NSP3 Action, Belief and Inquiry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
European Journal of Pragmatism and American Philosophy
European Journal of Pragmatism and American Philosophy VI-2 | 2014 Language or Experience Peirce Studies in China in the 21th Century Yi Jiang and Binmin Zhong Electronic version URL: http://journals.openedition.org/ejpap/1062 DOI: 10.4000/ejpap.1062 ISSN: 2036-4091 Publisher Associazione Pragma Electronic reference Yi Jiang and Binmin Zhong, « Peirce Studies in China in the 21th Century », European Journal of Pragmatism and American Philosophy [Online], VI-2 | 2014, Online since 24 December 2014, connection on 01 May 2019. URL : http://journals.openedition.org/ejpap/1062 ; DOI : 10.4000/ejpap.1062 This text was automatically generated on 1 May 2019. Author retains copyright and grants the European Journal of Pragmatism and American Philosophy right of first publication with the work simultaneously licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. Peirce Studies in China in the 21th Century 1 Peirce Studies in China in the 21th Century Yi Jiang and Binmin Zhong AUTHOR'S NOTE This essay completes the symposium on “The Reception of Peirce in the World” appeared in the last issue of EJPAP, 6, 1. 1 Peirce is more and more recognized in Chinese academic circles as an encyclopedic philosopher. The study of Peirce in China over the past 60 years can be roughly divided into four periods: the obscure period (1950-80), the starting period (1981-91), the expanding period (1992-2002), and the deepening period (2003-13). During the obscure period (1950-80), the understanding of Peirce was very shallow, mainly because of a narrow political view that led to unjust criticisms of his philosophy. -
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1
The Ten Lenses of Philosophical Inquiry Philosophical Inquiry Research Project1 The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. – Marcel Proust A huge part of Philosophical Inquiry is learning how to see the world with new eyes. To accomplish this goal, you will be introduced to the “ten lenses of philosophical inquiry.” The ten lenses of philosophical inquiry are tools to help us critically engage with, and analyze ourselves, and the world around us. Like a pair of glasses, the ten lenses help to change our perception and give us the power to re-examine our reality. In this philosophical inquiry research project you will get introduced to each of the ten lenses so that you become comfortable using the lenses both inside and out of our class. You will also learn more about a philosopher, their philosophy and the lens of philosophical inquiry that they are most clearly connected to. Focus Question What are the ten lenses of philosophical inquiry, and what are some examples of how they are connected to the philosophies of different philosopher’s throughout history? Philosophical Inquiry Research Process 1) QUESTION - Develop the philosophical questions that you will use to drive your inquiry. 2) PLAN – Determine the types of sources that you will need to answer your questions. 3) GATHER EVIDENCE – Gather the information (textual, visual, quantitative, etc.) you need to explore and answer your questions. 4) ANALYZE – Analyze the answers to your questions, making sure to keep in mind the larger focus question guiding this inquiry. 5) COMMUNICATE CONCLUSIONS – Use evidence and reasons to write an organized (logically sequenced) explanation to the inquiry’s topic/focus question. -
ETHICS and the SCEPTICAL CHALLENGE: a PRAGMATICIST APPROACH Ética E O Desafio Cético: Uma Abordagem Pragmaticista
ETHICS AND THE SCEPTICAL CHALLENGE: A PRAGMATICIST APPROACH Ética e o Desafio Cético: Uma Abordagem Pragmaticista Claudine Tiercelin Senior member of the Institut Universitaire de France Professor of Philosophy at the University of Paris XII – France Visiting Professor at Fordham University (New York) – USA [email protected] Abstract: The aim of the paper is to present the specific reasons why a Peircian or pragmaticist approach is best “equipped” not so much as compared with other pragmatist attempts, but as such, to answer some of the hardest challenges posed by contemporary scepticism, even when it comes to the ethical aspects posed by such a challenge. After sketching the major aspects of the sceptical challenge and the most common contemporary answers it gave rise to, an analysis is made of the reasons why the ethical aspect of the challenge is specifically acute, and why, then, in many ways, a pragmaticist approach is not fundamentally different from other pragmatist approaches (in particular Peirce’s and James’); although finally, some arguments are presented in favour of a more straightforwardly Peircian or pragmaticist attitude as being the most efficient parry to the sceptical challenge, along the following lines: 1) a better account of the distinction to be made between ethical and epistemic justification, 2) a more detailed analysis of the mechanisms of doubt, belief, self-control, reasoning and of the emergence and rationality of norms; 3) a more com- plete account of the epistemological and metaphysical aspects of the sceptical challenge which, for a pragmatist, should not be disconnected from the ethical aspects. Key-words: Epistemic justification. -
A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry
Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2019 A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry Karina Bucciarelli Follow this and additional works at: https://scholarship.claremont.edu/scripps_theses Part of the Epistemology Commons, Feminist Philosophy Commons, and the Philosophy of Science Commons Recommended Citation Bucciarelli, Karina, "A Feminist Epistemological Framework: Preventing Knowledge Distortions in Scientific Inquiry" (2019). Scripps Senior Theses. 1365. https://scholarship.claremont.edu/scripps_theses/1365 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. A FEMINIST EPISTEMOLOGICAL FRAMEWORK: PREVENTING KNOWLEDGE DISTORTIONS IN SCIENTIFIC INQUIRY by KARINA MARTINS BUCCIARELLI SUBMITTED TO SCRIPPS COLLEGE IN PARTIAL FULFILLMENT OF THE DEGREE OF BACHELOR OF ARTS PROFESSOR SUSAN CASTAGNETTO PROFESSOR RIMA BASU APRIL 26, 2019 Bucciarelli 2 Acknowledgements First off, I would like to thank my wonderful family for supporting me every step of the way. Mamãe e Papai, obrigada pelo amor e carinho, mil telefonemas, conversas e risadas. Obrigada por não só proporcionar essa educação incrível, mas também me dar um exemplo de como viver. Rafa, thanks for the jokes, the editing help and the spontaneous phone calls. Bela, thank you for the endless time you give to me, for your patience and for your support (even through WhatsApp audios). To my dear friends, thank you for the late study nights, the wild dance parties, the laughs and the endless support. -
Principles of Scientific Inquiry
Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis. -
Experiential & Inquiry-Based Learning with Youth in Non-Formal Settings
Working with youth in non-formal settings ensuring rich enrichment Experiential & Inquiry-based Learning with Youth in Non-formal Settings 4-H Science learning for youth can be deepened by building inquiry-based learning methods into programs and curricula. For over two decades of educational reform, science education has focused on inquiry as a method for learning and doing natural science in formal classrooms. When used to make sense of the natural world from within the discipline of science, inquiry-based learning is ‘scientific inquiry. ’ Non-formal program designers and practitioners are faced with decisions about which scientific inquiry methods to transfer from the formal classroom to the non-formal setting, which methods to adapt to better fit the non-formal learning needs of youth, and how to best prepare adults to facilitate scientific inquiry with youth. Why is this thinking important to 4-H staff and volunteers? Evaluation results indicate that inquiry-based methods support youth in Key Concepts their learning. Minner et al (2010) reviewed 138 evaluation studies and found that inquiry-based approaches in the science, engineering, technology ,and math Experiential learning: content areas had the largest effect sizes, or made the greatest positive Constructing learning through hands-on experiences that are difference, when there was an emphasis on active learning and involvement in highly social in nature. the investigative process (asking questions, designing investigations, collecting data, drawing conclusions, communicating findings). Hands-on experiences with Inquiry-based learning: Constructing learning through natural phenomena were also found to be associated with increased conceptual hands-on experiences that provide learning in the science content investigated. -
The Stoics and the Practical: a Roman Reply to Aristotle
DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in -
Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding
1740 - Treatise of Human Nature Notes on Hume's Problem of Induction 1748 - Inquiry Concerning Human Understanding Recall: Subject of confirmation = How scientific claims are justified. This assumes that they are capable of justification in the first place. Hume asks: Is there a rational basis for inductive inferences? Hume response: No! Consequence: To the extent that scientific claims are based on inductive inferences, they cannot be justified. Example: All observed ravens are black. Hume asks, Can we ever be justified in believing the conclusion? All ravens are black. Two types of objects of knowledge, according to Hume (I) Relations of ideas = Products of deductive (truth-preserving) Ex: 2 + 2 = 4 inferences; negation entails a contradiction. (II) Matters of fact = Products of inductive inferences; negation does Ex: All ravens are black. not entail a contradiction. Outline of Hume's Argument (1) Matters of fact can only be known through experience ("a posteriori"). (2) Therefore matters of fact can only be justified by recourse to experience. (3) But any attempt to do so is circular. ∴ There is no justification for inductive inferences. ASIDE 1. Hume is not just saying that we can never be certain about inductive inferences (i.e., we can never be 100% certain that all ravens are black). This would be uncontentious: Most people would agree that there's always room for error in making an inductive inference. However, most people would at the same time claim that we are justified in making (some) inductive inferences, even though they aren't 100% guaranteed to work (i.e., we think there are standards by which we can judge good inductive inferences from bad ones). -
An Introduction to Philosophy
An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so. -
Peirce, Pragmatism, and the Right Way of Thinking
SANDIA REPORT SAND2011-5583 Unlimited Release Printed August 2011 Peirce, Pragmatism, and The Right Way of Thinking Philip L. Campbell Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily con- stitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. -
Turns in the Evolution of the Problem of Induction*
CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them. -
On the Nature of Mathematical Thought and Inquiry ( 993-U1-1331)
Running Header: On The Nature of Mathematical Thought and Inquiry ( 993-U1-1331) ON THE NATURE OF MATHEMATICAL THOUGHT AND INQUIRY: A PRELUSIVE SUGGESTION. 993-U1-1331 M. Padraig M. M. McLoughlin Morehouse College [email protected] Paper presented at the annual meeting of the Mathematical Association of America, Phoenix, AZ 9 January 2004. On The Nature of Mathematical Thought and Inquiry, 993-U1-1331, page 1 ABSTRACT ON THE NATURE OF MATHEMATICAL THOUGHT AND INQUIRY: A PRELUSIVE SUGGESTION. M. Padraig M. M. McLoughlin, Ph.D. Department of Mathematics, Morehouse College, Atlanta, GA 30314 The author of this paper submits that humans have a natural inquisitiveness; hence, mathematicians (as well as other humans) must be active in learning. Thus, we must commit to conjecture and prove or disprove said conjecture. Ergo, the purpose of the paper is to submit the thesis that learning requires doing; only through inquiry is learning achieved, and hence this paper proposes an archetype of mathematical thought such that the experience of doing a mathematical argument is the reason for the exercise along with the finished product; and, that the nature of mathematical thought is one that can be characterised as thought through inquiry that relies on inquiry though constructive scepticism. To opine mathematical thought is rooted in a disconnected incidental schema where no deductive conclusion exists or can be gleaned is to condemn the field to a chaotic tousle; whereas, to opine that it is firmly entrenched in a constricted schema which is stagnant, simple, and compleat is to deny its dynamic nature. So, mathematical thought must be focused on the process of deriving a proof, constructing an adequate model of some physical or latent occurrence, or providing connection between and betwixt the two.