Giant Arachnoid Granulation Associated with Anomalous Draining Vein: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intimate Exchange Between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System
REVIEW ARTICLE doi: 10.2176/nmc.ra.2016-0020 Neurol Med Chir (Tokyo) 56, 416–441, 2016 Online May 27, 2016 Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System Mitsunori MATSUMAE,1 Osamu SATO,2 Akihiro HIRAYAMA,1 Naokazu HAYASHI,1 Ken TAKIZAWA,1 Hideki ATSUMI,1 and Takatoshi SORIMACHI1 1Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa; 2Tokai University, Shibuya, Tokyo Abstract Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume ad- justment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relation- ship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorp- tion, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. -
University of Copenhagen, Copenhagen, Denmark
Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Louveau, Antoine; Plog, Benjamin A.; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan Published in: The Journal of Clinical Investigation DOI: 10.1172/JCI90603 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Louveau, A., Plog, B. A., Antila, S., Alitalo, K., Nedergaard, M., & Kipnis, J. (2017). Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of Clinical Investigation, 127(9), 3210-3219. https://doi.org/10.1172/JCI90603 Download date: 26. Sep. 2021 Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Antoine Louveau, … , Maiken Nedergaard, Jonathan Kipnis J Clin Invest. 2017;127(9):3210-3219. https://doi.org/10.1172/JCI90603. Review Series Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. -
The Meninges and Common Pathology Understanding the Anatomy Can Lead to Prompt Identification of Serious Pathology
education The meninges and common pathology Understanding the anatomy can lead to prompt identification of serious pathology The meninges are three membranous of the skull and extends into folds that arterial blood has sufficient pressure to layers that surround the structures of the compartmentalise the skull.1 2 The large separate the dura from the bare bone of central nervous system. They include the midline fold separates the two hemispheres the skull.4 The classic example of this is dura mater, the arachnoid mater, and and is called the falx.1 A smaller fold a severe blow to the temple that ruptures the pia mater. Together they cushion the separates the cerebral hemispheres from the middle meningeal artery, which brain and spinal cord with cerebrospinal the cerebellum and is known as the has part of its course between the skull fluid and support the associated vascular tentorium cerebelli usually abbreviated as and the dura at a weak point called the structures.1 2 Although they are usually “tentorium” (fig 1).1‑3 pterion.1 2 4 This creates an extradural mentioned as a trio, there are subtle but Where the edges of the falx and tentorium haematoma,2 a potentially lifethreatening important differences to the arrangement of meet the skull, the dura encloses large injury that classically presents with the meninges in the spine and cranium. The venous sinuses that are responsible for decreased consciousness and vomiting aim of this introduction to the meninges is draining venous blood from the brain.1 4 after a lucid interval (an initial period of to clarify the anatomy and link these details These are not to be confused with the air apparently normal consciousness). -
Arachnoid Granulations and “Giant” Arachnoid Granulations
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Surg Radiol Anat (2008) 30:417–421 DOI 10.1007/s00276-008-0345-2 ORIGINAL ARTICLE Dural arachnoid granulations and “giant” arachnoid granulations Johannes Haybaeck · Rene Silye · Dov SoVer Received: 4 March 2008 / Accepted: 17 March 2008 / Published online: 8 April 2008 © Springer-Verlag 2008 Abstract Although arachnoid granulations (AGs) were Introduction already described by Antonio Pacchioni more than 300 years ago, two issues draw particular attention: Wrst, Although arachnoid granulations (AGs) were initially the radiological features and diVerential diagnosis of the so- described by Antonio Pacchioni more than 300 years ago called giant AGs (GAGs) and second, their possible associ- [1], they are still poorly described, especially in the neuro- ation with various disease processes. In order to evaluate radiological literature. Two issues draw particular attention: the frequency, size and normal distribution of GAGs, an Wrst, the radiological features of AGs, particularly of the so- anatomical study of the dural sinuses was carried out. It called giant AGs (GAGs) and its diVerential diagnosis [2– involved all the autopsies performed during the period 11], and second, their possible association with various dis- August 2002–February 2005 and included 651 cases: 306 ease processes [12–14]. Giant AGs are still a poorly under- females and 345 males, aged 13–99 years (mean 69 years). stood distinct entity, seldom mentioned in the Grossly visible GAGs were identiWed in 24 cases: 7 neuroanatomical and neuropathological literature. Men- females and 17 males, aged 45–92 years (mean 69 years). -
MR of Giant Arachnoid Granulation, a Normal Variant Presenting As a Mass Within the Dural Venous Sinus
MR of Giant Arachnoid Granulation, a Normal Variant Presenting as a Mass within the Dural Venous Sinus Alexander C. Mamourian and Javad Towfighi Summary: We report three cases of masses within the cerebral Case 2 dural venous sinuses shown with either MR or angiography. The dural venous sinuses of 10 patients without known venous dis- A 7-year-old boy was resuscitated after being found ease were examined at autopsy. In two patients, three giant unresponsive in a swimming pool. Previous episodes of arachnoid granulations were identified. On the basis of the liter- staring with fixed upward gaze were reported, and there ature and our limited autopsy series, we suggest that these was a strong family history of seizures. The diagnosis of lesions identified at imaging are giant arachnoid granulations, partial complex seizures was made. MR showed a mass normal variants of no known clinical significance. projecting into the superior sagittal sinus that was con- firmed with angiography (Fig 2). This was thought to be Index terms: Dural sinuses; Brain, anatomy unrelated to the symptoms. The mass was isointense with brain on T1-weighted images but hyperintense on the T2- Because of increasing availability of cerebral weighted scans. There was some irregular enhancement venous magnetic resonance (MR) angiography, centrally in the mass. The inner table of the skull appeared eroded by the mass. Follow-up MR 4 months later dem- it has become important to recognize normal onstrated no change. No other abnormalities were noted. variations of the cerebral venous system. We The seizures responded to medication. report three cases in which masses were iden- tified within the dural sinuses on MR, MR an- giography, or conventional angiography. -
Meninges, Ventricles, and CSF
Meninges, Ventricles, and CSF Lecture (19) ▪ Important ▪ Doctors Notes Please check our Editing File ▪ Notes/Extra explanation ه هذا العمل مب ين بشكل أسا يس عىل عمل دفعة 436 مع المراجعة { َوَم نْ يَ َت َو َ ّكْ عَ َلْ ا َّْلل فَهُ َوْ َحْ سْ ُ ُُْ} والتدقيق وإضافة المﻻحظات وﻻ يغ ين عن المصدر اﻷسا يس للمذاكرة ▪ Objectives At the end of the lecture, students should be able to: ✓ Explain the cerebral meninges & compare between the main dural folds. ✓ Identify the spinal meninges & locate the level of the termination of each of them. ✓ Describe the importance of the subarachnoid space. ✓ Explain the ventricular system of the CNS and locate the site of each of them. ✓ Analyze the formation, circulation, drainage, and functions of the CSF. ✓ Justify the clinical point related to the CSF. Meninges 02:02 The brain and spinal cord (CNS) are invested by three concentric membranes/ layers: 1-The outermost layer is the dura matter.(fibrous) Dura Outside 2-The middle layer is the arachnoid matter.(translucent) Pia Inside 3-The innermost layer is the pia matter.(translucent) 1- (The dura surround 2- (from which it is 3- (Pia mater is a the brain and the separated by thin fibrous tissue that spinal cord and is the subarachnoid space . is impermeable to fluid. responsible for The delicate arachnoid layer This allows the pia keeping in the CSF) is attached to the inside of mater to enclose csf) the dur and surrounds the brain and spinal cord.) Meninges 1- Dura Matter o The cranial dura is a two layered tough, fibrous, thick membrane that surrounds the brain. -
Arachnoid Granulations in the Transverse and Sigmoid Sinuses: CT, MR, and MR Angiographic Appearance of a Normal Anatomic Variation
Arachnoid Granulations in the Transverse and Sigmoid Sinuses: CT, MR, and MR Angiographic Appearance of a Normal Anatomic Variation James Roche and Denise Warner PURPOSE: To investigate the imaging characteristics, prevalence, and clinical significance of arachnoid granulations in the transverse and sigmoid venous sinuses. METHODS: We reviewed the imaging findings, clinical signs and symptoms, final diagnoses, and follow-up studies of 32 patients with 41 probable arachnoid granulations. RESULTS: On CT scans, arachnoid granulations appear as well-defined filling defects, wholly or partly within a venous sinus, with the same density as cerebrospinal fluid. MR images show these entities as largely isointense with cerebrospinal fluid in all sequences. Linear variations of signal intensity within the granulations are thought to be fibrous septa or vessels. Calcification was present in 3 granulations and altered both CT density and MR signal intensity. The granulations appear as filling defects at MR angiography and at digital subtraction angiography. In some oblique MR angiographic projections, they appear elliptical and could be mistaken for thrombus. No clinical significance could be given to the existence of any of these arachnoid granulations. They occur in 0.3 to 1 of 100 adults in the population. CONCLU- SION: Arachnoid granulations in the transverse and sigmoid venous sinuses are common findings seen with thin-section imaging and are usually of no significance. Index terms: Arachnoid, anatomy; Dural sinuses AJNR Am J Neuroradiol 17:677–683, April 1996 Over the last 5 years we collected imaging imaging studies and review the clinical signs studies obtained with computed tomography and symptoms in 32 patients. -
Normal Appearance of Arachnoid Granulations on Contrast-Enhanced CT and MR of the Brain: Differentiation from Dural Sinus Disease
Normal Appearance of Arachnoid Granulations on Contrast-Enhanced CT and MR of the Brain: Differentiation from Dural Sinus Disease James L. Leach, Blaise V. Jones, Thomas A. Tomsick, Cheryl A. Stewart, and M. Gregory Balko PURPOSE: To determine the imaging appearance and frequency with which arachnoid granula- tions are seen on contrast-enhanced CT and MR studies of the brain. METHODS: We retrospec- tively reviewed 573 contrast-enhanced CT scans and 100 contrast-enhanced MR studies of the brain for the presence of discrete filling defects within the venous sinuses. An anatomic study of the dural sinuses of 29 cadavers was performed, and the location, appearance, and histologic findings of focal protrusions into the dural sinus lumen (arachnoid granulations) were assessed and compared with the imaging findings. RESULTS: Discrete filling defects within the dural sinuses were found on 138 (24%) of the contrast-enhanced CT examinations. A total of 168 defects were found, the majority (92%) within the transverse sinuses. One third were isodense and two thirds were hypodense relative to brain parenchyma. Patients with filling defects were older than patients without filling defects (mean age, 46 years versus 40 years). Discrete intrasinus signal foci were noted on 13 (13%) of the contrast-enhanced MR studies. The foci followed the same distribution as the filling defects seen on CT scans and were isointense to hypointense on T1-weighted images, variable in signal on balanced images, and hyperintense on T2-weighted images. Transverse sinus arachnoid granulations were noted adjacent to venous entrance sites in 62% and 85% of the CT and MR examinations, respectively. -
Anatomy of Meninges
Dr. Hassna Jawad Jawad Objective • Describe the divisions of the brain • Describe the arrangement of the meninges and their relationship to brain and spinal cord. • Explain the occurrence of epidural, subdural and subarachnoid spaces. • Locate the principal subarachnoid cisterns, and arachnoid granulations Brain : • Forebrain (cerebrum) • Midbrain • Hindbrain (pons, medulla and cerebellum Cerebrum : The largest division of the brain. It is divided into two hemispheres, each of which is divided into four lobes. Cerebrum Cerebral Cortex - The outermost layer of gray matter making up the superficial aspect of the Cerebrum. 1 Dr. Hassna Jawad Jawad Lobes Of The Brain: • Gyri – Elevated ridges ―winding‖ around the brain • Sulci – Small grooves dividing the gyri. • Fissures – Deep grooves, generally dividing large regions/lobes of the brain Longitudinal Fissure – Divides the two Cerebral Hemispheres Transverse Fissure – Separates the Cerebrum from the Cerebellum Sylvain/Lateral Fissure – Divides the Temporal Lobe from the Frontal and Parietal Lobes . 2 Dr. Hassna Jawad Jawad Meninges Of The Brain The brain and spinal cord are surrounded by three protective membranes, or meninges: *Dura mater. *Arachnoid mater. *Pia mater. 3 Dr. Hassna Jawad Jawad Dura Mater: Dura mater of brain has two layers: 1. Endosteal layer. 2. Meningeal layer . These are closely united except along certain lines, where they separate to form venous sinuses. 1.Endosteal Layer: * Covers the inner surface of the skull bones. *Continuous with pericranium via suture &foramen *At foramen magnum, it does not become continuous with the dura mater of the spinal cord. *Continuous with periosteal lining of orbit via superior orbital fissure 2.The meningeal layer *Dense fibrous membrane covering the brain (the dura mater proper ) *Continuous through the foramen magnum with the dura mater of the spinal cord. -
Beyond Trauma: Pediatric Emergency Brain Imaging Pearls and Pitfalls Laura Z
Beyond Trauma: Pediatric Emergency Brain Imaging Pearls and Pitfalls Laura Z. Fenton, MD Associate Professor SPR 2013 I have no disclosures SAM : 10 you girl with lymphoma and altered mental status, what is the most likely cause of the parasagittal hemorrhage? • A. Hemorrhagic lymphoma • B. Vascular Malformation • C. Venous Thrombosis • D. Arterial ischemic stroke Rt ML • E. Chemotherapy Emergency Pediatric brain imaging: balance speed, radiation & cost • Brain CT (mainstay) – *ALARA • Non- radiation alternatives: –Brain US (neonate and infant) • Bleed, ventricles, Doppler –Fast Brain MRI (T2 3 plane) • Shunt malfunction • Extra-axial collection Pediatric Emergency Brain Imaging • Cerebral venous thrombosis • Hemorrhage • Cerebral Edema • Acquired Infection • Acute disseminated encephalomyelitis • Shunt Malfunction Cerebral Venous Thrombosis (CVT): often a challenging diagnosis • Unlike AIS, CVT diagnosis by identification of the thrombus – less common parenchymal edema & hemorrhage • Often not anticipated clinically – *In DDX in 5% of ordered CTs and 33% of MRIs • Nonspecific clinical features transverse sinus thrombus * Provenzale JM, Kranz PG. Dural Sinus Thrombosis: Sources of Error in Image Interpretation. AJR 2011; 196: 23-31. Clinical Features of CVT • Symptoms • Signs –Headache (75-95%) – Papilledema – Visual change – Focal neurol deficit – Altered consciousness – Cranial nerve palsy – Nausea, vomiting – Seizure • Symptom onset – Coma – Subacute: 55% (6-30d) – Acute: 10-30% (0-5 d) Therefore imaging plays a – Chronic: 15% (> 30d) -
MENINGIES, VENTRICLES and CSF Done By
LECTURE ( 21 ) MENINGIES, VENTRICLE S AND CSF Done by: Hossam saleh alawad Reviewed by: RAWAN AL-TALEB If there is any mistake please feel free to contact us: [email protected] Both - Black Male Notes - BLUE Female Notes - GREEN Explanation and additional notes - ORANGE Very Important note - Red Objectives: Describe the cerebral meninges & list the main dural folds. Describe the spinal meninges & locate the level of the termination of each of them. Describe the importance of the subarachnoid space. List the Ventricular system of the CNS and locate the site of each of them. Describe the formation, circulation, drainage, and functions of the CSF. Know some clinical point about the CSF MIND MAP cerebral meninges Arachnoid DURA MATER Pia Mater Mater subdural subarachnoid space space spinal meninges Arachnoid DURA MATER Pia Mater Mater subdural epidural space subarachnoid space space MIND MAP lateral ventricle third ventricle forth ventricle VENTRICULAR SYSTEM SYSTEM VENTRICULAR formation drainage circulation CEREBROSPINAL FLUID clinical functions point MENINGES: The brain and spinal cord are invested by three concentric membranes: - The outermost layer is the dural matter. - The middle layer is the archnoid matter. - The innermost layer is the pia matter. DURA MATER: The cranial dura is a two layered tough, fibrous membrane that surrounds the brain. It is formed of two layers: periosteal and meningeal. The periosteal layer is attached to the skull. The meningeal layer is folded forming the dural folds:falx cerebri and tentorium -
Regional Diminution of Von Willebrand Factor Expression on the Endothelial Covering Arachnoid Granulations of Human, Monkey and Dog Brain
Kurume Medical Journal, 49,177-183, 2002 Original Article Regional Diminution of von Willebrand Factor Expression on the Endothelial Covering Arachnoid Granulations of Human, Monkey and Dog Brain KEISUKE OHTA, TETSUO INOKUCHI, YUUHO HAYASHIDA, TETSUYA MIZUKAMI, TOMOHIRO YOSHIDA AND TARO KAWAHARA Department of Anatomy and Histology, Kurume University School of Medicine, Kurume 830-0011, Japan Summary: Arachnoid granulation is a protrusion of the arachnoid membrane into the cranial sinus, and is thought to play an essential role in the cerebrospinal fluid (CSF) absorption. Because the cells covering the apex region of the arachnoid granulation have different morphological features compared to the ordinary endothelial cells lining of the cranial sinus lumen, it has been expected these covering endothelial cells perform some specific function in the CSF absorption mechanism. However, little is known about functional differences between the covering endothelium of the arachnoid granulation and the ordinary sinus endothelium. In the present study, the characteristics of the covering cells located at the apex of arachnoid granulations of human, monkey and dog brain were examined by histochemical and immunohistochemical methods. The endothelial cells lining the cranial sinus lumen generally expressed such proteins as von Willebrand factor (vWF), CD31 and glycoproteins containing GS-1 or LE-1 lectin reacting sugar residue which are endothelial cell markers. However, the endothelial cells specifically located at the apex of arachnoid granulations failed to show vWF immunoreactivity, whereas the other endothelial markers were positive in each species we examined. Double staining of vWF antibody with other markers has clearly demon- strated that the endothelial cells on the apex region of arachnoid granulations exhibit no expression of vWF whereas cells lining the lateral region of arachnoid granulations and the luminal surface of ordinary cranial sinuses showed co-localization of these markers.