Pseudoasterophyllites Cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a Possible Link Between Chloranthaceae and Ceratophyllum Jiří Kvaček,1 James A

Total Page:16

File Type:pdf, Size:1020Kb

Pseudoasterophyllites Cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a Possible Link Between Chloranthaceae and Ceratophyllum Jiří Kvaček,1 James A TAXON 65 (6) December 2016: 1345–1373 Kvaček & al. Pseudoasterophyllites cretaceus, a possible link PALAEOBOTANY Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: A possible link between Chloranthaceae and Ceratophyllum Jiří Kvaček,1 James A. Doyle,2 Peter K. Endress,3 Véronique Daviero-Gomez,4 Bernard Gomez4 & Maria Tekleva5 1 Department of Palaeontology, National Museum Prague, Václavské nám. 68, 115 79, Praha 1, Czech Republic 2 Department of Evolution and Ecology, University of California, Davis, California 95616, U.S.A. 3 Department of Evolutionary and Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland 4 CNRS-UMR 5276 Laboratoire de Géologie de Lyon – Terre, Planètes, Environnement, Université Lyon 1 (Claude Bernard), Observatoire de Lyon, 69622 Villeurbanne, France 5 A.A. Borissiak Paleontological Institute, Profsojuznaya str. 123, Moscow 117647, Russia Author for correspondence: Jiří Kvaček, [email protected] ORCID JK, http://orcid.org/0000-0003-2001-121X; JAD, http://orcid.org/0000-0002-4083-8786; PKE, http://orcid.org/0000-0001- 6622-8196; BG, http://orcid.org/0000-0003-1691-0634; VDG, http://orcid.org/0000-0002-1001-7223 DOI https://doi.org/10.12705/656.8 Abstract Pseudoasterophyllites cretaceus from the Cenomanian of Bohemia was recently recognized as an angiosperm by association with stamens containing monosulcate pollen of the Tucanopollis type. New material indicates that the stamens were borne in short spikes, with each stamen subtended by a bract, whereas the carpels were solitary and contained a single pendent, orthotropous ovule. We have investigated the phylogenetic position of Pseudoasterophyllites by including it in a morphological analysis of extant angiosperms using backbone constraint trees that represent the current range of hypotheses on relationships of the five mesangiosperm clades. With a backbone tree in which Chloranthaceae are linked with magnoliids and Ceratophyllum with eudicots, the most parsimonious position of Pseudoasterophyllites is sister to Chloranthaceae, but a sister-group relation- ship to Ceratophyllum is only one step less parsimonious. With a backbone tree in which Chloranthaceae and Ceratophyllum form a clade, Pseudoasterophyllites is sister to Ceratophyllum, based on derived features shared with both Chloranthaceae and Ceratophyllum plus solitary female flowers (as in Ceratophyllum). Similar results are obtained when Pseudoasterophyl- lites is added to the analysis with other fossils inferred to be related to Chloranthaceae and/or Ceratophyllum. If the plants that produced Tucanopollis pollen in the Barremian-Aptian of Africa–South America are related to Pseudoasterophyllites, these results suggest that Chloranthaceae and Ceratophyllum are relicts of one of the most important early radiations of angiosperms, which included not only colonizers of disturbed terrestrial habitats but also halophytes and aquatics. Keywords angiosperms; Ceratophyllum; Chloranthaceae; Cretaceous; paleobotany; Pseudoasterophyllites Supplementary Material The Electronic Supplement (Table S1) and the morphological character matrix (Nexus) are available in the Supplementary Data section of the online version of this article at http://www.ingentaconnect.com/content/iapt/tax INTRODUCTION (Schrank & Mahmoud, 2003), England (Hughes, 1994, as Barremian-ring), and Spain (R. Zetter, pers. comm.). Pseudo- Pseudoasterophyllites cretaceus Feistm. ex Velen. is an asterophyllites Feistm. ex Velen. is unique in the context of enigmatic plant best known from the Cenomanian (early Late other angiosperm taxa in the Cenomanian Peruc-Korycany Cretaceous) of the Czech Republic. It combines reduced simple Formation and the Central European Cretaceous as a whole. leaves with characters shared with living early-diverging an- However, it is also known from the uppermost Albian (Les giosperm groups, particularly the ambiguously placed families Renardières: Kvaček & al., 2012) and the lower Cenomanian Chloranthaceae and Ceratophyllaceae (Ceratophyllum L.). It (Jaunay-Clan, near Poitiers: Valentin & al., 2014; B. Gomez, has simple male flowers consisting of a single stamen contain- pers. obs.) of western France. ing Tucanopollis Regali pollen, which is of interest because it The systematic position of Pseudoasterophyllites creta- occurs among the earliest angiosperm pollen taxa in the Bar- ceus has been a matter of debate since the plant was first dis- remian of Brazil (Regali & al., 1974; Regali, 1989), Gabon covered. It was first collected and designated by O. Feistmantel and Congo (Doyle & al., 1977; Doyle & Hotton, 1991), Egypt (1874) as “Asterophyllites cretaceus”, a nomen nudum implying Received: 14 Apr 2016 | returned for (first) revision: 20 Jun 2016 | (last) revision received: 18 Sep 2016 | accepted: 18 Sep 2016 || publication date(s): online fast track, 6 Dec 2016; in print and online issues, 22 Dec 2016 || © International Association for Plant Taxonomy (IAPT) 2016 Version of Record 1345 Kvaček & al. Pseudoasterophyllites cretaceus, a possible link TAXON 65 (6) December 2016: 1345–1373 a relationship to Paleozoic calamites (Equisetales), and first (50°08′00″ N, 13°54′34″ E). Older collections in the National validly published by Velenovský (1887) as Pseudoasterophyl- Museum, Prague, are derived from the type locality at Lipenec. lites cretaceus. Velenovský interpreted the plant as probably a Geological and sequence stratigraphic analyses indicate cryptogamic aquatic but definitely not an equisetalean. Later, that the Peruc-Korycany Formation represents a series of paleo- Zeiller (1902), during his work on fossil plants from the Bar- valley infills (Uličný & Špičáková, 1996; Uličný & al., 2009). remian of La Pedrera in Spain, described Pseudoasterophyllites These successions comprise deposits of a variety of continen- vidali, now renamed Montsechia vidalii (Zeiller) Teixeira. He tal (braided rivers, meandering streams and floodplains, and restudied the original specimens of P. cretaceus and interpreted anastomosed fluvial systems) and coastal environments (tidally it as a conifer (Zeiller, 1907). By contrast, Velenovský and influenced braided rivers, supratidal salt marshes, tidal flats, Viniklář (1926) interpreted the plant as a lycophyte based on ebb-tidal deltas, estuaries, and lower shoreface) (Uličný & al., reproductive structures that they believed belonged to P. cre- 1997). The studied plant fossils come from mudstone units inter- taceus. More recently, Kvaček & Eklund (2003) suggested preted at Pecínov as supratidal salt marsh deposits (Uličný & al., that the plant might be a gnetophyte because of its suppos- 1997; Nguyen Tu & al., 2002). The dominant fossils in these de- edly whorled phyllotaxis. However, prior to this Kvaček (1983: posits are Frenelopsis alata (K.Feistmantel) Erw.Knobloch and 166) had suggested its probable angiosperm affinities based on Eretmophyllum obtusum (Velen.) J.Kvaček (Uličný & al., 1997). cuticle structure. In 2012 Kvaček & al. (2012) provided conclu- Occurrence of these two species and Pseudoasterophyllites cre- sive evidence for an angiosperm affinity by associating leafy taceus is restricted laterally to isolated, typically monodominant stems in Bohemia and the uppermost Albian of France with taphocoenoses. Marine influenced habitats are also indicated by stamens that contain Tucanopollis pollen, which resembles palynology (Svobodová in Uličný & al., 1997), namely the occur- reticulate-monosulcate pollen assigned to Clavatipollenites rence of marine microplankton (e.g., Micrhystridium spp.). Dur- Couper (Couper, 1958; Doyle & al., 1975; Walker & Walker, ing excavations in 2015 J.K. observed and collected marine mac- 1984) in having supratectal spinules and a sculptured sulcus rofauna even within the layer containing Pseudoasterophyllites. but differs in having a continuous tectum. Uličný & al. (1997) All studied material is housed in the National Museum Prague. and Kvaček & al. (2012) interpreted P. cretaceus as a halophyte Observations on fossils. — Hand specimens were slowly because of its succulent appearance and its occurrence in es- dried. Some were covered by polyvinyl acetate film, while tuarine facies (Uličný & al., 1997) with a low-diversity plant others were conserved in glycerine and later in silicone oil. assemblage dominated by the halophytic conifer Frenelopsis Part of the material was bulk macerated in a 20% solution of alata (K.Feistmantel) Erw.Knobloch (Cheirolepidiaceae). sodium bicarbonate. The best results were achieved when the In the present paper we provide additional evidence for material was macerated immediately after field work, when it the angiospermous interpretation of Pseudoasterophyllites and was still wet. These extractions were followed by maceration describe both male and female reproductive organs borne on in 50% hydrofluoric acid. A large portion of the material was leafy shoots. In addition, we have incorporated Pseudoastero- sorted by organ, documented, and for final arrangement soaked phyllites into a series of phylogenetic analyses, which provide in alcohol with thymol and stored in plastic boxes with silicone evidence that it belongs near the living families Chloranthaceae oil. Some specimens, particularly detached leaves and isolated and/or Ceratophyllaceae. As with fossils in general, because stamens, were macerated several minutes in Schulze’s solution, of the many missing characters, these results are necessarily prepared and mounted in glycerine on a preparation
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • World Heritage Values and to Identify New Values
    FLORISTIC VALUES OF THE TASMANIAN WILDERNESS WORLD HERITAGE AREA J. Balmer, J. Whinam, J. Kelman, J.B. Kirkpatrick & E. Lazarus Nature Conservation Branch Report October 2004 This report was prepared under the direction of the Department of Primary Industries, Water and Environment (World Heritage Area Vegetation Program). Commonwealth Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Department of Primary Industries, Water and Environment or those of the Department of the Environment and Heritage. ISSN 1441–0680 Copyright 2003 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any means without permission from the Department of Primary Industries, Water and Environment. Published by Nature Conservation Branch Department of Primary Industries, Water and Environment GPO Box 44 Hobart Tasmania, 7001 Front Cover Photograph: Alpine bolster heath (1050 metres) at Mt Anne. Stunted Nothofagus cunninghamii is shrouded in mist with Richea pandanifolia scattered throughout and Astelia alpina in the foreground. Photograph taken by Grant Dixon Back Cover Photograph: Nothofagus gunnii leaf with fossil imprint in deposits dating from 35-40 million years ago: Photograph taken by Greg Jordan Cite as: Balmer J., Whinam J., Kelman J., Kirkpatrick J.B. & Lazarus E. (2004) A review of the floristic values of the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2004/3. Department of Primary Industries Water and Environment, Tasmania, Australia T ABLE OF C ONTENTS ACKNOWLEDGMENTS .................................................................................................................................................................................1 1.
    [Show full text]
  • Structure and Distribution of Heteromorphic Stomata in Pterygota Alata (Roxb.) R. Br. (Malvaceae, Formerly Sterculiaceae)
    Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br. (Malvaceae, formerly Sterculiaceae) Sonia MITRA Taxonomy and Biosystematics Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata – 700 019, W.B. (India) G. G. MAITI Department of Botany, University of Kalyani, Nadia, W.B. (India) Debabrata MAITY Taxonomy and Biosystematics Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata – 700 019, W.B. (India) [email protected] (corresponding author) Published on 26 June 2015 Mitra S., Maiti G.G. & Maity D. 2015. — Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br. (Malvaceae, formerly Sterculiaceae). Adansonia, sér. 3, 37 (1): 139-147. http://dx.doi.org/10.5252/a2015n1a9 ABSTRACT Th irteen types of stomata along with 18 subtypes and 3 intermediate subtypes between brachy- parahexacytic monopolar and dipolar are reported here to be present in the leaves of Pterygota alata (Roxb.) R. Br. var. alata and Pterygota alata (Roxb.) R. Br. var. irregularis (W. W. Sm.) Deb & S. K. Basu. Th e foliar epidermal cells are either polygonal, rectangular, or triangular, having either straight KEY WORDS anticlinal walls or sinuous to undulate walls, and isodiametric in surface view. Th e observed stomata Sterculiaceae, are amphibrachyparacytic, amphicyclocytic, anisocytic, anomocytic, anomotetracytic, brachyparacytic, heteromorphic stomata, brachyparahexacytic, brachyparatetracytic, cyclocytic, paracytic, parahexacytic (dipolar), paratetra- distributional pattern of stomata, cytic and stephanocytic. Besides these, the presence of giant stomata is a signifi cant fi nding. Cuticu- stomatography. lar striations are present on the subsidiary cells, epidermal cells and sometimes even on guard cells. RÉSUMÉ Structure et distribution des stomates hétéromorphes chez Pterygota alata (Roxb.) R.
    [Show full text]
  • Flora Surveys Introduction Survey Method Results
    Hamish Saunders Memorial Island Survey Program 2009 45 Flora Surveys The most studied island is Sarah Results Island. This island has had several Introduction plans developed that have A total of 122 vascular flora included flora surveys but have species from 56 families were There have been few flora focused on the historical value of recorded across the islands surveys undertaken in the the island. The NVA holds some surveyed. The species are Macquarie Harbour area. Data on observations but the species list comprised of 50 higher plants the Natural Values Atlas (NVA) is not as comprehensive as that (7 monocots and 44 dicots) shows that observations for given in the plans. The Sarah and 13 lower plants. Of the this area are sourced from the Island Visitor Services Site Plan species recorded 14 are endemic Herbarium, projects undertaken (2006) cites a survey undertaken to Australia; 1 occurs only in by DPIPWE (or its predecessors) by Walsh (1992). The species Tasmania. Eighteen species are such as the Huon Pine Survey recorded for Sarah Island have considered to be primitive. There and the Millennium Seed Bank been added to some of the tables were 24 introduced species found Collection project. Other data in this report. with 9 of these being listed weeds. has been added to the NVA as One orchid species was found part of composite data sets such Survey Method that was not known to occur in as Tasforhab and wetforest data the south west of the state and the sources of which are not Botanical surveys were this discovery has considerably easily traceable.
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • Fruits, Seeds, and Flowers from the Warman Clay Pit (Middle Eocene Claiborne Group), Western Tennessee, USA
    Palaeontologia Electronica palaeo-electronica.org Fruits, seeds, and flowers from the Warman clay pit (middle Eocene Claiborne Group), western Tennessee, USA Hongshan Wang, Jane Blanchard, and David L. Dilcher ABSTRACT In this report, we examine fossil plant reproductive materials from the Warman clay pit in western Tennessee. The investigation of about 600 specimens has resulted in the recognition of 60 species and morphotypes. Based upon comparisons of gross morphology of these specimens with available extant plant materials and the literature, we have been able to assess their affinities with 16 extant families. We are able to relate 36 species and morphotypes to the following families: Altingiaceae, Annona- ceae, Araceae, Araliaceae, Bignoniaceae, Euphorbiaceae, Fabaceae, Fagaceae, Hamamelidaceae, Juglandaceae, Lauraceae, Magnoliaceae, Malpighiaceae, Mora- ceae, Oleaceae, and Theaceae. In addition, 24 morphotypes are not assigned to any family due to the limited number of diagnostic characters. This report represents a comprehensive review on the reproductive materials from a single locality of the Clai- borne Group of the southeastern United States. Compared to traditional investigations focused primarily on leaves, this study provides a different perspective for understand- ing plant diversity for the middle Eocene Claiborne Group. Hongshan Wang. Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [email protected] Jane Blanchard. Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [email protected] David L. Dilcher. Departments of Biology and Geology, Indiana University, Bloomington, Indiana 47405, USA [email protected] KEY WORDS: New genus; new species; new taxa; fruits; seeds; flowers; Claiborne Group; middle Eocene; Tennessee PE Article Number: 16.3.31A Copyright: Palaeontological Association December 2013 Submission: 23 May 2013.
    [Show full text]
  • Wood Anatomy of Pleodendron Costaricense (Canellaceae) from Southern Pacific, Costa Rica
    BRENESIA 68: 25-28,2007 Wood anatomy of Pleodendron costaricense (Canellaceae) from Southern Pacific, Costa Rica Roger Moya Roque1, Manuel Morales Salazar1, Michael C. Wiemann2 & Luis Poveda Álvarez3 1. Escuela de Ingeniería Forestal. Instituto Tecnológico de Costa Rica. Apdo. 159-7050, CostaRica. [email protected] 2. Center for Wood Anatomy Research. USDA Forest Service, Forest Products Laboratory One Gifford Pinchot Drive Madison, Wisconsin53726-2398, USA 3. Herbario Juvenal Valerio RodríguezEscuela Ciencias Ambientales Universidad Nacional Heredia, Apdo. 86-3000, Costa Rica. (Received:May ABSTRACT. Pleodendron costaricense N. Zamora, Hammel & R. Aguilar (Canellaceae) is an endemic species from the southern Pacific region of Costa Rica. It is rare and is considered to be a living fossil. The wood of P. costaricense has high density (0.92 Kg/cm3, air dry) with little distinction between heartwood and sapwood. The growth rings are marked by tangential rows of fibers. Its porous are diffuse with moderately few, small, very long vessel elements and scalariform intervessel pitting. Vessels are solitaries with scalariform perforations having 20-40 bars. Rays are uniseriate and homocellular. P. costariceme shares many features with P. macranthum and Canella winterana. RESUMEN. Pleodendron costaricense N. Zamora, Hammel & R. Aguilar (Canellaceae) es una especie endémica del Pacífico sur de Costa Rica, la cual es considerada de rara distribución. Presenta una alta densidad de madera seca a1 aire (0.92 Kg/cm3), una marcación indistinta entre albura y duramen y los anillos de crecimiento se observan por banda de fibras a1 finalizar los anillos. La madera presenta porosidad difusa, los poros son de mediana frecuencia y con diámetro moderado.
    [Show full text]
  • New Fossil Woods from Lower Cenozoic
    [Papers in Palaeontology, Vol. 6, Part 1, 2020, pp. 1–29] NEW FOSSIL WOODS FROM LOWER CENOZOIC VOLCANO-SEDIMENTARY ROCKS OF THE FILDES PENINSULA, KING GEORGE ISLAND, AND THE IMPLICATIONS FOR THE TRANS-ANTARCTIC PENINSULA EOCENE CLIMATIC GRADIENT by CHANGHWAN OH1 , MARC PHILIPPE2 , STEPHEN MCLOUGHLIN3 , JUSUN WOO4,MARCELOLEPPE5 ,TERESATORRES6, TAE-YOON S. PARK4 and HAN-GU CHOI7 1Department of Earth & Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea; [email protected] 2Universite Lyon 1 & CNRS, UMR 5023, 7 rue Dubois, F69622 Villeurbanne, France; [email protected] 3Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden; [email protected] 4Division of Polar Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Korea; [email protected], [email protected] 5Instituto Antartico Chileno (INACH), Plaza Munoz~ Gamero 1055 Punta Arenas, Chile; [email protected] 6Facultad de Ciencias Agronomicas Casilla 1004, Universidad Chile, Santiago, Chile; [email protected] 7Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; [email protected] Typescript received 14 August 2018; accepted in revised form 22 November 2018 Abstract: Ten embedded fossil logs sampled in situ from assemblages from Seymour Island, on the western and east- the middle Eocene volcano-sedimentary rocks close to Suf- ern sides of the Antarctic Peninsula respectively, are inter- field Point in the Fildes Peninsula, King George Island, preted to result from environmental and climatic gradients Antarctica, are assigned to Protopodocarpoxylon araucarioides across the Peninsula Orogen during the early Palaeogene. In Schultze-Motel ex Vogellehner, Phyllocladoxylon antarcticum particular, a precipitation gradient inferred across the Penin- Gothan, Agathoxylon antarcticum (Poole & Cantrill) Pujana sula at that time might have been induced by a rain-shadow et al., A.
    [Show full text]
  • I Is the Sunda-Sahul Floristic Exchange Ongoing?
    Is the Sunda-Sahul floristic exchange ongoing? A study of distributions, functional traits, climate and landscape genomics to investigate the invasion in Australian rainforests By Jia-Yee Samantha Yap Bachelor of Biotechnology Hons. A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Queensland Alliance for Agriculture and Food Innovation i Abstract Australian rainforests are of mixed biogeographical histories, resulting from the collision between Sahul (Australia) and Sunda shelves that led to extensive immigration of rainforest lineages with Sunda ancestry to Australia. Although comprehensive fossil records and molecular phylogenies distinguish between the Sunda and Sahul floristic elements, species distributions, functional traits or landscape dynamics have not been used to distinguish between the two elements in the Australian rainforest flora. The overall aim of this study was to investigate both Sunda and Sahul components in the Australian rainforest flora by (1) exploring their continental-wide distributional patterns and observing how functional characteristics and environmental preferences determine these patterns, (2) investigating continental-wide genomic diversities and distances of multiple species and measuring local species accumulation rates across multiple sites to observe whether past biotic exchange left detectable and consistent patterns in the rainforest flora, (3) coupling genomic data and species distribution models of lineages of known Sunda and Sahul ancestry to examine landscape-level dynamics and habitat preferences to relate to the impact of historical processes. First, the continental distributions of rainforest woody representatives that could be ascribed to Sahul (795 species) and Sunda origins (604 species) and their dispersal and persistence characteristics and key functional characteristics (leaf size, fruit size, wood density and maximum height at maturity) of were compared.
    [Show full text]
  • Intercontinental Long-Distance Dispersal of Canellaceae from the New to the Old World Revealed by a Nuclear Single Copy Gene and Chloroplast Loci
    Molecular Phylogenetics and Evolution 84 (2015) 205–219 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Intercontinental long-distance dispersal of Canellaceae from the New to the Old World revealed by a nuclear single copy gene and chloroplast loci Sebastian Müller a,1, Karsten Salomo a,1, Jackeline Salazar b, Julia Naumann a, M. Alejandra Jaramillo c, ⇑ Christoph Neinhuis a, Taylor S. Feild d,2, Stefan Wanke a, ,2 a Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany b Escuela de Biología, Universidad Autónoma de Santo Domingo (UASD), C/Bartolomé Mitre, Santo Domingo, Dominican Republic c Centro de Investigación para el Manejo Ambiental y el Desarrollo, Cali, Colombia d Centre for Tropical Biodiversity and Climate Change, College of Marine and Environmental Science, Townsville 4810, Campus Townsville, Australia article info abstract Article history: Canellales, a clade consisting of Winteraceae and Canellaceae, represent the smallest order of magnoliid Received 10 July 2014 angiosperms. The clade shows a broad distribution throughout the Southern Hemisphere, across a diverse Revised 16 December 2014 range of dry to wet tropical forests. In contrast to their sister-group, Winteraceae, the phylogenetic rela- Accepted 17 December 2014 tions and biogeography within Canellaceae remain poorly studied. Here we present the phylogenetic Available online 9 January 2015 relationships of all currently recognized genera of Canellales with a special focus on the Old World Canellaceae using a combined dataset consisting of the chloroplast trnK-matK-trnK-psbA and the nuclear Keywords: single copy gene mag1 (Maigo 1). Within Canellaceae we found high statistical support for the mono- Canellales phyly of Warburgia and Cinnamosma.
    [Show full text]