes Lenore J. Nash, Mary L. Witt, Linda Tapp, and A. J. Powell Jr. any ornamental grasses are available for use in resi- Grasses can be purchased in containers or bare-root Mdential and commercial landscapes and gardens. This (without soil). If you purchase plants from a mail-order publication will help you select grasses that fit different nursery, they will be shipped bare-root. Some plants may landscape needs and grasses that are hardy in Kentucky not bloom until the second season, so buying a larger plant (USDA Zone 6). Grasses are selected for their attractive foli- with an established root system is a good idea if you want age, distinctive form, and/or showy flowers and seedheads. landscape value the first year. If you order from a mail- All but one of the grasses mentioned in this publication are order nursery, plants will be shipped in spring with limited perennial types (see Glossary). shipping in summer and fall. Grasses can be used as ground covers, specimen plants, in or near water, perennial borders, rock gardens, or natu- Planting ralized areas. Annual grasses and many perennial grasses When: The best time to plant grasses is spring, so they have attractive flowers and seedheads and are suitable for will be established by the time hot summer months arrive. fresh and dried arrangements. Container-grown grasses can be planted during the sum- mer as long as adequate moisture is supplied. Cool-season Selecting and Buying grasses can be planted in early fall, but plenty of mulch Select a grass that is right for your climate.
    [Show full text]
  • Invasives and Biofuels
    Invasives and Biofuels Roger C. Anderson School of Biological Sciences Illinois State University Biofuel derived substitutes for petroleum • Two categories of liquid biofuels – First generation • Ethanol (from plant starch, sugar) • Biodiesel (from plant & animal oils) • Methanol (wood) – Second generation • Ceullosic ethanol production • Woody plants and grasses First Generation Biofuels • Examples: Corn, Soybeans, sunflower, sugar cane • Costly: Requires high input of resources – Fertilizer, pesticides, tillage – Utilization prime agricultural land • Degrades natural resources – Dead zone in the Gulf of Mexico • Human food chain • Generally, will not persist without human intervention – Rarely invasive Second Generation Biofuels • Uses grasses, herbs, and trees • Grown on marginal, lower productivity land • Neutral to negative carbon budget Miscanthus giganteus • Low resource demand (fertilizer, pesticides) • Not in human food chains • Perennial Crops – Once planted they will persist – Can be invasive Switchgrass Second Biomass Generation Biofuels Cellulose Enzymes Breakdown Cellulose CO2 Sugars CO2 Ethanol CO2 Fossil BTU 1.23 Fossil BTU 0.74 Fossil BTU @ 0.1 Gasoline Corn Ethanol Cellulosic Ethanol From Coal & Natural Gas From Petroleum Desirable Characteristics of Biofuel Plants • C 4 photosynthesis • Long canopy duration • Perennial • No known pests or diseases • Rapid growth in spring -(to outcompete weeds) • Sterility • High water-use efficiency • Partition nutrients belowground in the fall Two Potential Conflicts in the Nation’s
    [Show full text]
  • Renewable Resources from Arizona Trees and Shrubs*
    5764 Forest Ecology and Management, 16 (1986) 155-167 155 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands Renewable Resources from Arizona Trees and Shrubs* MERLE E. CARRI, CHARLES T. MASON Jr.2and MARVIN O. BAGBY3 INo.rthem Regional Research Center, Agricultural Research Service, U.S. Departmentof Agriculture""', Peoria.. IL 61604 (U.S.A.) 2Herbarium, College ofAgriculture, University ofArizona, Tucson, AZ 85721 (U.S.A.) 3Northem Agricultural Energy Center, Northern Regional Research Center, Agricultural Research Service, U.S. Department ofAgriculture, Peoria, IL 61604 (U.S.A.) (Accepted 11 March 1986) ABSTRACT Carr, M.E., Mason Jr., Ch.T. andBagby, M.O., 1986. Renewable resources from Arizona trees and shrubs. For. EcoL Manage., 16: 155-167. Plants of 100 tree and shrub species from arid and semiarid regions ofArizona were examined botanically and chemically for their multipurpose potential as renewable sources of industrial raw materials. Analytical and botanical features are presented here for only 12 ofthe. more promising species. Samples of the 100 species were analyzed for yields of oils, polyphenols. hydrocarbons, and cxude proteins. Classes of oil constituents were identified. Contents of fatty acids and unsa­ poniflllble matterofsaponifiedoils were determined. Hydrocarbons were analyzedfor thepresence of rubber and gutta (polyisoprenes). Polyisoprenes were analyzed for average molecular weight and molecular weight distribution. Impressive yields ofoil and/orpolyphenol were extracted from Asclepias linaria, JugUms major, Ligustrurnjaponicurn, Mimosa biunci{era, Mortonia scabreUa, Olea europaea, and Rhus chariophyLla. Of these, O. europaea and L. Japonicum of the Oleaceae are rapid-growing, evergreen species with low to moderate moisture requirements and very good adaptability to pollarding.
    [Show full text]
  • Biofuels and Food Security. HLPE Report 5
    HLPE REPORT 5 Biofuels and food security A report by The High Level Panel of Experts on Food Security and Nutrition June 2013 HLPE Steering Committee members (June 2013) MS Swaminathan (Chair) Maryam Rahmanian (Vice-Chair) Catherine Bertini Tewolde Berhan Gebre Egziabher Lawrence Haddad Martin S. Kumar Sheryl Lee Hendriks Alain de Janvry Renato Maluf Mona Mehrez Aly Carlos Perez del Castillo Rudy Rabbinge Huajun Tang Igor Tikhonovich Niracha Wongchinda HLPE Project Team members John Wilkinson (Team Leader) Suraya Afiff Miguel Carriquiry Charles Jumbe Timothy Searchinger Coordinator of the HLPE Vincent Gitz This report by the High Level Panel of Experts on Food Security and Nutrition (HLPE) has been approved by the HLPE Steering Committee. The views expressed do not necessarily reflect the official views of the Committee on World Food Security, of its members, participants, or of the Secretariat. This report is made publicly available and its reproduction and dissemination is encouraged. Non- commercial uses will be authorised free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate this report should be addressed by e-mail to [email protected] with copy to [email protected] Referencing this report: HLPE, 2013. Biofuels and food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome 2013. 2 Table of Contents FOREWORD .............................................................................................................. 7 SUMMARY AND RECOMMENDATIONS .................................................................11 INTRODUCTION .......................................................................................................21 1 BIOFUEL POLICIES ...........................................................................................27 1.1 The emergence of policy-based biofuel markets – ethanol in Brazil and the US .............
    [Show full text]
  • From 1St- to 2Nd-Generation Biofuel Technologies
    INTERNATIONAL ENERGY AGENCY agence internationale de l’energie FROM 1st- TO 2nd-GENERATION BIOFUEL TECHNOLOGIES An overview of current industry and RD&D activities EXTENded EXECUTIVE SUMMarY RALPH SIMS, MICHAEL TAYLOR INTERNATIONAL ENERGY AGENCY AND JACK SADDLER, WArrEN MABEE IEA Bioenergy © OECD/IEA, November 2008 INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) is an autonomous body which was established in November 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. It carries out a comprehensive programme of energy co-operation among twenty-eight of the OECD thirty member countries. The basic aims of the IEA are: n To maintain and improve systems for coping with oil supply disruptions. n To promote rational energy policies in a global context through co-operative relations with non- member countries, industry and international organisations. n To operate a permanent information system on the international oil market. n To improve the world’s energy supply and demand structure by developing alternative energy sources and increasing the efficiency of energy use. n To promote international collaboration on energy technology. n To assist in the integration of environmental and energy policies. The IEA member countries are: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom and United States. The European Commission also participates in the work of the IEA. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of thirty democracies work together to address the economic, social and environmental challenges of globalisation.
    [Show full text]
  • Marketing Meat: How EU Promotional Funds Favour Meat and Dairy
    MARKETING MEAT HOW EU PROMOTIONAL FUNDS FAVOUR MEAT AND DAIRY IMPRINT Report author Sini Eräjää Published April 2021 by Greenpeace European Unit vzw-asbl Belliardstraat 199 Rue Belliard 1040 Brussels, Belgium Ond.Nr./Num. d’entreprise: 0457563648 Contact [email protected] greenpeace.eu @GreenpeaceEU EU Transparency Register: 9832909575-41 Design ANGIENEERING | DESIGN FOR GOOD, www.angieneering.net MARKETING MEAT 2 Contents Key findings 5 1 Introduction 6 2 What is the EU’s agricultural promotion program? 8 3 Who benefits? 10 4 Farm products promoted by the EU 11 5 Promotion campaigns in selected member states 14 Italy 16 Denmark 18 6 Promotional campaign messaging 19 7 Conclusions 23 Annex: Methodology 24 MARKETING MEAT 3 4 © Christian Braga / Greenpeace MARKETING MEAT Key findings In the period 2016–2020, the EU spent € 252.4 million to exclusively promote European meat and dairy products, 32 % of the overall € 776.7 million spending on the promotion of agricultural products in the EU and abroad. € 214.7 million, 28 % of the funding in 2016–2020, was spent on promotion of mixed “baskets” of products, almost all of which included meat and dairy products. Funding for campaigns promoting fruit and vegetables, or more plant-based diets, has been smaller. Over the years 2016–2020, fruits and vegetables were promoted with only € 146.4 million, 19 % of the budget. Promotion of organic animal products was only a small fraction of the funding. Only four projects, worth € 6.2 million, promoted organic animal products (all of which were meat), making up only 3 % of all the promotional funding for animal products during 2016–2019.
    [Show full text]
  • After Seven Years As the UK Government's Chief Scientific Adviser
    Interview What David did next After seven years as the UK government’s chief scientific adviser, chemist David King is still fighting to keep climate change at the top of the political agenda. Richard Van Noorden meets him Ask scientists who has been ‘We’re now centre of Oxford,’ he explains, influence in getting the subject so most responsible for making UK referring to the Foresight high on the UK government agenda. politicians pay attention to the seeing an programmes he established while ‘Coming into government from science of climate change, and enormous advising government, where the university sector was certainly many would nominate Sir David ministers were encouraged to leave a very steep learning curve,’ he says. King – from 2000–2007, the widely effort into aside short-term political interests ‘Nobody should ever underestimate respected chief scientific adviser of the biggest and scan a longer-term horizon to the problem of keeping science, and Tony Blair’s Labour government. tackle societal issues from flooding an understanding of what science can After seven years ensuring that challenge of our to obesity. deliver, on the government’s agenda’. policy-makers had access to the best time’ ‘And instead of being marginalised Among King’s successes were the science, the South African-born in a single department, we will agreement that each government chemist has time to reflect on his get climate change mainstreamed department has its own scientific experiences now he has returned to … there will be lecturers in adviser, and he also played a large the relative freedom of academia.
    [Show full text]