Povodi Moravy (PM)

Svratka river case study November 2006

Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management Contract EVK1-CT-2002-00109

Authors Pavel Biza, David Fina and Milos Stary, Povodi Moravy (PM), ,

Svratka river case study November 2006

Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management Contract EVK1-CT-2002-00109

This report is a publicly accessible deliverable D7.5 of the HarmoniRiB project. This R&D project is partly financed within the European Commission´s “Energy, Environment and Sustainable Development” programme, Key Action 1 “ Sustainable Management and Quality of Water”, 1.1 Integrated management and sustainable use of water resources at catchment river basin or sub-basin scale, 1.1.1 Strategic planning and integrated management methodologies and tools at catchment / river scale under contract EVK1-CT 2002-00109. This report may be downloaded from the internet and copied, provided that it is not changed and provided that proper reference to it is made:

Pavel Biza, David Fina and Milos Stary. Svratka river case study. Povodi Moravy, ( River Basin Administration), Brno, Czech Republic, November 2006 (www.harmonirib.com) or (http://workplace.wur.nl/QuickPlace/harmonirib/Main.nsf/h_Toc/38da1522d3c0e520c12571 e3002f512c/?OpenDocument).

Svratka river case study

Report

Authors:

Pavel Biza, Povodi Moravy, s.p. David Fina, Povodi Moravy, s.p. Milos Stary, Povodi Moravy, s.p.

Reviewers:

Michiel Blind

D 7.5

Content:

1 Introduction

1.1 The Water Framework Directive

1.2 The HarmoniRiB Project

1.3 Scope and objective of case studies

1.4 Scope and objective of the Svratka case study

1.5 Input wave definition

2 The Svratka river basin

2.1 Physical and socio economic description of case study basin

2.1.1 Physical characterisation

2.1.2 Socio economic characterisation

2.1.3 Good status reached or failed?

2.2 Identification of water management problems addressed in case study

2.2.1 Framing the decision making problem

2.2.2 Specification of „Good Status“, list of evaluation criteria

2.2.3 List of potential measures

3 Physical impact analysis

3.1 Introduction: Model selection

3.2 Data availability

3.3 Description of models

3.4 Assessment of uncertainties

3.5 Integrated uncertainty analysis

3.6 Summary of results

4 Analysis socio economic impacts

4.1 Costs of measures

4.2 Other impacts

5 Conclusions

6 Bibliography

i

ii

1 Introduction

1.1 The Water Framework Directive

In 2000 the European Parliament and Council passed the ambitious directive 2000/60/EC establishing a framework for Community action in the field of water policy, known as the Water Framework Directive (WFD). The key objective of the directive is to achieve ‘good ecological status of Europe’s water resources by 2015’, including groundwater (article 1-d, purpose of the directive: “ensures the progressive reduction of pollution of groundwater and prevents its further pollution”). To achieve this objective a number of activities need to be carried out, leading to an Integrated River Basin Management Plan (RBMP) in 2009. The river basin management and planning process prescribed in the WFD focuses on integrated management, involving all physical domains in water management, sectors of water use, socio-economics and stakeholder participation. As such, the WFD poses new challenges to water resources managers. The traditional physical domain specific and sectoral approaches need to be combined and extended to fulfil the WFD requirements. A major part of such a RBMP will be the programme of measures that needs to be implemented to achieve the objectives. Though the WFD’s focus lies on achieving ‘good ecological status’ of Europe’s water resources, it more broadly aims at sustainable water use, covering issues such as droughts and floods (article 1-e, purpose of the directive: “contributes to mitigating the effects of floods and droughts”). Two other relevant directives are currently in preparation: The Groundwater (WFD-Daughter) Directive and the Flood-directive. In addition to the measures required under the Water Framework Directive, the proposed Groundwater Directive introduces measures for protecting groundwater from indirect pollution (discharges of pollutants into groundwater after percolation through the ground or subsoil). In practise, the preparation of the river basin management plans, prescribed in the WFD, is in addition to these new challenges, influenced by uncertainties on the underlying data and modelling results. The preparation of integrated water management plans for the WFD will require making a large number of decisions by operational agencies throughout Europe. A decision maker has to make decisions based on available information. In most cases this information is deficient, incomplete and uncertain. How should this affect the decision making?

1.2 The HarmoniRiB Project

HarmoniRiB is a Research and Development project carried out under, and sponsored by, the European Commission’s “Energy, Environment and Sustainable Development” programme, Key Action 1 “Sustainable Management and Quality of Water”, 1.1 Integrated management and sustainable use of water resources at catchment river basin or sub-basin scale, 1.1.1 Strategic planning and integrated management methodologies and tools at catchment/river basin scale. As can be concluded from Water Framework Directive there is a clear and urgent need for developing new methodologies and tools that can be used to assist in implementing the WFD. The HarmoniRiB project aims to deliver some of these new tools, focussing on issues of uncertainties. The overall goal of HarmoniRiB is to develop methodologies for quantifying uncertainty and its propagation from the raw data to concise management information. The four specific project objectives are: • To establish a practical methodology and a set of tools for assessing and describing uncertainty originating from data and models used in decision making processes for the production of integrated water management plans. It will include a methodology for integrating uncertainties on basic data and models and socio-economic uncertainties into a decision support concept applicable for implementation of the WFD; • To provide a conceptual model for data management that can handle uncertain data and implement it for a network of representative river basins.

1

• To provide well-documented datasets, suitable for studying the influence of uncertainty on management decisions for a network of representative river basins and to provide examples of their use in the development of integrated water management plans. • To disseminate intermediate and final results among researchers and end-users across Europe and obtain and incorporate feedback on the methodologies, tools and the datasets. Thus, the HarmoniRiB project aims to support the WFD implementation, by addressing issues of uncertainty in data en modelling, and by developing a ‘virtual laboratory for modelling studies’. This virtual laboratory will comprise of a set of river basins, of which data relevant to modelling and the WFD, are readily available for the scientific community. The data can be used for comparison and demonstration of methodologies and models relevant to the WFD.

1.3 Scope and objective of case studies

One of the most important tasks of the HarmoniRiB project is to test and demonstrate the use and usefulness of methodologies and computer based tools to assess uncertainties and datasets. More specific, following is tested and demonstrated in selected river basins1: 1 The uncertainty assessment methodology and tools (WP2 results). 2 The use of the database of river basin data, including data uncertainties (WP4, 5 & 6 results). 3 The Monte-Carlo software which allows to generate alternative model inputs and model parameter values (WP2 results) 4 The methodology assisting the framing of the decision making process under uncertainty (WP3 results).

Eight case studies will be carried out in order to test the suitability of the above. These case studies are: • Candelaro basin, Italy • Geropotamou basin, Crete, Greece • Kennet Basin, United Kingdom • Jucar basin, Spain • Odense, Denmark • Svratka, Czech Republic • Vecht basin, The Netherlands & Germany • Weiβe-Elster basin, Germany

1.4 Scope and objective of the Svratka case study

The case study prepared by Povodí Moravy, s.p. as part of the HarmoniRiB project is focussed on assessing the uncertainty involved in calculations of flood flows and the establishment of the flood overflows in connection with the economic assessment of future proposals of anti-flood measures. The study focuses on assessing the uncertainty exceeding of the one hundred year maximum flood on the river Svratka within the Brno intraurban area, from the point of view of the overflow and volume of the flood, the maximum depths reached in the river channel and flooded area and resulting damage to property. Since 1977 there has been repeated flooding in the catchment area of the river Morava, of which the Svratka catchment area is a part. The most recent, in 2006, affected the whole of the Morava catchment area. Of the Svratka catchment area, it was mainly the upper reaches that were affected. In the lower reaches of the Svratka catchment, including the city of Brno, the flooding was

2

not so intense because of the mitigating effects of the Vír and Brno reservoirs. The largest left bank tributary, the , flows into the Svratka in Brno. There is no retaining reservoir on the Svitava itself. There were floods in Brno in historical times, but none since the construction of these reservoirs. More recently, Brno has had no experience of major floods. All the proposals of the anti- flood measures are based on calculations of overflows, depths and speeds. It is in this area that there is a requirement to assess uncertainties in the available materials, measurements and calculations.

Fig. 1.1 Photo of Brno reservoir dam

1.5 Input wave definition

The input parameter for the assessment is the established flood wave for flow Q100 from the Czech Hydrometeorological Institute (ČHMÚ). On the basis of this „official“ wave 100 waves with assigned uncertainties were generated using the DUE software tool. Uncertainty was assigned to this „official“ input on the basis of a given class of precision and on the basis of direct consultations with Czech hydrologists. Input Q100 flood wave was calculated by Czech Hydrometeorological Institute based on statistical evaluation of floods on Svratka river in Brno since 1880. The wave was prepared according to the data from I. class accuracy according to Czech standards regarding extreme floods with the standard deviation 15 %. The point values in the wave were evaluated by autocorrelation function and compared by other historical floods on Svratka river and the appropriate time correlation was evaluated as 100 hours. This values (standard deviation 15 % and time correlation 100 hours) were also included into DUE software for the simulation of possible other flood waves.

3

Kníničky PV Q100 (W = 139 mil. m3)

300.000

250.000

200.000

150.000

flow (m3/s) flow

100.000

50.000

0.000 0 50 100 150 200 250 300 350 400 450 500 time (hours)

Fig. 1.2 The original wave whose parameters were provided by the Czech Hydrometeorological Institute:

WPV100 – volume of a one hundred year Flow – at high point (m3.s-1) maximum flood wave (m3) 281,752 139 041 590,4

After each 100 generated waves a hydro-technical calculation was made on the existing hydrodynamic model of the Svratka and Svitava rivers in Brno. For the hydrotechnical calculations use was made of the model of the Svratka and Svitava rivers set up in January 1999 as part of the „Update of the flood areas of the Svratka and Svitava in Brno“ study. The calculation of the changes in levels was done using a calculation of uneven variable flow using the MIKE11 program developed by the Danish Hydraulics Institute for the calculation of pseudo 2D flow in rivers and floods. The base materials for establishing the hydrodynamic model were existing geodesic and hydrological data both from our own measurements and studies and from external sources. The existing model was calibrated using known facts and experience. Any possible uncertainties in the geodesic and hydrological data for model setup were not however taken into account. The first step in the study was to undertake a hydrotechnical calculation for the intraurban area of the city of Brno using the official flood wave from the Czech Met Office. Then on the basis of this calculation to assess the flood plain in Brno, the depth map and to quantify possible damage caused by the flood. Then to compare the quantified damage and make an economic assessment in relation to the cost of the proposed anti-flood measures. A map of land use in the Brno cadastre with curves calculated for depth of inundation was prepared earlier in 2000 in GIS by Povodí Moravy, s.p. The second step was to evaluate the uncertainty in the input „official“ flood wave Q100 and subsequently to generate 100 flood waves with the required uncertainties using the DUE software tool. The third step was the conduct of hydrotechnical calculations for the intraurban area of Brno for all 100 generated waves. And as in the first step to evaluate the flood plain and depths for all 100 generated waves. Finally to assess the flood damages for the individual inundations. The fourth step was a statistical evaluation of all results.

4

2 The Svratka river basin

2.1 Physical and socio economic description of case study basin

2.1.1 Physical characterisation

River basin morphology Svratka river basin is a part of the eastern Ceskomoravska vrchovina highland and a big part of the basin (about 83 %) is in the altitude from 200 to 600 meters above see level. The highest point is the Devet skal hill with 836 meters above sea level, the lowest area in the basin is near junction of Svratka river to the water reservoir Nove Mlyny which is just below 200 meters above sea level. The main geomorphological structure are deep and fault igneous rocks - about 63 % of the area. The rest are perm and carboniferous structures, unconsolidated tertiary structures, flysch belts and quaternary structures. In the basin is also karstic area on Svitava river which is a tributary of Svratka river. The whole Svratka river basin is 4115 km2 large, it is a part of the river basin. To the Danube river goes the water through the and Morava rivers. Soil conditions According to the soil development are in the river basin mostly climate soils. Big amount of the forest soils and podzolic soils characterizes higher catchment ability and higher humus volume.

Part of the river basin ( in %) according to the soil type black soil brown soil podzol alluvial rendzina mountain salt soil soil soil 7 8 69 3 5 6 2

Part of the river basin ( in %) according to the soil kind clayey soil clay - loamy loamy soil loam - sandy sandy soil rocky soil soil soil 8 7 53 0 10 22

Climatic and hydrologic conditions The spring area of the Svratka river has short summer, slight cold and wet, the winter is longer with snow cover. Southern part of the basin has long summer, warm and dry, short change from summer to winter or from winter to summer and shorter winter with short period with snow cover.

Area (in % from whole basin) with average annual temperature below 4 ºC 4-5 ºC 5-6 ºC 6-7 ºC 7-8 ºC 8-9 ºC above 9 ºC - 2 10 31 33 22 2 Average annual total rainfall H = 601 mm 3 Average annual discharge in lower Svratka river Qa = 15.4 m /s 3 Average 1-year flood Q1 = 117 m /s 3 Average 100-year flood Q100 = 400 m /s

5

Hydrological parameters

Table 2.1 Brno Hydrometerological Institute gives the following values for n years maximum flows in 1998-2000

River Location Q1 Q5 Q10 Q20 Q50 Q100 Q1000 m3.s-1 m3.s-1 m3.s-1 m3.s-1 m3.s-1 m3.s-1 m3.s-1 Svitava Above the 40 86 106 127 157 181 275 Svratka Svratka below the dam 59 122,5 154,5 189 238 281 440 Svratka below the 101,5 188,5 230 273,5 324 382 Svitava Svratka Židlochovice 117 208 250 284 353 400

Hydrogeology About 7 hydrogeological areas are partly in the Svratka river basin. The biggest is the part of Czech crystalline rock area in the northern part of the basin. There is also a part of the area with cretaceous basin around the Svitava river (important source of underground water for drinking purposes with used source capacity of about 1.2 m3/s). The flysch areas are in the central and southern part of the basin, where also the karstic area is located. The alluvial loam are about 1.7 m deep, the alluvial gravel is about 2.5 - 8 m deep. The southern part of the basin is formed by Carpathian depression, where the gravel and sand sediments and claystones are 50 - 100 m deep.

2.1.2 Socio economic characterisation

River basin area 4115 km2 Population 775 700 Population density 189 person/km2 About 460 municipalities are in the river basin, the biggest is town Brno with population higher than 373 000, the smallest is village Moravske Pavlovice with population 30.

Municipalities with population higher than 10 000. Town Population Brno 373 272 Blansko 20 505 Svitavy 17 583 Boskovice 11 304 Nove Mesto na Morave 10 481

Socio - economic data are available only according to statistical units (NUTS), not according to the river basins. The following information is based on statistical information for South region. Gross domestic product about 5600 Euro/person/year Employed force 386 000 person Average monthly gross salary of employees about 440 Euro Unemployment rate 8.9 % Rate of population connected to public water supply systems 89 %

6

Rate of population connected to public sewerage systems 75 % Average price of 1 m3 of drinking water 0.55 Euro Average price of 1 m3 of waste water 0.64 Euro

2.1.3 Good status reached or failed? As part of planning in water management the area in question falls into three surface water departments. These have been assessed as being Heavily Modified Water Bodies from the point of view of morphology. From the standpoint of reaching a good ecological condition these departments were provisionally assessed as uncertain. The riverbeds of the Svratka and the Svitava have been modified and the courses partially walled in. Also of significance are the transverse barriers on both rivers, made up of manipulatable booms; on the Svratka the Brno dam and reservoir also performs this function. A significant point source of pollution is the water treatment works at Brno-Modřice, which treats waste water from the whole Brno conurbation. The water treatment works was completely reconstructed in 2005 and now counts among the most modern in Europe.

2.2 Identification of water management problems addressed in case study

2.2.1 Framing the decision making problem

Brno is the second largest city in the Czech Republic. One of the current priorities of the water industry is to arrange for anti-flood defences for the whole conurbation. In order to make correct and responsible proposals for anti-flood defences it is necessary to take several steps: 1) To correctly establish the flood plain of rivers in Brno. 2) To evaluate the flood plain in relation to built-up areas under threat 3) To make an economic assessment of damages caused by flooding 4) To propose anti-flood defences for the areas under threat 5) To make an economic assessment of the proposed anti-flood defences in relation to damage caused. 6) To design technical solutions for anti-flood defences All these steps in the decision-making process are subject to a degree of uncertainty. A knowledge of the scope (interval) of uncertainty can significantly affect a decision. The most important uncertainty is that attached to the proposed value for the flood flow (throughput). This in turn can affect the scope of the proposed measures and their economic assessment.

2.2.2 Specification of „Good Status“, list of evaluation criteria

The specification of „Good Status“ for the water departments in Brno will be prepared as part of the preparation of the Plan for the Dyje catchment area. Currently methodologies are being approved for the appraisal of the individual components of „Good Status“. The achievement of „Good Status“ for these water departments will depend most of all on proposals for measures to improve the environmental conditions. For the proposal for anti-flood defences this will mean maximum use of the capacity of the river alluvial plain with offset dikes and revitalisation elements.

2.2.3 List of potential measures

Anti-flood measures 1) Modification of the river bed – improved capacity 2) Earth protective dikes – mainly offset (spaced out) according to local possibilities 3) Protective walls – supplementing the dike system in places where there is little space.

7

4) Retention spaces and polders - maximum use of overflows and managed flooding 5) Drainage measures – allowing flood water to return to the river course 6) Administrative measures – traffic on the Brno reservoir 7) Other technical measures – mobile dikes, return flaps on sewage outflows etc.

Revitalising measures 1) Restoring conditions for plants and animals to the waterway as part of the improved capacity measures 2) Bio corridor 3) Suitable bank vegetation

Social and cultural measures (presenting the new measures to the public) 1) Information posters about the anti-flood defences, about the water course, the ecosystem (flora and fauna around the river etc.) 2) Paths and cycle ways – for example, using the dikes

3 Physical impact analysis

3.1 Introduction: Model selection

Modelling will be carried out for a part of the Svratka river. The hydrodynamic model of the Svratka river below water reservoir Brno (inside the town) for the evaluation of flood impact will be used. The model will be based on Mike 11 software as one dimensional river and floodplains model, built as a looped model including water structures like bridges and embankments. Model area covers the Svratka and Svitava rivers network in the town in the length of about 15 river km. The model allows to calculate the water levels for the expected flood waves with different return periods like 1, 5, 10, 20, 50, 100 and 1000 years. According to water levels the potentially flooded area will be evaluated and possible flood damages will be calculated according to existing land use and building categories using standard damage curves. Also the expected costs for future protection measures will be calculated to make the comparison between flood damages and costs for protection measures.

3.2 Data availability

The base materials for establishing the hydrodynamic model were existing geodesic and hydrological data both from our own measurements and studies and from external sources.

Geodesic materials: - Digital terrain model (DMT), the author of which is Geodis Brno, obtained by Povodí Moravy from Brno City Hall in 2001. The DMT represents on the Svratka the area from the weir at Komín (river km 52,7) up to the road bridge in Modřice (river km 39,44) - Geodesic survey of the course of the Svratka from Kšírova to the Sokolova most from 1997 - Geodesic survey of the course of the Svitava from its mouth to the bridge in Černovice from 1998 - Geodesic survey of transverse profiles of the course of the Svratka and Svitava a in particular of bridge structures as part of an update of flood plains from 1998

Hydrological materials: - Data from the Brno Met Office on n-year flows ( Q1, Q5, Q10, Q20, Q50, Q100, Q1000) valid for the period 1998-2000, based on statistical evalution from the period 1930 – 1990. - Historical overview of floods from 1920 from Met Office sources

8

3.3 Description of models

Hydrodynamic model: The program solves the calculation of the continuity equation dQ/dt+dA/dt=q and the equation on the conservation of momentum dQ/dx+d(beta*Q*Q/a)/dx+gAdy/dx+gAI(f)=gAI(b)

The flow was described used the mathematical model: • In the Svratka’s own channel in the section from the Kníničky reservoir up to the Nové Mlýny waterworks and reservoir • In the channel of the Svitava from Bílovice to the confluence with the Svratka • For flooding in and around the streets of Brno in the area between the Svratka and the Svitava • For flooding along the Svratka from Brno up to Nové Mlýny

Boundary conditions The upper boundary conditions were the flood waves with a scope of Q1-Q1000 on the Svratka and the Svitava The lower boundary condition was the level of the Nové Mlýny waterworks and reservoir

Flood maps The software package Mike View – Flood Mapping, developed by DHI Hydroinform, a.s., Prague was used to generate the depth map for the flood plain for the calculated flood levels Q5, Q10, Q20, Q50, Q100 a Q1000 on the Svratka and the Svitava.

To present the overflow at higher rates of flow and the proposed measures, use was made of software from the ESRI company. The ArcView GIS 3.1 package augmented with Spatial Analyst, which allows for very clear presentation of the data and widens the options for their later use in combination with other outputs from the mathematical model.

Economic analysis: The methodology developed by Povodí Moravy, s.p. in cooperation with the Danish Hydraulic Institute as part of the international „Flood Management in the Czech Republic“ project was used for the economic assessment of the viability of the proposed anti-flood measures. This methodology was also used, in addition to other smaller projects, in the economic assessment of the anti-flood measures of the town of Olomouc.

Flood Analysis Toolbox (FAT) The Flood Analysis Toolbox is a group of tools giving additional capability to the geographical information system (specifically the ArcView GIS from the ESRI company). The basic purpose of this product is to describe the distribution of flood damage in the flood plain, to assess the impact of the proposed anti-flood measures (both on the development of the floods and on the scale of damage caused) and to evaluate their viability.

Categorisation of flood pain according to land use type One of the basic types of material for the evaluation of flood damage is the subdivision of the flood area into smaller land units with single land use. These land units are defined in the information by polygons.

9

The area of the flood was divided in to the following types of land use: a) Family houses b) Apartment blocks c) Company premises d) Administrative buildings e) Sports facilities f) Hospitals g) Historic buildings and monuments h) Shopping centres and shops i) Schools and colleges j) Weekend residences k) Land used for agriculture l) Woods and forests m) Meadows

The company premises type was further subdivided into the following subtypes: ‰ Engineering ‰ Construction and building ‰ Chemicals ‰ Agricultural ‰ Public Services ‰ Other

Fig. 3.1 Categorisation according to land use type Characteristics of a flood The impact of a flood on the earmarked polygons defining uniform land use is evaluated within the ArcView GIS environment on the basis of the flood depths maps generated in the first stage of the study. In this phase of the process each polygon is allocated an average depth and appropriate area of flooding for each of the modelled flood situations.

Direct damage curves For the individual types and subtypes of land use the dependencies of the value of direct damage caused by the floods on the flood level were used. These curves express the value of damage in thousand of CZK and were taken from the „Flood Management in the Czech Republic“ project. The dependencies were put together on the basis of real data obtained after the floods in July 1997; these were then supplemented by data gained through questionnaires sent out to selected people and organisations in the flood area of the Morava and Bečva catchment areas.

Fig. 3.2 Direct damage curces in industry

10

Direct damage The calculation of direct damage includes operations with the characteristics of the flood and with direct damage curves on all the polygons of the area in question which define a single land use. In line with the type and subtype of land use, an appropriate direct damage curve is selected, from which the average value of direct damage per m2 is subtracted (depending on the average depth of flooding). This value is then related to the area of flooding of the polygon.

Overall damage

On the basis of information on the flooding, the average depth and area of flooding of the individual polygons defining the various uses of flooded land was established. Direct damage for each polygon was then interpolated from the damage curves and multiplied by the area affected. The overall damage was derived as a multiple of direct damage multiplied by coefficients for indirect damage and damage to infrastructure.

3.4 Assessment of uncertainties The software package DUE v 2.2 was used to assess uncertainty. This program was developed as part of the HarmoniRiB project to assess uncertainties in data series. For this case study only the uncertainty involved in input proposed flood wave Q100 was taken into account. The data series of the hydrogram was characterised as a probability type depending on individual sequential data. The actual degree of uncertainty for the hydrogram was characterised by the data precision class given by the Czech Met Office. The uncertainty for the hydrogram was also the subject of consultations with hydrologists at the Faculty of Civil Engineering of the Technical University in Brno. The uncertainty for the hydrogram was set at 15% with a normal (Gaussian) distribution. The time correlation was selected as 100 hours. 100 new waves were generated by the DUE program from the original input flood wave on the basis of this input uncertainty

3.5 Integrated uncertainty analysis

The original wave whose parameters were provided by the Czech Met Office and its parameters

Flow – at high point (m3.s-1) WPV100 – volume of 100 year flood wave (m3) 281,752 139 041 590,4

Flows (at high point) and wave volumes, direct and total damage for the original flood wave and 100 calculated flood waves

Input values for the original flood wave (determined by interpolation)

Flow – at high point Wave volume Direct damage Total Damage Name (m3.s-1) (m3) (‚000 Kč) (‚000 Kč) Value of the original flood wave 281,73 137 350 000 880 000 2 020 000

11

The characteristics of the original flood wave were deduced by interpolation on the basis of knowing of inclusion of the Czech Met Office wave (waves 66 and 48 or simulation: sim_65 and sim_47)

Statistical evaluation The following statistical functions are used:

Arithmetic average – this is strongly affected by extreme values and is not suitable when data are asymmetrically distributed

Arithmetic average (in Excel: AVERAGE) - is the number which arises through the division of the sum of the values by the number of such values.

Median (according to Excel) is the number which lies in the middle according to the size of the data set. Therefore half the numbers have a value greater or equal to the median, and half the numbers have a value smaller or equal to the median. It is the middle value in the data when these are ranked according to size. The median is not dependent on extreme values. Median: (in Excel: MEDIAN or 50% QUARTILE) – is the number derived when we order the values according to size and selected the middle item. Standard deviation is derived from the total of deviations from the average. Similarly to the average it is suitable for symmetrical data and is sensitive to extreme values. The standard deviation expresses the extent to which values vary from the average value (central value).

Standard deviation (in Excel: STDEV) – is defined as the square root of the spread, i.e. from the average square deviation of all values from the arithmetic average. The STDEV function is defined by the following relationship: :

Maximum value (in Excel: MAX or 100% QUARTILE) – is the maximum value. Minimum value (in Excel: MIN or 0% QUARTILE) – is the minimum value.

Difference (in Excel:-) - is the number given by the difference between the maximum and minimum value.

Quartile – returns the value of the quartile from the given data set. Quartiles are often used in connection with commercial and summary data in dividing the basic data into groups. The QUARTILE function can be used, for example, to determine the 25% highest incomes in a data set. 25% quartile (v Excel.: 25% QUARTILE) – the value is reached by 25% and not by 75% 75% quartile (v Excel.: 75% QUARTILE) - the value is reached by 75% and not by 25%

Value for the 100 calculated flood waves Flow – at high Wave volume Direct damage Total damage Name point (m3.s-1) (m3) (‚000 Kč) (‚000 Kč) Arithmetic average 296,23 138 636 265,98 896 313,10 2 070 720,14

12

Median 304,11 138 701 419,70 960 242,88 2 208 558,61

Standard deviation 36,81 12 988 664,25 226 539,86 494 786,48

Maximum 377,06 169 559 429,60 1 299 083,90 2 987 892,95

Minimum 197,86 138 636 265,98 327 766,16 753 862,17 Difference (=maximum- 179,19 30 923 163,62 402 770,79 917 172,82 minimum) 25% quartile 270,68 129 465 362,53 760 133,52 1 748 307,11

75% quartile 323,17 148 782 907,78 1 053 384,12 2 422 783,46

Graphical representation for 100 calculated flood waves

Flow at high point (m3.s-1) Fig. 3.3 Histogram

Histogram průtoků (100 vpv)

počet aritm. průměr median 25%quartil 75%quartil

200 220 240 260 280 300 320 340 360 380 14 14 12 12 10 10 8 8 6 6 4 4 et realizací (%) č 2 2 po 0 0 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 průtoky (m3/s)

Histogram průtoku – Flow (throughput) Histogram Počet realizací - No. of events Počet - No. Aritm. Průměr - Aritm. Mean

13

Fig. 3.4 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro průtoky (100 vpv)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%)

č 20 po 0 150 200 250 300 350 400 průtoky (m3/s)

Čára součtová nedostoupení a překročení pro průtoky – Mass curve,i.e. non-reach and overrun curve for flows

Wave volume (m3) Fig. 3.5 Histogram

Histogram objemů (100 vpv)

počet aritm. průměr median 25%quartil 75%quartil

100000000 110000000 120000000 130000000 140000000 150000000 160000000 170000000 30 30 25 25 20 20 15 15 10 10 et realizací (%) č 5 5 po 0 0 100000000 110000000 120000000 130000000 140000000 150000000 160000000 170000000 objemy (m)

Objemy – Volumes

14

Fig. 3.6 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro objemy (100 vpv)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%)

č 20 po 0 100 000 000 110 000 000 120 000 000 130 000 000 140 000 000 150 000 000 160 000 000 170 000 000 objemy (m)

Fig. 3.7 Histogram

Histogram přímých škod (100 vpv)

počet aritm. průměr median 25%quartil 75%quartil

100000 300000 500000 700000 900000 1100000 1300000 30 30 25 25 20 20 15 15 10 10 et realizací (%)

č 5 5

po 0 0

0 000 0 0000 100000 20 300000 40000 500000 600000 700000 800000 900000 0 1000000 1100000 1200000 13 přímé škody (tis. Kč)

Přímé škody = direct damages (in CZK K)

15

Fig. 3.8 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro přím. škody (100 vpv)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%)

č 20 po 0 100 000,000 300 000,000 500 000,000 700 000,000 900 000,000 1 100 000,000 1 300 000,000 přímé škody (tis. Kč)

Fig. 3.9 Histogram

Histogram celkových škod (100 vpv)

počet aritm. průměr median 25%quartil 75%quartil

800000 1300000 1800000 2300000 2800000 16 16 14 14 12 12 10 10 8 8 6 6 4 4 et realizací (%)

č 2 2

po 0 0

00 00 800000 1000000 1200000 14000 1600000 1800000 2000000 2200000 2400000 2600000 2800000 30000 celkové škody (tis. Kč)

Celkové škody = Total damages (in CZK K)

16

Fig. 3.10 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro celk. škody (100 vpv)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100 80 60 40

et realizací (%) 20 č

po 0

00 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 24000 2600000 2800000 3000000 celkové škody (tis. Kč)

Flooded areas and volumes in Brno for the original flood wave and 100 calculated flood waves

Data determined on the basis of the „grid“ layer used in the Arc View GIS program. A „grid“ layer is a layer divided into squares containing additional data – in this case the depth of the water column. The area of a square is 10 x 10 m, i.e. an area of 100 m2

The values read from the „grid“ layer are:

N – the number of coloured squares, i.e. the number of squares of flooded area, SUM – the sum of all elevations.

The area of flood A (m2) is calculated thus:

A = N*100 (m2)

The volume of flood V (m3) is calculated thus:

V = SUM*100 (m3)

17

Fig. 3.11 Representation of the „grid“ layer of flooded area (yellow-green coloured scale), where each colour defines the appropriate range of colour, using the Arc View GIS program (for the 57th wave)

Fig. 3.12 Representation of the „grid“ layer of flood area (yellow-green colour scale) where each colour defines the appropriate range of colour, using the Arc View GIS program (for the 57th wave)with a table with statistical data for the layer in question.

18

Table 3.1 Given values for the original flood wave (determined by interpolation)

Volume of Name Flooded area A (m2) flooded area V (m3) Value of the original 7921497,53 7384176,1 flood wave

The characteristics of the original flood wave were deduced by interpolation on the basis of knowing the % of inclusion of the Czech Met Office wave (waves 66 and 48 or simulation: sim_65 and sim_47)

Value for 100 calculated flood waves

Volume of Flooded area A Name flooded area V (m2) (m3) Arithmetic average 7 582 509,00 7 499 303,55

Median 7 476 700,00 7 571 305,50

Standard deviation 1 473 668,42 1 735 781,46

Maximum 11 061 100,00 11 576 090,20

Minimum 4 235 500,00 3 538 839,70 Difference (= 6 825 600,00 4 076 786,65 maximum-minimum) 25% quartile 6 604 475,00 6 217 714,55

75% quartile 8 694 900,00 8 694 211,00

19

Graphical representation for 100 calculated flood waves

Flooded area A (m2)

Fig. 3.13 Histogram

Histogram plochy zaplavené inundace

počet aritm. průměr median 25%quartil 75%quartil

4000000 5000000 6000000 7000000 8000000 9000000 10000000 11000000 30 30 25 25 20 20 15 15 10 10 et realizací (%)

č 5 5

po 0 0 4000000 5000000 6000000 7000000 8000000 9000000 10000000 11000000 plocha zaplavené inundace (m2)

Plocha zaplavené inundance – Flooded area

Fig. 3.14 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení zaplavené inundace

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100 80 60 40

et realizací (%) 20 č

po 0 4250000 5250000 6250000 7250000 8250000 9250000 10250000 plocha zaplavené inundace (m2)

20

Volume of flooded area V (m3) Fig. 3.15 Histogram

Histogram zaplavené inundace

počet aritm. průměr median 25%quartil 75%quartil 4000000 5000000 6000000 7000000 8000000 9000000 10000000 11000000 30 30 25 25 20 20 15 15 10 10 et realizací (%)

č 5 5

po 0 0

0000 00000 2000000 4000000 5000000 600 7000000 8000000 9000000 100 11000000 1 Objem zaplavené inundace (m3)

Fig. 3.16 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení zaplavené inundace

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100 80 60 40

et realizací (%) realizací et 20 č

po 0 4250000 5250000 6250000 7250000 8250000 9250000 10250000 Objem zaplavené inundace (m3)

Maximum levels in the given transverse profiles for the 100 calculated flood waves

The selected transverse profiles for the river Svratka are located in Brno and have been chosen so that they best captured the movement of the flood. In addition 2 profiles have been chosen for the movement of the flood wave in the flood area.

21

Fig. 3.17 An orthophotoma with areas marked of flood wave overflow. The arrows mark the selected transverse profiles. The red arrows indicate the transverse profiles on the course of the Svratka, the yellow ones in the flood area.

Fig. 3.18 Modelling diagram of the city of Brno in the Mike program. The river Svratka is marked in green. Red arrows show the location of selected profiles on the river Svratka and yellow arrows those in the flood area.

22

Fig. 3.19 Longitudinal profile of the river Svratka, as modelled by the Mike program (for wave 100).

List of individual profiles River Svratka • River Svratka – at the overflow point in Jundrova (= 1st profile = Series 1) • River Svratka – at the overflow point in Pisárky by the exhibition ground(= 2nd profile = Series 2) • River Svratka – at the overflow point in Komárov (= 3rd profile = Series 3) • River Svratka – at the overflow point over the motorway (= 4th profile = Series 4) • River Svratka – at the overflow point under the motorway (= 5th profile = Series 5)

Floods: • In Kšírova street in Horní Heršpice (= 6th profile = Series 6) • In Přízmodřice (= 7th profile = Series 7)

Table 3.2 Tabular listing of profiles with identifying date from the Mike program

Column 1 2 3 4 5 6 7 no. River- River- River- River- River- Name Svratka Svratka Svratka Svratka Svratka Flood Flood 258 195 261 337 264 882 267 170 267 643 Name v SVRATKA SVRATKA SVRATKA SVRATKA SVRATKAKSIROVA2 PRIZMODRIC Mike 258195,00 261337,00 264882,00 267170,00 267643,00 8130,00 200,00 List-code 337 387 438 480 485 1854 1979 x (approx.) -601 374 -600 902 -597 769 -597 396 -597 371 -597 893 -597 620 y (approx) -1 159 287 -1 161 723 -1 162 793 -1 164 981 -1 165 428 -1 164 185 -1 167 144

23

Fig. 3.20 As an example, this longitudinal and transverse profile for the river Svratka: SVRATKA 258 195,00 The arrow shows the profile in longitudinal section. The pictures show the maximum level.

Fig. 3.21 Longitudinal section of the floods and across the Svratka (low lying areas in the middle) going through profile KSIROVA1 3130,00

Maximum levels for individual waves

Fig. 3.22 Values for the maximum levels (axis y – height above sea level) for individual waves (axis x – values 1-100). Profiles for the river Svratka are shown in red (Series 1-5), those for the flood areas in blue (Series 6&7) Graphical size of the swing – difference line. (the curve was obtained from the difference of the value from the average. The average value is zero) Profiles for the river Svratka are shown in red (Series 1- 5), those for the flood areas in blue (Series 6&7)

1

Řada1 Řada2 Řada3 0 Řada4 0 102030405060708090100Řada5 Řada6 Řada7

-1

24

Table 3.3 Maximum levels in specific profiles for the original flood wave

Column no. 1 2 3 4 5 6 7 River- River- River- River- River- Name Svratka Svratka Svratka Svratka Svratka Flood Flood 258 195 261 337 264 882 267 170 267 643 SVRATKA SVRATKASVRATKASVRATKASVRATKA KSIROVA2 PRIZMODRIC Name 258195,00 261337,00 264882,00 267170,00 267643,00 8130,00 200,00 Value of maximum levels of 208,1 203,9 199,2 196,4 195,8 197,8 192,5 the original flood wave

The characteristics of the original flood wave were deduced by interpolation on the basis of knowing the % of inclusion of the Czech Met Office wave (waves 66 and 48 or simulation: sim_65 and sim_47)

Table 3.4 Statistical evaluation for 100 calculated flood waves

Value for 100 calculated flood waves (meter above sea level) Column no. 1 2 3 4 5 6 7 River- River- River- River- River- Name Svratka Svratka Svratka Svratka Svratka Flood Flood 258 195 261 337 264 882 267 170 267 643 SVRATKA SVRATKASVRATKASVRATKASVRATKA KSIROVA2 PRIZMODRIC Name 258195,00 261337,00 264882,00 267170,00 267643,00 8130,00 200,00 Arithmetic average 208,19 204,11 199,30 196,49 195,88 197,94 192,56

Median 208,25 204,19 199,35 196,54 195,92 197,98 192,61 Standard deviation 0,26 0,35 0,23 0,20 0,15 0,16 0,14 Maximum 208,71 204,86 199,76 196,87 196,16 198,26 192,81 Minimum 207,41 203,12 198,59 195,85 195,37 197,31 192,12 Difference (= maximum- 1,30 1,73 1,16 1,02 0,79 0,95 0,69 minimum) 25% quartile 208,03 203,87 199,16 196,37 195,79 197,85 192,44 75% quartile 208,37 204,35 199,45 196,63 195,99 198,04 192,66

The greatest difference is evident in profile 2 (Series 2). The smallest swing is on the Svratka under the motorway (Series 5)

25

Fig. 3.23 Histogram Histogram maximální výšky vlny - Svratka 258 195 (1.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

207,4 207,6 207,8 208 208,2 208,4 208,6 20 20

15 15

10 10

et realizací (%) 5 5 č po 0 0 207,4 207,5 207,6 207,7 207,8 207,9 208 208,1 208,2 208,3 208,4 208,5 208,6 208,7 maximální výška vlny (m n. m.)

Maximální výška vlny – maximum wave height

Fig. 3.24 Mass curve – i.e. non-reach curve and overrun (exceeding) curve Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Svratka 258 195 (1.řada) (100 vpv) Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%)

č 20 po 0 207,2 207,4 207,6 207,8 208 208,2 208,4 208,6 208,8 209 maximální výška vlny (m n. m.)

26

Fig. 3.25 Histogram

Histogram maximální výšky vlny -Svratka - 261337 (2.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

203,1 203,3 203,5 203,7 203,9 204,1 204,3 204,5 204,7 204,9 16 16 14 14 12 12 10 10 8 8 6 6 et realizací (%) realizací et č 4 4 po 2 2 0 0 203,1 203,2 203,3 203,4 203,5 203,6 203,7 203,8 203,9 204 204,1 204,2 204,3 204,4 204,5 204,6 204,7 204,8 204,9 maximální výška vlny (m.n.m.)

Fig. 3.26 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Svratka - 261337 (2.řada) (100 VPV) Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%) realizací et č

po 20

0 203 203,5 204 204,5 205 maximální výška vlny (m.n.m.)

27

Fig. 3.27 Histogram

Histogram maximální výšky vlny - Svratka 264 882 (3.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

198,6 198,8 199 199,2 199,4 199,6 199,8

25 25

20 20

15 15

10 10 et realizací (%)

č 5 5 po 0 0 198,6 198,7 198,8 198,9 199 199,1 199,2 199,3 199,4 199,5 199,6 199,7 199,8 maximální výška vlny (m n. m.)

Fig. 3.28 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Svratka 264 882 (3.řada) (100 vpv) Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%) realizací et

č 20 po 0 198,4 198,6 198,8 199 199,2 199,4 199,6 199,8 200 průtoky (m3/s)

Maximum wave height for the river Svratka 267 170 (4th series)

28

Fig. 3.29 Histogram

Histogram maximální výšky vlny - Svratka 267 170 (4.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

195,8 196 196,2 196,4 196,6 196,8 30 30 25 25 20 20 15 15 10 10 et realizací (%) č 5 5 po 0 0 195,8 195,9 196 196,1 196,2 196,3 196,4 196,5 196,6 196,7 196,8 196,9 maximální výška vlny (m n. m.)

Fig.3.30 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Svratka 267 170 (4.řada) (100 vpv) Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%)

č 20 po 0 195,8 196 196,2 196,4 196,6 196,8 197 průtoky (m3/s)

Maximum wave height for the river Svratka 267 643(5th series)

29

Fig. 3.31 Histogram

Histogram maximální výšky vlny - Svratka - 267643 (5.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

195,4 195,5 195,6 195,7 195,8 195,9 196 196,1 196,2 30 30

25 25

20 20

15 15

et realizací (%) realizací et 10 10 č

po 5 5

0 0 195,4 195,5 195,6 195,7 195,8 195,9 196 196,1 196,2 maximální výška vlny (m.n.m.)

Fig. 3.32 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Svratka - 267643 (5.řada) (100 VPV) Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%) realizací et č

po 20

0 195 195,5 196 196,5 maximální výška vlny (m.n.m.)

Maximum wave height for flood area KSIROVA 2 - 8130 (6th series)

30

Fig. 3.33 Histogram

His togram maximální výš ky vlny - Kšírova2 - 8130 (6.řada) (100 vpv)

počet aritm. průměr median 25%quartil 75%quartil

197,3 197,4 197,5 197,6 197,7 197,8 197,9 198 198,1 198,2 198,3 30 30

25 25

20 20

15 15

10 10 et realizací(%) č

po 5 5

0 0 197,3 197,4 197,5 197,6 197,7 197,8 197,9 198 198,1 198,2 198,3 maximální výška vlny (m.n.m.)

Fig. 3.34 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Kšírova2 - 8130 (6.řada) (100 VPV)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací(%) č

po 20

0 197 197,2 197,4 197,6 197,8 198 198,2 198,4 maximální výška vlny (m.n.m.)

3

Maximum wave height for flood area PRIZMODRIC 200 (7th series)

31

Fig. 3.35 Histogram

Histogram maximální výšeky vlny - Prizmodric - 200 (7.řada) (100 vpv) počet aritm. průměr median 25%quartil 75%quartil

192,1 192,2 192,3 192,4 192,5 192,6 192,7 192,8 40 40 35 35 30 30 25 25 20 20 15 15

et realizací (%) realizací et 10 10 č 5 5 po 0 0 192,1 192,2 192,3 192,4 192,5 192,6 192,7 192,8 maximální výška vlny (m.n.m.)

Fig. 3.36 Mass curve – i.e. non-reach curve and overrun (exceeding) curve

Čára (součtová) nedostoupení a překročení pro maximální výšku vlny - Prizmodric - 200 (7.řada) (100 VPV)

Čára nedostoupení Čára překročení aritm. průměr medián 25%quartil 75%quartil

100

80

60

40 et realizací (%) realizací et

č 20 po 0 192 192,5 193 maximální výška vlny (m.n.m.)

32

0,5

1~2 0,25 1~3 1~4 1~5 2~3 0 2~4 -0,5 -0,25 0 0,25 0,5 2~5 3~4 -0,25 3~5 4~5

-0,5

Fig. 3.37 Dependence between individual profiles using regression

Fig. 3.38 Regression dependence for successive profiles on the Svratka (flood areas not included). (Using data from the total difference line)

1 0,8

0,6 0,4 1~2

1~3 0,2 1~4 0 1~5 -1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 -0,2 1~6

-0,4 1~7

-0,6

-0,8

-1

33

3.6 Summary of results

Flooded area Simulation Wave High point Wave volume Direct damage Total damage Flooded area volume

(m3.s-1) (m3) (tis. Kč) (tis. Kč) (m2) (m3) 0 1 304,98 142 442 272,90 973 722,08 2 239 560,79 7 456 300,00 7 565 562,40 1 2 298,49 154 281 479,80 956 989,20 2 201 075,15 8 331 200,00 8 005 662,60 2 3 326,31 148 902 369,20 1 037 453,56 2 386 143,20 8 687 900,00 8 663 836,60 3 4 264,53 125 654 049,20 691 479,19 1 590 402,14 6 199 900,00 5 758 192,00 4 5 330,72 146 173 645,30 1 127 627,58 2 593 543,43 10 428 400,00 10 145 809,80 5 6 209,11 104 528 525,00 370 686,81 852 579,66 4 478 800,00 3 847 209,90 6 7 298,11 135 957 658,30 952 248,09 2 190 170,60 8 515 500,00 8 092 033,00 7 8 306,22 134 315 738,80 972 111,44 2 235 856,30 8 334 100,00 8 098 839,20 8 9 306,03 151 400 564,30 993 596,42 2 285 271,75 8 630 900,00 8 393 215,80 9 10 225,84 128 532 039,00 468 096,37 1 076 621,65 5 085 600,00 4 527 409,00 10 11 314,42 134 355 455,30 973 718,66 2 239 552,90 7 483 400,00 7 562 666,40 11 12 308,77 141 480 492,30 972 598,42 2 236 976,36 7 470 000,00 7 577 048,60 12 13 262,57 129 337 905,20 721 583,24 1 659 641,44 6 404 700,00 6 066 965,50 13 14 304,38 137 605 860,40 970 474,32 2 232 090,92 7 428 300,00 7 517 244,80 14 15 298,33 130 761 866,00 915 727,94 2 106 174,27 7 154 800,00 7 221 141,80 15 16 328,95 148 743 087,30 1 068 467,65 2 457 475,59 8 814 600,00 8 939 964,20 16 17 336,25 144 683 642,20 1 113 450,73 2 560 936,67 9 246 400,00 9 436 138,60 17 18 332,08 146 562 618,20 1 122 493,24 2 581 734,46 10 254 600,00 10 013 937,90 18 19 231,15 110 695 124,30 496 817,09 1 142 679,29 5 286 500,00 4 695 783,60 19 20 309,34 149 346 804,10 995 626,45 2 289 940,84 8 545 900,00 8 331 932,60 20 21 323,10 159 775 461,90 1 053 869,35 2 423 899,51 8 715 900,00 8 785 334,20 21 22 305,71 151 416 689,70 943 855,62 2 170 867,92 7 249 600,00 7 445 615,00 22 23 263,98 121 137 587,30 761 897,99 1 752 365,37 6 683 800,00 6 172 128,20

34

Flooded area Simulation Wave High point Wave volume Direct damage Total damage Flooded area volume

(m3.s-1) (m3) (tis. Kč) (tis. Kč) (m2) (m3) 23 24 253,26 120 715 439,90 620 354,31 1 426 814,92 5 843 200,00 5 376 711,70 24 25 305,29 150 825 658,50 995 829,48 2 290 407,80 8 758 400,00 8 466 678,30 25 26 300,47 131 591 194,00 954 354,61 2 195 015,59 7 376 600,00 7 392 382,80 26 27 315,23 146 780 568,20 1 011 035,70 2 325 382,10 7 659 900,00 7 896 688,80 27 28 269,55 128 854 406,50 697 650,01 1 604 595,02 6 228 700,00 5 817 449,90 28 29 330,56 146 698 906,50 1 092 974,22 2 513 840,70 8 868 800,00 9 150 899,90 29 30 268,33 131 346 561,50 754 840,14 1 736 132,32 6 592 400,00 6 232 910,00 30 31 290,08 129 507 848,30 916 877,30 2 108 817,79 7 287 300,00 7 135 444,80 31 32 283,05 137 687 661,90 895 915,58 2 060 605,82 8 173 200,00 7 591 872,40 32 33 307,60 135 755 918,60 981 112,81 2 256 559,45 7 556 300,00 7 647 699,10 33 34 298,65 149 989 585,50 918 350,50 2 112 206,14 7 192 000,00 7 243 203,40 34 35 245,06 118 399 649,00 553 395,53 1 272 809,71 5 521 500,00 5 099 379,00 35 36 253,08 139 549 842,30 646 401,22 1 486 722,81 6 012 200,00 5 593 290,30 36 37 329,57 147 453 699,20 1 131 361,39 2 602 131,19 10 300 500,00 10 114 574,50 37 38 270,70 138 574 888,60 787 299,39 1 810 788,60 6 754 600,00 6 391 352,40 38 39 280,81 137 526 003,30 798 872,17 1 837 405,99 6 646 800,00 6 408 523,80 39 40 309,12 140 646 179,50 965 506,48 2 220 664,91 7 412 200,00 7 630 903,00 40 41 276,82 137 385 127,40 834 686,65 1 919 779,29 6 983 200,00 6 613 641,80 41 42 344,30 161 260 636,30 1 144 446,73 2 632 227,46 9 055 500,00 9 628 018,00 42 43 320,66 138 982 527,90 1 049 706,41 2 414 324,73 8 783 500,00 8 816 949,80 43 44 304,86 143 820 226,70 963 496,56 2 216 042,07 7 411 600,00 7 466 397,70 44 45 348,86 153 188 945,10 1 199 228,32 2 758 225,14 10 481 500,00 10 694 469,00 45 46 270,62 129 185 352,60 738 729,51 1 699 077,88 6 425 900,00 6 060 644,00 46 47 295,62 131 218 408,70 912 705,59 2 099 222,85 7 166 700,00 7 213 609,40 47 48 282,98 136 610 707,00 810 660,43 1 864 518,98 6 708 400,00 6 496 201,60 48 49 351,63 164 988 419,80 1 177 561,31 2 708 391,01 9 234 700,00 9 983 560,90

35

Flooded area Simulation Wave High point Wave volume Direct damage Total damage Flooded area volume

(m3.s-1) (m3) (tis. Kč) (tis. Kč) (m2) (m3) 49 50 321,26 134 249 286,10 1 053 222,37 2 422 411,44 9 040 600,00 8 958 249,30 50 51 358,94 156 754 234,20 1 232 674,71 2 835 151,82 10 479 100,00 10 875 890,20 51 52 311,58 150 710 549,50 1 008 306,16 2 319 104,17 8 643 700,00 8 481 945,80 52 53 320,80 148 238 312,60 1 040 269,28 2 392 619,35 7 764 500,00 8 134 800,20 53 54 377,06 155 347 373,20 1 299 083,90 2 987 892,95 9 885 200,00 11 127 712,40 54 55 274,15 128 515 132,30 788 746,88 1 814 117,80 6 608 500,00 6 324 513,10 55 56 283,38 136 913 547,20 869 616,29 2 000 117,46 7 114 600,00 6 834 703,40 56 57 342,82 150 665 082,50 1 141 058,41 2 624 434,35 9 702 100,00 9 870 901,90 57 58 304,28 146 540 733,20 976 223,90 2 245 314,96 7 454 800,00 7 563 635,60 58 59 264,53 130 667 178,50 672 762,65 1 547 354,09 6 136 400,00 5 763 584,50 59 60 240,44 128 682 705,00 554 344,26 1 274 991,80 5 550 700,00 5 124 552,00 60 61 316,03 137 122 264,90 1 036 109,19 2 383 051,12 8 972 300,00 8 820 636,00 61 62 303,95 150 778 956,10 984 103,65 2 263 438,39 8 474 700,00 8 255 661,50 62 63 300,56 138 827 950,80 939 636,58 2 161 164,14 8 466 400,00 8 002 852,40 63 64 257,01 126 668 649,40 639 475,16 1 470 792,87 5 946 600,00 5 523 003,60 64 65 327,79 155 091 822,10 1 110 276,20 2 553 635,27 9 390 700,00 9 496 547,80 65 66 281,48 137 512 219,90 890 208,45 2 047 479,44 8 185 600,00 7 577 496,30 66 67 336,01 149 347 423,10 1 140 401,38 2 622 923,17 9 628 000,00 9 847 370,80 67 68 290,09 130 444 464,80 899 005,53 2 067 712,70 7 119 400,00 7 100 831,30 68 69 272,74 128 419 389,80 712 161,99 1 637 972,57 6 326 500,00 5 928 104,50 69 70 327,29 140 123 969,50 1 082 610,79 2 490 004,80 8 825 600,00 9 053 130,60 70 71 258,70 117 083 190,80 650 057,99 1 495 133,38 5 993 600,00 5 579 512,30 71 72 276,00 144 764 652,30 831 637,91 1 912 767,18 7 850 400,00 7 166 241,40 72 73 307,22 142 262 911,30 985 762,87 2 267 254,61 7 568 600,00 7 671 303,40 73 74 359,62 157 362 475,60 1 204 843,83 2 771 140,80 9 276 200,00 10 191 597,00 74 75 313,61 139 877 708,80 1 007 406,28 2 317 034,42 7 645 700,00 7 873 455,50

36

Flooded area Simulation Wave High point Wave volume Direct damage Total damage Flooded area volume

(m3.s-1) (m3) (tis. Kč) (tis. Kč) (m2) (m3) 75 76 319,54 154 368 764,70 1 056 779,76 2 430 593,44 8 797 400,00 8 870 345,00 76 77 276,07 125 883 316,60 737 283,85 1 695 752,85 6 435 100,00 6 091 808,80 77 78 328,95 151 262 789,80 1 079 777,33 2 483 487,85 7 861 800,00 8 437 818,80 78 79 197,86 98 706 754,01 327 766,17 753 862,18 4 235 500,00 3 538 839,70 79 80 323,36 134 225 540,70 1 098 351,54 2 526 208,54 9 608 600,00 9 554 794,50 80 81 328,68 147 944 604,30 1 072 353,76 2 466 413,63 7 827 700,00 8 374 205,10 81 82 223,99 117 901 396,40 461 327,32 1 061 052,82 5 077 600,00 4 512 315,60 82 83 357,57 152 697 005,90 1 172 255,29 2 696 187,17 8 205 800,00 9 309 962,20 83 84 312,46 144 907 919,40 1 006 263,68 2 314 406,46 7 656 000,00 7 863 149,00 84 85 276,68 128 039 710,20 795 321,74 1 829 240,01 6 674 500,00 6 407 487,50 85 86 279,38 137 984 908,70 852 513,60 1 960 781,28 7 063 300,00 6 722 776,50 86 87 270,06 133 319 100,90 776 118,28 1 785 072,04 6 682 200,00 6 326 759,70 87 88 335,65 151 323 915,80 1 099 833,53 2 529 617,10 7 959 100,00 8 635 350,50 88 89 261,98 121 487 403,00 742 516,62 1 707 788,23 6 534 000,00 6 124 631,30 89 90 324,82 147 455 457,70 1 030 792,08 2 370 821,77 7 719 400,00 8 048 545,00 90 91 292,39 135 694 002,30 935 088,89 2 150 704,43 7 321 300,00 7 252 567,20 91 92 232,81 124 069 526,20 508 157,13 1 168 761,39 5 282 500,00 4 747 796,70 92 93 285,84 146 479 055,10 836 386,88 1 923 689,83 6 800 900,00 6 684 619,70 93 94 344,52 169 559 429,60 1 156 316,28 2 659 527,45 9 348 500,00 9 826 944,70 94 95 250,89 125 928 443,80 577 671,98 1 328 645,54 5 586 100,00 5 188 550,30 95 96 257,80 118 988 164,00 656 718,45 1 510 452,43 6 034 900,00 5 633 916,60 96 97 217,55 118 988 164,00 422 662,08 972 122,80 4 766 900,00 4 190 475,50 97 98 363,32 150 274 320,20 1 270 638,61 2 922 468,79 11 061 100,00 11 576 090,20 98 99 315,03 141 171 064,10 973 938,09 2 240 057,60 7 519 900,00 7 580 028,10 99 100 222,51 115 358 358,50 426 527,15 981 012,43 4 817 600,00 4 255 216,10

37

Maximum Maximum Maximum Maximum Maximum Maximum wave Maximum wave wave height in wave height in wave height in wave height in wave height in height in profile – height in profile – Simulation Wave profile – river profile – river profile – river profile – river profile – river flood area flood area -Svratka 258 - Svratka 261 - Svratka 264 - Svratka 267 - Svratka 267 - KSIROVA2 - PRIZMODRIC 195 337 882 170 643 8130,00 200,00 m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level 0 1 208,25 204,23 199,37 196,56 195,94 197,99 192,62 1 2 208,20 204,15 199,33 196,53 195,91 197,96 192,61 2 3 208,35 204,36 199,45 196,62 195,98 198,04 192,65 3 4 207,96 203,83 199,13 196,36 195,78 197,83 192,42 4 5 208,39 204,43 199,50 196,66 196,01 198,07 192,71 5 6 207,50 203,24 198,69 195,94 195,44 197,40 192,18 6 7 208,18 204,13 199,31 196,51 195,90 197,95 192,61 7 8 208,24 204,20 199,36 196,55 195,93 197,98 192,62 8 9 208,25 204,22 199,37 196,57 195,94 197,99 192,62 9 10 207,66 203,55 198,86 196,10 195,58 197,64 192,28 10 11 208,29 204,27 199,38 196,54 195,92 197,99 192,61 11 12 208,26 204,24 199,37 196,55 195,93 197,98 192,62 12 13 207,94 203,82 199,11 196,34 195,77 197,82 192,43 13 14 208,25 204,22 199,38 196,57 195,94 197,99 192,61 14 15 208,21 204,16 199,33 196,52 195,91 197,96 192,59 15 16 208,38 204,40 199,48 196,65 196,00 198,06 192,67 16 17 208,44 204,49 199,53 196,68 196,03 198,09 192,69 17 18 208,41 204,45 199,50 196,66 196,01 198,08 192,69 18 19 207,70 203,48 198,88 196,13 195,60 197,68 192,31 19 20 208,28 204,26 199,39 196,57 195,94 198,00 192,63 20 21 208,37 204,38 199,47 196,64 195,99 198,05 192,66 21 22 208,25 204,23 199,37 196,56 195,93 197,99 192,61 22 23 207,96 203,82 199,13 196,33 195,76 197,82 192,43

38

Maximum Maximum Maximum Maximum Maximum Maximum wave Maximum wave wave height in wave height in wave height in wave height in wave height in height in profile – height in profile – Simulation Wave profile – river profile – river profile – river profile – river profile – river flood area flood area -Svratka 258 - Svratka 261 - Svratka 264 - Svratka 267 - Svratka 267 - KSIROVA2 - PRIZMODRIC 195 337 882 170 643 8130,00 200,00 m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level 23 24 207,87 203,70 199,05 196,29 195,73 197,79 192,39 24 25 208,25 204,22 199,37 196,56 195,94 197,99 192,63 25 26 208,25 204,18 199,34 196,53 195,91 197,96 192,60 26 27 208,32 204,28 199,41 196,60 195,96 198,02 192,64 27 28 208,01 203,85 199,14 196,36 195,79 197,83 192,42 28 29 208,44 204,45 199,51 196,67 196,02 198,08 192,69 29 30 208,02 203,86 199,15 196,35 195,77 197,84 192,43 30 31 208,17 204,07 199,27 196,48 195,87 197,92 192,58 31 32 208,10 203,97 199,22 196,44 195,85 197,89 192,56 32 33 208,28 204,21 199,37 196,56 195,93 197,99 192,62 33 34 208,22 204,14 199,32 196,51 195,90 197,95 192,59 34 35 207,83 203,61 198,98 196,23 195,68 197,75 192,37 35 36 207,91 203,71 199,06 196,30 195,74 197,79 192,40 36 37 208,44 204,45 199,51 196,67 196,02 198,08 192,70 37 38 208,03 203,87 199,16 196,39 195,81 197,85 192,52 38 39 208,11 203,98 199,22 196,44 195,85 197,89 192,55 39 40 208,29 204,24 199,39 196,58 195,95 198,00 192,62 40 41 208,07 203,93 199,19 196,41 195,82 197,86 192,52 41 42 208,54 204,59 199,59 196,73 196,06 198,13 192,71 42 43 208,37 204,35 199,45 196,63 195,98 198,04 192,65 43 44 208,27 204,20 199,35 196,54 195,92 197,98 192,60 44 45 208,56 204,62 199,61 196,75 196,08 198,15 192,74 45 46 208,04 203,89 199,17 196,37 195,79 197,85 192,44 46 47 208,21 204,12 199,31 196,50 195,89 197,94 192,59 47 48 208,12 204,00 199,23 196,45 195,85 197,89 192,55

39

Maximum Maximum Maximum Maximum Maximum Maximum wave Maximum wave wave height in wave height in wave height in wave height in wave height in height in profile – height in profile – Simulation Wave profile – river profile – river profile – river profile – river profile – river flood area flood area -Svratka 258 - Svratka 261 - Svratka 264 - Svratka 267 - Svratka 267 - KSIROVA2 - PRIZMODRIC 195 337 882 170 643 8130,00 200,00 m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level 48 49 208,58 204,64 199,62 196,76 196,08 198,16 192,74 49 50 208,36 204,34 199,44 196,61 195,98 198,03 192,66 50 51 208,61 204,69 199,65 196,78 196,10 198,18 192,76 51 52 208,31 204,27 199,40 196,58 195,95 198,01 192,64 52 53 208,37 204,34 199,45 196,63 195,98 198,04 192,65 53 54 208,71 204,86 199,76 196,87 196,16 198,26 192,81 54 55 208,07 203,92 199,18 196,38 195,80 197,86 192,44 55 56 208,13 204,00 199,23 196,43 195,84 197,89 192,56 56 57 208,50 204,53 199,55 196,70 196,04 198,11 192,70 57 58 208,27 204,21 199,37 196,56 195,93 197,99 192,61 58 59 207,98 203,81 199,11 196,34 195,77 197,82 192,41 59 60 207,81 203,57 198,96 196,20 195,66 197,74 192,37 60 61 208,34 204,31 199,42 196,60 195,96 198,02 192,64 61 62 208,26 204,19 199,36 196,55 195,93 197,98 192,62 62 63 208,22 204,12 199,30 196,49 195,89 197,94 192,59 63 64 207,92 203,72 199,06 196,30 195,74 197,79 192,40 64 65 208,43 204,44 199,51 196,67 196,02 198,08 192,70 65 66 208,11 203,97 199,22 196,44 195,84 197,88 192,56 66 67 208,47 204,51 199,54 196,70 196,04 198,10 192,71 67 68 208,18 204,08 199,29 196,48 195,87 197,93 192,57 68 69 208,03 203,87 199,15 196,35 195,78 197,84 192,43 69 70 208,42 204,43 199,50 196,66 196,01 198,07 192,68 70 71 207,95 203,76 199,09 196,32 195,75 197,80 192,40 71 72 208,07 203,91 199,18 196,40 195,82 197,86 192,55 72 73 208,28 204,23 199,38 196,57 195,94 198,00 192,62

40

Maximum Maximum Maximum Maximum Maximum Maximum wave Maximum wave wave height in wave height in wave height in wave height in wave height in height in profile – height in profile – Simulation Wave profile – river profile – river profile – river profile – river profile – river flood area flood area -Svratka 258 - Svratka 261 - Svratka 264 - Svratka 267 - Svratka 267 - KSIROVA2 - PRIZMODRIC 195 337 882 170 643 8130,00 200,00 m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level 73 74 208,62 204,69 199,64 196,77 196,09 198,17 192,74 74 75 208,33 204,29 199,41 196,60 195,96 198,02 192,64 75 76 208,37 204,35 199,45 196,63 195,99 198,05 192,66 76 77 208,06 203,92 199,17 196,39 195,81 197,85 192,45 77 78 208,43 204,45 199,51 196,67 196,02 198,08 192,67 78 79 207,41 203,12 198,59 195,85 195,37 197,31 192,12 79 80 208,40 204,40 199,48 196,65 196,00 198,06 192,68 80 81 208,42 204,42 199,50 196,66 196,01 198,07 192,67 81 82 207,67 203,40 198,83 196,08 195,56 197,63 192,28 82 83 208,60 204,66 199,63 196,77 196,09 198,17 192,73 83 84 208,32 204,28 199,41 196,59 195,96 198,02 192,63 84 85 208,08 203,93 199,20 196,42 195,83 197,87 192,54 85 86 208,09 203,95 199,21 196,41 195,82 197,87 192,55 86 87 208,03 203,87 199,16 196,36 195,78 197,84 192,44 87 88 208,46 204,48 199,53 196,69 196,03 198,10 192,69 88 89 207,96 203,78 199,10 196,34 195,77 197,82 192,42 89 90 208,38 204,35 199,44 196,62 195,98 198,04 192,64 90 91 208,20 204,11 199,31 196,51 195,90 197,94 192,59 91 92 207,73 203,49 198,90 196,15 195,61 197,70 192,31 92 93 208,15 204,03 199,26 196,47 195,87 197,91 192,56 93 94 208,53 204,58 199,58 196,73 196,06 198,13 192,72 94 95 207,87 203,66 199,02 196,26 195,70 197,77 192,36 95 96 207,93 203,74 199,08 196,32 195,75 197,80 192,41 96 97 207,61 203,34 198,78 196,03 195,52 197,54 192,23 97 98 208,64 204,72 199,67 196,80 196,11 198,19 192,77

41

Maximum Maximum Maximum Maximum Maximum Maximum wave Maximum wave wave height in wave height in wave height in wave height in wave height in height in profile – height in profile – Simulation Wave profile – river profile – river profile – river profile – river profile – river flood area flood area -Svratka 258 - Svratka 261 - Svratka 264 - Svratka 267 - Svratka 267 - KSIROVA2 - PRIZMODRIC 195 337 882 170 643 8130,00 200,00 m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level m ab sea level 98 99 208,30 204,25 199,37 196,55 195,93 197,98 192,61 99 100 207,63 203,37 198,78 196,03 195,52 197,55 192,25

42

4 Analysis of socio- economic impacts

4.1 Costs of measures

The proposal for anti-flood measures in the cadastral area of Brno is based on the following studies: • Povodí Moravy, s.p. (for the Svitava) • Aquatis, a.s. (for the Svratka) and on projects prepared by Povodí Moravy, s.p. Dept of Hydroinformatics: • Svitava km 6,052 – 6,852, left bank, a study of anti-flooding measures • The industrial zone in Hněvkovského street, project for an anti-flood barrier An indicative calculation of the costs needed to complete these measures also forms part of these studies.

Indicative costs for anti-flood measures in various parts of Brno on the Svratka river

1) Brno reservoir – footbridge from Bystrc do Kníničky (km 56,187 - 55,250) - local improvements to existing embankments and banks with trimming of trees etc. . …….0,30 mil. Kč - improvements to various outlets …….0,43 mil. Kč …..Σ 0,73 mil. Kč 2) Footbridge from Bystrc do Kníničky – road bridges to Bystrc (km 55,250-54,570) - right bank protective wall 0,5m high…150m above the footbridge to the ZOO …….0,75 mil. Kč - left bank protective wall 1,00m high…250m above the footbridge to the ZOO …….2,50 mil. Kč - improvements to various outlets …….0,66 mil. Kč …..Σ 3,90 mil. Kč 3) Road bridges to Bystrc (PF145) – weir at Komín (km 54,570 - 52,700) Left bank protective embankment =0,5m high …200m between the suspension footbridge and the energy services bridge in Bystrc …….1,00 mil. Kč - improvements to various outlets …….0,34 mil. Kč …..Σ 1,34 mil. Kč 4) Weir at Komín - Jundrov road bridge (km 52,700 - 51,900) - Right bank protective wall 1,5m high …350m above the Jundrov bridge …….6,30 mil. Kč - improvements to various outlets …….0,50 mil. Kč …..Σ 6,80 mil. Kč

43

5) Jundrov road bridge - Kamenný Mlýn weir (km 51,900 - 50,210) - Right bank protective embankment and walls (variations) 1,5 -2 m high…1300m …….6,50 mil. Kč - improvements to various outlets …….0,30 mil. Kč …..Σ 6,80 mil. Kč 6) Kamenný Mlýn weir – road bridge in Pisárky (km 50,210 - 49,610) - Left and right banks protective walls for 150m …….5,40 mil. Kč

- improvements to various outlets …….1,10 mil. Kč …..Σ 6,50 mil. Kč 7) Road bridge in Pisárky – former weir Riviera (km 49,610 - 48,170) - Right bank protective embankments 1,00m height for 400m along the Kohoutovický stream and around Antropos …….1,50 mil. Kč - Left bank protective embankment 1,00m height for 450m .. along the mill-race on the left bank. …….1,70 mil. Kč -protective walls 1,50m height for 250m …….3,00 mil. Kč - improvements to various outlets …….0,18 mil. Kč …..Σ 6,40 mil. Kč 8) Riviera weir – Road bridge at Vídeňská (km 48,170 - 46,585) - Right bank protective wall 1,20m height for 500m …….7,00 mil. Kč - Left bank protective wall 1,20m height for 1200m ……16,80 mil. Kč - improvements to various outlets …….0,73 mil. Kč ...Σ 24,50 mil. Kč 9) Road bridge at Vídeňská – Road bridge at Rennéská (km 46,585 - 45,975) - Right bank protective wall 1,20m height for 550m …….7,70 mil. Kč - Left bank protective wall 1,20m height for 600m …….8,40 mil. Kč - improvements to various outlets …….1,20 mil. Kč ....Σ 17,30 mil. Kč

10) Road bridge at Rennéská - railway bridges at Uhelná street (45,975 - 45,550) - Right bank protective wall 1,20m height for 380m …….5,32 mil. Kč - Left bank protective wall 1,20m height for 380m …….5,32 mil. Kč - improvements to various outlets …….0,90 mil. Kč ....Σ 11,50 mil. Kč 11) Railway bridges at Uhelná street - Railway bridges in Komárov (km 45,550 - 44,866) - Right bank improvements to the water side of the railway embankment …….2,00 mil. Kč

44

- Left bank protective wall 1,20m height + underground wall450m …….9,00 mil. Kč - improvements to various outlets …….0,60 mil. Kč ....Σ 11,60 mil. Kč 12) Lower railway bridge in Komárov – next railway bridge in Komárov (km 44,866 - 44,102) - Right bank protective walls 2.00 height for 750m ……15,00 mil. Kč - Left bank protective walls 2.00 height for 700m ……14,00 mil. Kč - Sluice gate at the mouth of the Ponávka …….3,00 mil. Kč - improvements to various outlets …….0,20 mil. Kč ....Σ 32,00 mil. Kč 13) Railway bridge in Komárov – Road bridge on Sokolova street (km 44,102 - 43,310) - Right bank protective walls 2.00 height for 900m ……18,00 mil. Kč - Left bank protective walls 1,50m height for 800m ……12,80 mil. Kč - improvements to various outlets …….0,45 mil. Kč ....Σ 31,25 mil. Kč

14) Road bridge on Sokolova street –motorway bridge in Dol. Heršpice (km 43,310-42,450) - Right bank local improvements and protective embankments 1.00 high for 800m …….4,80 mil. Kč - Left bank protective walls 2,00m for 900m ……18,00 mil. Kč - improvements to various outlets …….0,80 mil. Kč

....Σ 23,60 mil. Kč 15) Motorway bridge – bridge to the IKEA a TESCO park (km 42,450 - 42,125) - Right bank protective walls 1,80m for 400m …….6,40 mil. Kč - Left bank protective walls 1,10m for 400m …….3,20 mil. Kč - improvements to various outlets …….0,40 mil. Kč ....Σ 10,00 mil. Kč

16) Bridge (IKEA and TESCO) - Přízřenice weir (km 42,125 - 40,840)

- Right bank protective embankments 1,60~2,00m high for 2500m…….8,00 mil. Kč - Left bank protective walls 1,00m high for 700m …….5,60 mil. Kč - Left bank protective embankments along the Svitava 1,50m high 500m …….1,50 mil. Kč - improvements to various outlets …….0,20 mil. Kč ....Σ 15,30 mil. Kč

45

17) Přízřenice weir - Přízřenice bridge (km 40,840 - 40,445) - Right bank protective embankments 1,20m high for 400m …….1,20 mil. Kč - Left bank protective embankments along the Svitava 1,20m high 700m …….2,10 mil. Kč - improvements to various outlets …….0,20 mil. Kč ..…Σ 3,30 mil. Kč

18) Přízřenice bridge - Modřice road bridge (km 40,445 - 39,440) - Right bank reconstruction of the channel and embankment …1100m …….8,00 mil. Kč - Left bank possible raising of the existing protective embankment by 0,50m for 1100m …….2,50 mil. Kč …Σ 10,50 mil. Kč

Total indicative costs : …Σ 224,00 mil. Kč

The costs given above cover only the construction of protective embankments and wall in sections 1 to 18 as described on both banks of the Svratka to limit the breaching of the banks by one hundred year maximum floods in the built-up area of Brno, including improvements in their routes and also costs involved in improving water outlets to prevent water flowing back from the Svratka into the water network. Any relocation of service networks on the routes of the embankments and walls on the edge of the banks in built-up areas, rebuilding of existing low road bridges and the purchase of any required land on the routes of protective embankments would significantly increased the aforementioned costs.

From the statistical evaluation of damages we can see that also costs for the proposed measures are in all cases lower than possible direct damages even if we use the minimum damages including the uncertainty according to the calculation for 100 flood waves (minimum direct damages are 327.766 mill. CZK, average direct damages 880 mill. CZK). From that point of view the proposed measures are effective to protect the property in the town including the uncertainty in the definition of Q100 years flood.

4.2 Other impacts

Other significant impacts include especially the technical resolution of anti-flood defences. The height impact of reconstructed bridges on surrounding roads must be dealt with, as must the limited space within the urban area, which requires crossing for the protective embankments within their supporting wall. Resolution is also required for the relocation of service networks which are currently laid along the river. The proposed measures must also include the planned bio-corridors.

46

5 Conclusions

In proposing technical measures for anti-flood defences we in general start from hydro-technical calculations and the established level of the flood flows for which the measure are being proposed. Uncertainty in the input data can in certain cases be identified e.g. by giving the precision class in the case of hydrological data. For the most part however the degree of uncertainty in the data and the subsequent results is not known, and there is an impact here of individual approaches in setting up the model, defining the profiles and the links between them and so on. For this reason at present when proposing the height of anti-flood defences (embankments, supporting walls, lower edges of bridges etc.) we add 0,5m to the calculated height of the level of flood flow. This case study was intended mainly to confirm what level of uncertainty we are working with in proposing anti-flood defences and the 0,5m reserve we have added is sufficient for the protection, and whether the level of reserve corresponds to the upper limit of uncertainty which is built in. Knowing the level of uncertainty is of great importance not only in proposing specific technical measures, but also is evident in the technical and economic assessment of the work as a whole. Uncertainty in this case is evident in establishing the flood areas and the depth of flooding. This is subsequently reflected in the determination of damage caused in the flood areas. Costs for the construction of anti-flood defences are, for reasons of economic efficiency, compared with the damage caused. 3 3. The original flood wave Q100 has a high point rate of 281,73 m /s and a volume of 137 350 000 m Using the DUE software package and after including uncertainty 100 new waves were generated, whose high points varied from 197,86 m3/s to 377,06 m3/s and whose wave volumes varied from 98 706 754 m3 do 169 559 429,6 m3. The high points of the newly generated waves varies between 70 – 133 % and their volume between 72 – 123 %, when compared to the original wave. In order to achieve a thorough evaluation of the impact of uncertainty on the input hydrogram it would be beneficial to generate at least 500 new waves, which was not possible in this case study for lack of time. If we take the 100 generated new waves as representative we can see that the proposed anti-flood defences should sized for the flood wave with a reserve in the high point and volume of approx. 30% In order to assess the height proposal of the technical measures (e.g. embankments) 5 places directly on the Svratka and 2 places in the flood area were chosen. The evaluation of the maximum achieved heights for all 100 waves in the five places on the river and two places in the flood area is as follows:

Column no. 1 2 3 4 5 6 7 River River - River - River - River - Name Svratka Svratka Svratka Svratka Svratka Flood Flood 258 195 261 337 264 882 267 170 267 643 SVRATKA SVRATKASVRATKASVRATKASVRATKA KSIROVA2 PRIZMODRIC Name in Mike 258195,00 261337,00 264882,00 267170,00 267643,00 8130,00 200,00 Max. spot height Original wave 208,1 203,9 199,2 196,4 195,8 197,8 192,5 (m above sea level) Max. spot height From 100 simulations 208,71 204,86 199,78 196,87 196,16 198,26 192,81 (m above sea level) Difference 0,61 0,96 0,56 0,47 0,36 0,46 0,31 (m)

The height of the maximum calculated level for the original wave with a 50cm reserve was exceeded in three places on the Svratka, specifically in the upper half of the section of the Svratka in Brno. In

47

this part the river base level is more enclosed. From the statistical evaluation in chapter 3.5 it is however evident that these are extreme cases and that a reserve of 0,50m over the maximum level of the original flood wave is optimal. In the second river profile, where the maximum height in simulation 53 (54th wave) was 96cm higher than in the original wave. In this location there is a greater fluctuation of levels in relation to the flow and when making proposals it is necessary to allow for increased capacity in this section of the river.

In comparing the assumed total costs for constructing anti-flood defences in Brno, approx. CZK 224 million, and the results of assumed direct and total damage for all 100 generated waves, it is evident that the construction of the defences is worthwhile from an economic point of view. For the lowest level of simulated overflow the calculated direct damage is 1,5 times, and the total damage 3,5 times greater than the estimated costs for building anti-flood defences.

In conclusion we can say that on the basis of this case study, when proposing the anti-flooding measures, the 50cm height reserve is optimal and sufficient from a safety point of view. In future it will however be possible to suggest this reserve in such a way that the input flood wave with high point and volume be increased by 30% and the calculation redone. The proposed measures for this adjusted flood wave should be adequate from a safety point of view.

6 Bibliography

• Master plan of flood protection measures in the Morava river basin (study), Povodi Moravy, s.p., 1998 • Flood protection for Brno town – I. Stage (study), Povodi Moravy, s.p., 2002 • Flood protection for Brno town – II. Stage (study), Povodi Moravy, s.p., 2002 • Definition of flood zones on Svratka river in the part between the water reservoir Nove Mlyny and water reservoir Vir, river km 7.000 – 111.130 (study), Hydroinform a.s., 1999 • Flood zones update on Svratka river (study), Povodi Moravy, s.p., 2004 • Hydrologie, Jaromir Nemec, 1965 • Probability and statictics, Helena Koutkova and Ivo Moll, Technical University in Brno, 2001

48