Brain Herniation Into Arachnoid Granulations: Clinical and Neuroimaging Features

Total Page:16

File Type:pdf, Size:1020Kb

Brain Herniation Into Arachnoid Granulations: Clinical and Neuroimaging Features Brain Herniation into Arachnoid Granulations: Clinical and Neuroimaging Features Greta B. Liebo, John (Jack) I. Lane, Jamie J. Van Gompel, Laurence J. Eckel, Kara M. Schwartz, Vance T. Lehman From the Department of Radiology (GBL, J(J)IL, LJE, KMS, VTL); and Department of Neurologic Surgery and Otolaryngology (JJVG), Mayo Clinic-Rochester, Rochester, MN. ABSTRACT BACKGROUND/PURPOSE: Brain herniation into presumed arachnoid granulations (BHAG) is an increasingly recognized entity. Though it has previously been described as isointense to brain matter on magnetic resonance imaging (MRI), we have encountered 21 cases in our clinical practice, many of which have signal abnormality in the herniated or adjacent parenchyma. We performed a systematic analysis on these cases to further understand the clinical significance. METHODS: This is a retrospective analysis of cases collected from our clinical MRI practice. Each case was evaluated for location, size, lobe of origin, associated signal abnormality, symptoms, and the presence or absence of intracranial hypertension. RESULTS: Twenty-one cases of BHAG identified in 16 patients. Seven cases (7/21, 33%) demonstrated signal abnormality in the herniated or underlying parenchyma. On serial imaging, the size of herniation either fluctuated (2/10, 20%) or stayed the same (8/10, 80%). The associated signal abnormalities increased (1/5, 20%), decreased (1/5, 20%), or remained stable (3/5, 60%). Four patients (4/16, 25%) had signs/symptoms that could be associated with the BHAG. Ten patients (10/16, 63%) had either imaging findings or clinical signs that could be associated with intracranial hypertension. CONCLUSION: In contrast to previously reported cases, our study demonstrates that BHAG can be associated with MRI signal abnormalities of the herniated and adjacent brain. Symptoms are typically absent, though may be present in a small subset of patients, regardless of the presence of signal change or encephalomalacia of the involved brain. Indirect evidence of intracranial hypertension is present in a majority of patients but completely lacking in others. Keywords: Brain herniation, arachnoid granulation, encephalocele. Acceptance: Received April 18, 2016. Accepted for publication April 28, 2016. Correspondence: Address correspondence to Greta B. Liebo, Department of Radiology, Mayo Clinic-Rochester, 200 First St SW, Rochester, MN 55905. E-mail: [email protected]. Presentation at Meetings: Portions presented in electronic poster exhibit at ASNR, 2015 Annual Meeting, Chicago, IL, April 25–30. “Brain Herniation into Arachnoid Granulations: an Uncommon Entity with Variable Clinical and Radiographic Manifestations.” Portions presented in electronic poster exhibit at ASHNR, 2015 Annual Meeting, Naples, Florida; September 9–13. “Arachnoid Granulations Involving the Underlying Brain: Imaging and Clinical Features.” Acknowledgements and Disclosure: None. J Neuroimaging 2016;00:1-7. DOI: 10.1111/jon.12366 Introduction condition.9–11,14,15 Symptoms attributed to these abnormalities Arachnoid granulations (AGs) are invaginations of the arach- are variable and largely anecdotal.2–4,9–11,13,15 noid membrane that protrude through gaps in the dura into In all previously reported cases, the MRI signal in the her- the dural venous sinuses and occasionally the calvarium. They niated brain parenchyma and surrounding CSF has been de- are functionally and histologically related to arachnoid villi, dif- scribed as isointense to the underlying brain and subarachnoid fering only in size and complexity, providing a route for cere- space. In our experience, these herniations are sometimes asso- bral spinal fluid (CSF) resorption into the bloodstream.1–4 Fre- ciated with parenchymal signal abnormality or focal encephalo- quently seen on imaging, AGs are considered normal anatomic malacia in the underlying brain. To further understand the structures, though rare cases have been reported that indirectly imaging and clinical significance of this increasingly recognized implicate AGs with symptoms such as headache, tinnitus, CSF entity, we performed a systematic analysis of all 21 examples of otorrhea, and intracranial venous hypertension.5–14 brain herniation into presumed AGs (BHAG) encountered in Recently, herniation of brain parenchyma into the dural our clinical practice, specifically correlating imaging and clini- venous sinuses and calvarium have been reported, sometimes cal findings to the presence or absence of parenchymal signal referred to as occult encephaloceles, as the herniation does abnormality in the herniation or underlying brain. not extend through the outer cortex of the calvarium or skull base.2–4,9–12,15–17 While it remains to be proven, the association Methods of the herniation with presumed preexisting AGs has been sug- Case Identification gested in prior reports. Some authors have suggested that the abnormality occurs spontaneously,2,10,11 while others have pos- Institution review board approval was obtained for this Health tulated that intracranial hypertension could be a predisposing Insurance Portability and Accountability Act compliant study. Copyright ◦C 2016 by the American Society of Neuroimaging 1 Cases were identified by the authors during routine clinical scanned, though all had a slice thickness of <1.5 mm. A tabu- practice between 2012 and 2015. The diagnosis was based on lated overview of the cases can be found in Table 1. criteria established from previously reported cases of AGs on magnetic resonance (MR) imaging3,8,18 in conjunction with (i) Imaging Analysis direct visualization of brain herniation into the AG or (ii) teth- The majority of the herniations occurred within presumed AGs ering of brain to the AG with underlying parenchymal signal along inner table of the calvaria or skull base (16/21, 76%). abnormality and architectural distortion. All cases meeting di- Fourteen of 21 (67%) involved the occipital crests and 2/21 agnostic imaging criteria by group consensus were included. (10%) involved the posterior petrous bones. The remaining five Two cases were confirmed pathologically. (24%) herniations occurred into presumed AGs protruding into the dural venous sinuses, including four (19%) in the transverse Imaging Analysis sinus and one (5%) in the torcula herophili. Four of 16 (25%) pa- All images were reviewed separately by two neuroradiologists tients had multiple herniations: three cases with two herniations (GBL and VTL), the latter of whom holds a certificate of added each and one case with three separate herniations. All hernia- qualification in neuroradiology and 3 years’ experience. Al- tions in these 4 patients involved herniation of the cerebellar though only one MRI was requisite for inclusion, all available hemisphere into the occipital crests. cross sectional imaging studies of the brain were analyzed in All herniations arose either from the posterior fossa (cerebel- each patient. The utilization of high-resolution 3-dimensional lum) or the cerebrum immediately adjacent to it. Herniations of gradient echo or spinecho imaging was also recorded, defined the cerebellar hemispheres (n = 19, 90%) exceeded that of the by a maximum slice thickness of 1.5 mm. cerebral hemispheres (n = 2, 10%). Cerebellar hemisphere her- Each case was evaluated carefully to assess (1) AG loca- niations were on the right in 9 cases and on the left in 10 cases; tion; (2) mean AG diameter; (3) lobe of origin; (4) presence no cases of herniation of the cerebellar vermis were identified. or absence of signal abnormality in the herniated brain; or (5) Herniations arising from the cerebral hemispheres included one encephalomalacia in the underlying brain parenchyma. When case (4.5%) originating from the left inferior temporal gyrus and serial examinations were available, the stability or evolution of one case (4.5%) originating from the lateral left inferior occipital these features was documented. lobe. For patients with multiple presumed AGs containing herni- Overall, MR signal abnormality in the herniated and/or un- ated brain parenchyma, each area was analyzed separately. All derlying brain was identified in 7/21 (33%) cases of BHAG, present and prior examinations were then analyzed for recog- involving 7/16 (44%) of patients. This subset of patients had nized neuroimaging signs of possible intracranial hypertension a mean age of 58 years (range 45–70) and 5/7 (71%) were fe- including intraparenchymal mass effect, thinning or erosions of males. All cases involved the cerebellum. Two cases (2/7, 29%) the calvarium and skull base, empty sella, optic sheath pseu- demonstrated T2 prolongation in the herniated tissue sugges- domeningoceles, and narrowing of the dural venous sinuses. tive of simple vasogenic edema (cases 2 and 11; Fig 1). One case (1/7, 14%) demonstrated T2 prolongation and enhance- Clinical Chart Analysis ment in the tissue subjacent to cerebellar herniation suggestive of more severe vasogenic edema related to ischemic injury (case The electronic medical record was systematically reviewed by 8; Fig 2). Four cases (4/7, 57%) demonstrated T2 prolongation, a board-certified neurologic surgeon (JJVG) with 5 years of ex- fluid-attenuated inversion recovery (FLAIR) suppression, and perience and clinical interest in skull base CSF leaks. Clinical T1 shortening in the parenchyma subjacent to the presumed histories were reviewed for any past or present neurologic sign AG suggestive of focal cerebellar encephalomalacia. Three of or symptom that could conceivably correlate with the MRI
Recommended publications
  • Intimate Exchange Between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System
    REVIEW ARTICLE doi: 10.2176/nmc.ra.2016-0020 Neurol Med Chir (Tokyo) 56, 416–441, 2016 Online May 27, 2016 Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System Mitsunori MATSUMAE,1 Osamu SATO,2 Akihiro HIRAYAMA,1 Naokazu HAYASHI,1 Ken TAKIZAWA,1 Hideki ATSUMI,1 and Takatoshi SORIMACHI1 1Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa; 2Tokai University, Shibuya, Tokyo Abstract Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume ad- justment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relation- ship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorp- tion, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems.
    [Show full text]
  • University of Copenhagen, Copenhagen, Denmark
    Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Louveau, Antoine; Plog, Benjamin A.; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan Published in: The Journal of Clinical Investigation DOI: 10.1172/JCI90603 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Louveau, A., Plog, B. A., Antila, S., Alitalo, K., Nedergaard, M., & Kipnis, J. (2017). Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of Clinical Investigation, 127(9), 3210-3219. https://doi.org/10.1172/JCI90603 Download date: 26. Sep. 2021 Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Antoine Louveau, … , Maiken Nedergaard, Jonathan Kipnis J Clin Invest. 2017;127(9):3210-3219. https://doi.org/10.1172/JCI90603. Review Series Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage.
    [Show full text]
  • The Meninges and Common Pathology Understanding the Anatomy Can Lead to Prompt Identification of Serious Pathology
    education The meninges and common pathology Understanding the anatomy can lead to prompt identification of serious pathology The meninges are three membranous of the skull and extends into folds that arterial blood has sufficient pressure to layers that surround the structures of the compartmentalise the skull.1 2 The large separate the dura from the bare bone of central nervous system. They include the midline fold separates the two hemispheres the skull.4 The classic example of this is dura mater, the arachnoid mater, and and is called the falx.1 A smaller fold a severe blow to the temple that ruptures the pia mater. Together they cushion the separates the cerebral hemispheres from the middle meningeal artery, which brain and spinal cord with cerebrospinal the cerebellum and is known as the has part of its course between the skull fluid and support the associated vascular tentorium cerebelli usually abbreviated as and the dura at a weak point called the structures.1 2 Although they are usually “tentorium” (fig 1).1‑3 pterion.1 2 4 This creates an extradural mentioned as a trio, there are subtle but Where the edges of the falx and tentorium haematoma,2 a potentially lifethreatening important differences to the arrangement of meet the skull, the dura encloses large injury that classically presents with the meninges in the spine and cranium. The venous sinuses that are responsible for decreased consciousness and vomiting aim of this introduction to the meninges is draining venous blood from the brain.1 4 after a lucid interval (an initial period of to clarify the anatomy and link these details These are not to be confused with the air apparently normal consciousness).
    [Show full text]
  • Arachnoid Granulations and “Giant” Arachnoid Granulations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Surg Radiol Anat (2008) 30:417–421 DOI 10.1007/s00276-008-0345-2 ORIGINAL ARTICLE Dural arachnoid granulations and “giant” arachnoid granulations Johannes Haybaeck · Rene Silye · Dov SoVer Received: 4 March 2008 / Accepted: 17 March 2008 / Published online: 8 April 2008 © Springer-Verlag 2008 Abstract Although arachnoid granulations (AGs) were Introduction already described by Antonio Pacchioni more than 300 years ago, two issues draw particular attention: Wrst, Although arachnoid granulations (AGs) were initially the radiological features and diVerential diagnosis of the so- described by Antonio Pacchioni more than 300 years ago called giant AGs (GAGs) and second, their possible associ- [1], they are still poorly described, especially in the neuro- ation with various disease processes. In order to evaluate radiological literature. Two issues draw particular attention: the frequency, size and normal distribution of GAGs, an Wrst, the radiological features of AGs, particularly of the so- anatomical study of the dural sinuses was carried out. It called giant AGs (GAGs) and its diVerential diagnosis [2– involved all the autopsies performed during the period 11], and second, their possible association with various dis- August 2002–February 2005 and included 651 cases: 306 ease processes [12–14]. Giant AGs are still a poorly under- females and 345 males, aged 13–99 years (mean 69 years). stood distinct entity, seldom mentioned in the Grossly visible GAGs were identiWed in 24 cases: 7 neuroanatomical and neuropathological literature. Men- females and 17 males, aged 45–92 years (mean 69 years).
    [Show full text]
  • MR of Giant Arachnoid Granulation, a Normal Variant Presenting As a Mass Within the Dural Venous Sinus
    MR of Giant Arachnoid Granulation, a Normal Variant Presenting as a Mass within the Dural Venous Sinus Alexander C. Mamourian and Javad Towfighi Summary: We report three cases of masses within the cerebral Case 2 dural venous sinuses shown with either MR or angiography. The dural venous sinuses of 10 patients without known venous dis- A 7-year-old boy was resuscitated after being found ease were examined at autopsy. In two patients, three giant unresponsive in a swimming pool. Previous episodes of arachnoid granulations were identified. On the basis of the liter- staring with fixed upward gaze were reported, and there ature and our limited autopsy series, we suggest that these was a strong family history of seizures. The diagnosis of lesions identified at imaging are giant arachnoid granulations, partial complex seizures was made. MR showed a mass normal variants of no known clinical significance. projecting into the superior sagittal sinus that was con- firmed with angiography (Fig 2). This was thought to be Index terms: Dural sinuses; Brain, anatomy unrelated to the symptoms. The mass was isointense with brain on T1-weighted images but hyperintense on the T2- Because of increasing availability of cerebral weighted scans. There was some irregular enhancement venous magnetic resonance (MR) angiography, centrally in the mass. The inner table of the skull appeared eroded by the mass. Follow-up MR 4 months later dem- it has become important to recognize normal onstrated no change. No other abnormalities were noted. variations of the cerebral venous system. We The seizures responded to medication. report three cases in which masses were iden- tified within the dural sinuses on MR, MR an- giography, or conventional angiography.
    [Show full text]
  • Meninges, Ventricles, and CSF
    Meninges, Ventricles, and CSF Lecture (19) ▪ Important ▪ Doctors Notes Please check our Editing File ▪ Notes/Extra explanation ه هذا العمل مب ين بشكل أسا يس عىل عمل دفعة 436 مع المراجعة { َوَم نْ يَ َت َو َ ّكْ عَ َلْ ا َّْلل فَهُ َوْ َحْ سْ ُ ُُْ} والتدقيق وإضافة المﻻحظات وﻻ يغ ين عن المصدر اﻷسا يس للمذاكرة ▪ Objectives At the end of the lecture, students should be able to: ✓ Explain the cerebral meninges & compare between the main dural folds. ✓ Identify the spinal meninges & locate the level of the termination of each of them. ✓ Describe the importance of the subarachnoid space. ✓ Explain the ventricular system of the CNS and locate the site of each of them. ✓ Analyze the formation, circulation, drainage, and functions of the CSF. ✓ Justify the clinical point related to the CSF. Meninges 02:02 The brain and spinal cord (CNS) are invested by three concentric membranes/ layers: 1-The outermost layer is the dura matter.(fibrous) Dura Outside 2-The middle layer is the arachnoid matter.(translucent) Pia Inside 3-The innermost layer is the pia matter.(translucent) 1- (The dura surround 2- (from which it is 3- (Pia mater is a the brain and the separated by thin fibrous tissue that spinal cord and is the subarachnoid space . is impermeable to fluid. responsible for The delicate arachnoid layer This allows the pia keeping in the CSF) is attached to the inside of mater to enclose csf) the dur and surrounds the brain and spinal cord.) Meninges 1- Dura Matter o The cranial dura is a two layered tough, fibrous, thick membrane that surrounds the brain.
    [Show full text]
  • Giant Arachnoid Granulation Associated with Anomalous Draining Vein: a Case Report
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Articles, Abstracts, and Reports 3-1-2017 Giant Arachnoid Granulation Associated with Anomalous Draining Vein: A Case Report. Randle Umeh Rod J Oskouian Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington, USA Marios Loukas R Shane Tubbs Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Neurology Commons, and the Pathology Commons Recommended Citation Umeh, Randle; Oskouian, Rod J; Loukas, Marios; and Tubbs, R Shane, "Giant Arachnoid Granulation Associated with Anomalous Draining Vein: A Case Report." (2017). Articles, Abstracts, and Reports. 1578. https://digitalcommons.psjhealth.org/publications/1578 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Articles, Abstracts, and Reports by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Open Access Case Report DOI: 10.7759/cureus.1065 Giant Arachnoid Granulation Associated with Anomalous Draining Vein: A Case Report Randle Umeh 1 , Rod J. Oskouian 2 , Marios Loukas 3 , R. Shane Tubbs 4 1. Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies 2. Swedish Neuroscience Institute 3. Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies 4. Neurosurgery, Seattle Science Foundation Corresponding author: Randle Umeh, [email protected] Disclosures can be found in Additional Information at the end of the article Abstract Giant arachnoid granulations (AG) can mimic intracranial lesions. Knowledge of these structures can help avoid misdiagnosis when interpreting imaging.
    [Show full text]
  • Arachnoid Granulations in the Transverse and Sigmoid Sinuses: CT, MR, and MR Angiographic Appearance of a Normal Anatomic Variation
    Arachnoid Granulations in the Transverse and Sigmoid Sinuses: CT, MR, and MR Angiographic Appearance of a Normal Anatomic Variation James Roche and Denise Warner PURPOSE: To investigate the imaging characteristics, prevalence, and clinical significance of arachnoid granulations in the transverse and sigmoid venous sinuses. METHODS: We reviewed the imaging findings, clinical signs and symptoms, final diagnoses, and follow-up studies of 32 patients with 41 probable arachnoid granulations. RESULTS: On CT scans, arachnoid granulations appear as well-defined filling defects, wholly or partly within a venous sinus, with the same density as cerebrospinal fluid. MR images show these entities as largely isointense with cerebrospinal fluid in all sequences. Linear variations of signal intensity within the granulations are thought to be fibrous septa or vessels. Calcification was present in 3 granulations and altered both CT density and MR signal intensity. The granulations appear as filling defects at MR angiography and at digital subtraction angiography. In some oblique MR angiographic projections, they appear elliptical and could be mistaken for thrombus. No clinical significance could be given to the existence of any of these arachnoid granulations. They occur in 0.3 to 1 of 100 adults in the population. CONCLU- SION: Arachnoid granulations in the transverse and sigmoid venous sinuses are common findings seen with thin-section imaging and are usually of no significance. Index terms: Arachnoid, anatomy; Dural sinuses AJNR Am J Neuroradiol 17:677–683, April 1996 Over the last 5 years we collected imaging imaging studies and review the clinical signs studies obtained with computed tomography and symptoms in 32 patients.
    [Show full text]
  • Normal Appearance of Arachnoid Granulations on Contrast-Enhanced CT and MR of the Brain: Differentiation from Dural Sinus Disease
    Normal Appearance of Arachnoid Granulations on Contrast-Enhanced CT and MR of the Brain: Differentiation from Dural Sinus Disease James L. Leach, Blaise V. Jones, Thomas A. Tomsick, Cheryl A. Stewart, and M. Gregory Balko PURPOSE: To determine the imaging appearance and frequency with which arachnoid granula- tions are seen on contrast-enhanced CT and MR studies of the brain. METHODS: We retrospec- tively reviewed 573 contrast-enhanced CT scans and 100 contrast-enhanced MR studies of the brain for the presence of discrete filling defects within the venous sinuses. An anatomic study of the dural sinuses of 29 cadavers was performed, and the location, appearance, and histologic findings of focal protrusions into the dural sinus lumen (arachnoid granulations) were assessed and compared with the imaging findings. RESULTS: Discrete filling defects within the dural sinuses were found on 138 (24%) of the contrast-enhanced CT examinations. A total of 168 defects were found, the majority (92%) within the transverse sinuses. One third were isodense and two thirds were hypodense relative to brain parenchyma. Patients with filling defects were older than patients without filling defects (mean age, 46 years versus 40 years). Discrete intrasinus signal foci were noted on 13 (13%) of the contrast-enhanced MR studies. The foci followed the same distribution as the filling defects seen on CT scans and were isointense to hypointense on T1-weighted images, variable in signal on balanced images, and hyperintense on T2-weighted images. Transverse sinus arachnoid granulations were noted adjacent to venous entrance sites in 62% and 85% of the CT and MR examinations, respectively.
    [Show full text]
  • Anatomy of Meninges
    Dr. Hassna Jawad Jawad Objective • Describe the divisions of the brain • Describe the arrangement of the meninges and their relationship to brain and spinal cord. • Explain the occurrence of epidural, subdural and subarachnoid spaces. • Locate the principal subarachnoid cisterns, and arachnoid granulations Brain : • Forebrain (cerebrum) • Midbrain • Hindbrain (pons, medulla and cerebellum Cerebrum : The largest division of the brain. It is divided into two hemispheres, each of which is divided into four lobes. Cerebrum Cerebral Cortex - The outermost layer of gray matter making up the superficial aspect of the Cerebrum. 1 Dr. Hassna Jawad Jawad Lobes Of The Brain: • Gyri – Elevated ridges ―winding‖ around the brain • Sulci – Small grooves dividing the gyri. • Fissures – Deep grooves, generally dividing large regions/lobes of the brain Longitudinal Fissure – Divides the two Cerebral Hemispheres Transverse Fissure – Separates the Cerebrum from the Cerebellum Sylvain/Lateral Fissure – Divides the Temporal Lobe from the Frontal and Parietal Lobes . 2 Dr. Hassna Jawad Jawad Meninges Of The Brain The brain and spinal cord are surrounded by three protective membranes, or meninges: *Dura mater. *Arachnoid mater. *Pia mater. 3 Dr. Hassna Jawad Jawad Dura Mater: Dura mater of brain has two layers: 1. Endosteal layer. 2. Meningeal layer . These are closely united except along certain lines, where they separate to form venous sinuses. 1.Endosteal Layer: * Covers the inner surface of the skull bones. *Continuous with pericranium via suture &foramen *At foramen magnum, it does not become continuous with the dura mater of the spinal cord. *Continuous with periosteal lining of orbit via superior orbital fissure 2.The meningeal layer *Dense fibrous membrane covering the brain (the dura mater proper ) *Continuous through the foramen magnum with the dura mater of the spinal cord.
    [Show full text]
  • Beyond Trauma: Pediatric Emergency Brain Imaging Pearls and Pitfalls Laura Z
    Beyond Trauma: Pediatric Emergency Brain Imaging Pearls and Pitfalls Laura Z. Fenton, MD Associate Professor SPR 2013 I have no disclosures SAM : 10 you girl with lymphoma and altered mental status, what is the most likely cause of the parasagittal hemorrhage? • A. Hemorrhagic lymphoma • B. Vascular Malformation • C. Venous Thrombosis • D. Arterial ischemic stroke Rt ML • E. Chemotherapy Emergency Pediatric brain imaging: balance speed, radiation & cost • Brain CT (mainstay) – *ALARA • Non- radiation alternatives: –Brain US (neonate and infant) • Bleed, ventricles, Doppler –Fast Brain MRI (T2 3 plane) • Shunt malfunction • Extra-axial collection Pediatric Emergency Brain Imaging • Cerebral venous thrombosis • Hemorrhage • Cerebral Edema • Acquired Infection • Acute disseminated encephalomyelitis • Shunt Malfunction Cerebral Venous Thrombosis (CVT): often a challenging diagnosis • Unlike AIS, CVT diagnosis by identification of the thrombus – less common parenchymal edema & hemorrhage • Often not anticipated clinically – *In DDX in 5% of ordered CTs and 33% of MRIs • Nonspecific clinical features transverse sinus thrombus * Provenzale JM, Kranz PG. Dural Sinus Thrombosis: Sources of Error in Image Interpretation. AJR 2011; 196: 23-31. Clinical Features of CVT • Symptoms • Signs –Headache (75-95%) – Papilledema – Visual change – Focal neurol deficit – Altered consciousness – Cranial nerve palsy – Nausea, vomiting – Seizure • Symptom onset – Coma – Subacute: 55% (6-30d) – Acute: 10-30% (0-5 d) Therefore imaging plays a – Chronic: 15% (> 30d)
    [Show full text]
  • MENINGIES, VENTRICLES and CSF Done By
    LECTURE ( 21 ) MENINGIES, VENTRICLE S AND CSF Done by: Hossam saleh alawad Reviewed by: RAWAN AL-TALEB If there is any mistake please feel free to contact us: [email protected] Both - Black Male Notes - BLUE Female Notes - GREEN Explanation and additional notes - ORANGE Very Important note - Red Objectives: Describe the cerebral meninges & list the main dural folds. Describe the spinal meninges & locate the level of the termination of each of them. Describe the importance of the subarachnoid space. List the Ventricular system of the CNS and locate the site of each of them. Describe the formation, circulation, drainage, and functions of the CSF. Know some clinical point about the CSF MIND MAP cerebral meninges Arachnoid DURA MATER Pia Mater Mater subdural subarachnoid space space spinal meninges Arachnoid DURA MATER Pia Mater Mater subdural epidural space subarachnoid space space MIND MAP lateral ventricle third ventricle forth ventricle VENTRICULAR SYSTEM SYSTEM VENTRICULAR formation drainage circulation CEREBROSPINAL FLUID clinical functions point MENINGES: The brain and spinal cord are invested by three concentric membranes: - The outermost layer is the dural matter. - The middle layer is the archnoid matter. - The innermost layer is the pia matter. DURA MATER: The cranial dura is a two layered tough, fibrous membrane that surrounds the brain. It is formed of two layers: periosteal and meningeal. The periosteal layer is attached to the skull. The meningeal layer is folded forming the dural folds:falx cerebri and tentorium
    [Show full text]