Carotenoids from Haloarchaea and Their Applications in Biotechnology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Plasmid Vector with a Selectable Marker for Halophilic Archaebacteria MELISSA L
JOURNAL OF BACTERIOLOGY, Feb. 1990, p. 756-761 Vol. 172, No. 2 0021-9193/90/020756-06$02.00/0 Copyright © 1990, American Society for Microbiology A Plasmid Vector with a Selectable Marker for Halophilic Archaebacteria MELISSA L. HOLMES* AND MICHAEL L. DYALL-SMITH Department of Microbiology, University of Melbourne, Parkville, Victoria 3052, Australia Received 25 May 1989/Accepted 10 November 1989 A mutant resistant to the gyrase inhibitor novobiocin was selected from a halophilic archaebacterium belonging to the genus Haloferax. Chromosomal DNA from this mutant was able to transform wild-type ceils to novobiocin resistance, and these transformants formed visible colonies in 3 to 4 days on selective plates. The resistance gene was isolated on a 6.7-kilobase DNA KpnI fragment, which was inserted into a cryptic multicopy plasmid (pHK2) derived from the same host strain. The recombinant plasmid transformed wild-type cells at a high efficiency (>106/pg), was stably maintained, and could readily be reisolated from transformants. It could also transform Halobacterium volcanii and appears to be a useful system for genetic analysis in halophilic archaebacteria. Archaebacteria are phylogenetically distinct from eubac- cle was the lack of selectable traits, such as antibiotic teria and eucaryotes and can be broadly divided into three resistance. groups: methanogens, sulfur-dependent thermoacidophiles, The aim of this study was to find a selectable marker for and extreme halophiles (for a review, see reference 22). use in constructing plasmid vectors suitable for isolating and Numerous halobacteria have been isolated from hypersaline studying genes in halobacteria. We report the successful environments around the world, but it is only recently that construction of such a vector by using a gene conferring their taxonomy has been analyzed in a rigorous and compre- resistance to novobiocin and a cryptic plasmid from Halo- hensive fashion. -
New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach
BIOTECHNOLOGY – Vol .III – New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach NEW OPPORTUNITIES REVEALED BY BIOTECHNOLOGICAL EXPLORATIONS OF EXTREMOPHILES Mircea Podar and Anna-Louise Reysenbach Department of Biology, Portland State University, Portland, OR 97201, USA. Keywords: extremophiles, genomics, biotechnology, enzymes, metagenomics. Contents 1. Introduction 2. Extremophiles and Biomolecules 3. Extremophile Genomics Exposing the Biotechnological Potential 4. Tapping into the Hidden Biotechnological Potential through Metagenomics 5. Unexplored Frontiers and Future Prospects Acknowledgements Glossary Bibliography Biographical Sketches Summary Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of new potential applications for biotechnology. Furthermore, more recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for biotechnological exploration of extremophiles. 1. Introduction Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, <15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of recalcitrant substances or heavy metals (extremophiles) represent one of the last frontiers for biotechnological and industrial discovery. As we learn more about the -
Complete Genome Sequence of the Antarctic Halorubrum Lacusprofundi Type Strain ACAM 34 Iain J
Anderson et al. Standards in Genomic Sciences (2016) 11:70 DOI 10.1186/s40793-016-0194-2 SHORT GENOME REPORT Open Access Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34 Iain J. Anderson1, Priya DasSarma2*, Susan Lucas1, Alex Copeland1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Eileen Dalin1, David C. Bruce3, Lynne Goodwin3, Sam Pitluck1, David Sims3, Thomas S. Brettin3, John C. Detter3, Cliff S. Han3, Frank Larimer1,4, Loren Hauser1,4, Miriam Land1,4, Natalia Ivanova1, Paul Richardson1, Ricardo Cavicchioli5, Shiladitya DasSarma2, Carl R. Woese6 and Nikos C. Kyrpides1 Abstract Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. WereportherethecompletegenomesequenceofH. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. Keywords: Archaea, Halophile, Halorubrum, Extremophile, Cold adaptation, Tree of life Abbreviations: TE, Tris-EDTA buffer; CRITICA, Coding region identification tool invoking comparative analysis; PRIAM, PRofils pour l’Identification Automatique du Métabolisme; KEGG, Kyoto Encyclopedia of Genes and Genomes; COG, Clusters of Orthologous Groups; TMHMM, Transmembrane hidden Markov model; CRISPR, Clustered regularly interspaced short palindromic repeats Introduction 2006 Joint Genome Institute Community Sequencing Halorubrum lacusprofundi is an extremely halophilic Program project because of its ability to grow at low archaeon belonging to the class Halobacteria within the temperature and its phylogenetic distance from other phylum Euryarchaeota. -
Occurrence and Phylogenetic Diversity in Halobacteriales Afef Najjari, Hiba Mejri, Marwa Jabbari, Haitham Sghaier, Ameur Cherif and Hadda-Imene Ouzari
Chapter Halocins, Bacteriocin-Like Antimicrobials Produced by the Archaeal Domain: Occurrence and Phylogenetic Diversity in Halobacteriales Afef Najjari, Hiba Mejri, Marwa Jabbari, Haitham Sghaier, Ameur Cherif and Hadda-Imene Ouzari Abstract Members of extremely halophilic archaea, currently consisting of more than 56 genera and 216 species, are known to produce their specific bacteriocin-like pep- tides and proteins called halocins, synthesized by the ribosomal pathway. Halocins are diverse in size, consisting of proteins as large as 35 kDa and peptide “microhalo- cins” as small as 3.6 kDa. Today, about fifteen halocins have been described and only three genes, halC8, halS8 and halH4, coding C8, S8 and H4 halocins respectively have been identified. In this study, a total of 1858 of complete and nearly complete genome sequences of Halobacteria class members were retrieved from the IMG and Genbank databases and then screened for halocin encoding gene content, based on the BLASTP algorithm. A total of 61 amino acid sequences belonging to three halocins classes (C8, HalH4 and S8) were identified within 15 genera with the abun- dance of C8 class. Phylogenetic analysis based on amino acids sequences showed a clear segregation of the three halocins classes. Halocin S8 was phylogenetically more close to HalH4. No clear segregation on species and genera levels was observed based on halocin C8 analysiscontrary to HalH4 based analysis. Collectively, these results give an overview on halocins diversity within halophilic archaea which can open new research topics that will shed light on halocins as marker for haloarchaeal phylogentic delineation. Keywords: archaea, bioinformatics, diversity, halocins, phylogeny 1. -
Extremozymes of the Hot and Salty Halothermothrix Orenii
Extremozymes of the Hot and Salty Halothermothrix orenii Author Kori, Lokesh D Published 2012 Thesis Type Thesis (PhD Doctorate) School School of Biomolecular and Physical Sciences DOI https://doi.org/10.25904/1912/2191 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366220 Griffith Research Online https://research-repository.griffith.edu.au Extremozymes of the hot and salty Halothermothrix orenii LOKESH D. KORI (M.Sc. Biotechnology) School of Biomolecular and Physical Sciences Science, Environment, Engineering and Technology Griffith University, Australia Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy December 2011 STATEMENT OF ORIGINALITY STATEMENT OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. LOKESH DULICHAND KORI II ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I owe my deepest gratitude to my supervisor Prof. Bharat Patel, for offering me an opportunity for being his postgraduate. His boundless knowledge motivates me for keep going and enjoy the essence of science. Without his guidance, great patience and advice, I could not finish my PhD program successfully. I take this opportunity to give my heartiest thanks to Assoc. Prof. Andreas Hofmann, (Structural Chemistry, Eskitis Institute for Cell & Molecular Therapies, Griffith University) for his support and encouragement for crystallographic work. I am grateful to him for teaching me about the protein structures, in silico analysis and their hidden chemistry. -
The Life of Brine: Halophiles in 2001 Comment Mike Dyall-Smith* and Michael Danson
http://genomebiology.com/2001/2/12/reports/4033.1 Meeting report The life of brine: halophiles in 2001 comment Mike Dyall-Smith* and Michael Danson Addresses: *Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia. Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK. Correspondence: Mike Dyall-Smith. E-mail: [email protected] Published: 21 November 2001 reviews Genome Biology 2001, 2(12):reports4033.1–4033.3 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2001/2/12/reports/4033 © BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914) reports haloarchaea found in salt ponds that have 8% salt (or A report on the International conference on Halophilic 2.3-fold concentrated seawater) but are not detectable at the Microorganisms, Sevilla, Spain, 23-27 September 2001. higher salinities usually associated with haloarchaea (20-35% salt). Discovered using 16S rRNA libraries, the new haloar- chaea are distantly related to Haloarcula. None has been cul- The 2001 halophiles meeting covered archaea, bacteria, tured but these results suggest an optimum salt concentration fungi and algae adapted to living hypersaline environments. for growth far lower than that of known haloarchaea. These deposited research Despite the absence of some American colleagues as a result represent an intermediate group of haloarchaea, not previ- of the recent terrorist attack, the meeting was full of exciting ously suspected, and offer insight into the evolution of advances (as well as pictures of salt lakes, salterns, brines extreme halophiles. -
Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies
Protocol Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies Mirko Stauffer 1 , Stephan Hirschi 1 , Zöhre Ucurum 1, Daniel Harder 1 , Ramona Schlesinger 2,* and Dimitrios Fotiadis 1,* 1 Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; mirko.stauff[email protected] (M.S.); [email protected] (S.H.); [email protected] (Z.U.); [email protected] (D.H.) 2 Department of Physics, Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany * Correspondence: [email protected] (R.S.); [email protected] (D.F.) Received: 6 July 2020; Accepted: 19 July 2020; Published: 22 July 2020 Abstract: The light-driven proton pump bacteriorhodopsin (BR) from the extreme halophilic archaeon Halobacterium salinarum is a retinal-binding protein, which forms highly ordered and thermally stable 2D crystals in native membranes (termed purple membranes). BR and purple membranes (PMs) have been and are still being intensively studied by numerous researchers from different scientific disciplines. Furthermore, PMs are being successfully used in new, emerging technologies such as bioelectronics and bionanotechnology. Most published studies used the wild-type form of BR, because of the intrinsic difficulty to produce genetically modified versions in purple membranes homologously. However, modification and engineering is crucial for studies in basic research and, in particular, to tailor BR for specific applications in applied sciences. We present an extensive and detailed protocol ranging from the genetic modification and cultivation of H. -
Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past. -
Archaeology of Eukaryotic DNA Replication
Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010). -
Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. -
Genome Sequence and Description of Haloferax Massiliense Sp. Nov., a New Halophilic Archaeon Isolated from the Human Gut
Extremophiles (2018) 22:485–498 https://doi.org/10.1007/s00792-018-1011-1 ORIGINAL PAPER Genome sequence and description of Haloferax massiliense sp. nov., a new halophilic archaeon isolated from the human gut Saber Khelaifa1 · Aurelia Caputo1 · Claudia Andrieu1 · Frederique Cadoret1 · Nicholas Armstrong1 · Caroline Michelle1 · Jean‑Christophe Lagier1 · Felix Djossou2 · Pierre‑Edouard Fournier1 · Didier Raoult1,3 Received: 14 November 2017 / Accepted: 5 February 2018 / Published online: 12 February 2018 © The Author(s) 2018. This article is an open access publication Abstract By applying the culturomics concept and using culture conditions containing a high salt concentration, we herein isolated the frst known halophilic archaeon colonizing the human gut. Here we described its phenotypic and biochemical characteriza- tion as well as its genome annotation. Strain Arc-HrT (= CSUR P0974 = CECT 9307) was mesophile and grew optimally at 37 °C and pH 7. Strain Arc-HrT was also extremely halophilic with an optimal growth observed at 15% NaCl. It showed gram-negative cocci, was strictly aerobic, non-motile and non-spore-forming, and exhibited catalase and oxidase activities. The 4,015,175 bp long genome exhibits a G + C% content of 65.36% and contains 3911 protein-coding and 64 predicted RNA genes. PCR-amplifed 16S rRNA gene of strain Arc-HrT yielded a 99.2% sequence similarity with Haloferax prahovense, the phylogenetically closest validly published species in the Haloferax genus. The DDH was of 50.70 ± 5.2% with H. prahovense, 53.70 ± 2.69% with H. volcanii, 50.90 ± 2.64% with H. alexandrinus, 52.90 ± 2.67% with H. -
Characterization of the First Cultured Representative of Verrucomicrobia Subdivision 5 Indicates the Proposal of a Novel Phylum
The ISME Journal (2016) 10, 2801–2816 OPEN © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum Stefan Spring1, Boyke Bunk2, Cathrin Spröer3, Peter Schumann3, Manfred Rohde4, Brian J Tindall1 and Hans-Peter Klenk1,5 1Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 2Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; 3Department Central Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany and 4Central Facility for Microscopy, Helmholtz-Centre of Infection Research, Braunschweig, Germany The recently isolated strain L21-Fru-ABT represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-ABT represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate.