Der F 2 Activates Phospholipase D in Human T Lymphocytes from Dermatophagoides Farinae Specific Allergic Individuals: Involvement of Protein Kinase C-Α

Total Page:16

File Type:pdf, Size:1020Kb

Der F 2 Activates Phospholipase D in Human T Lymphocytes from Dermatophagoides Farinae Specific Allergic Individuals: Involvement of Protein Kinase C-Α EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 36, No. 5, 486-492, October 2004 Der f 2 activates phospholipase D in human T lymphocytes from Dermatophagoides farinae specific allergic individuals: Involvement of protein kinase C-α Jae-Won Oh1,*, Eun-Young Kim2,*, PLD activity through the PKC-α activation in T Bon-Suk Koo1, Ha Baik Lee1, Ki Sung Lee3, cells from Dermatophagoides farinae allergic Yong-Seok Kim2 and Joong-Soo Han2,3,4 individuals 1 Keywords: PKC-α, allergy; Der f2; phospholipase D; Department of Pediatrics T lymphocytes 2Institute of Biomedical Science Department of Biochemistry College of Medicine, Hanyang University Seoul 133-791, Korea Introduction 3The Research Center for Bio-Medicinal Resources The study of signal transduction is currently so broad PaiChai University that the only meaningful approach to describe its Daejon 302-735, Korea details is to focus on a specific example and where 4Corresponding author: Tel, 82-2-2290-0623; possible, note how the specifics can be generalized. Fax, 82-2-2294-6270; E-mail, [email protected] The hallmark of an allergic reaction also is the *The first two authors contributed equally to this work. secretion of mediators into the tissue or blood, where they act on a variety of organs to produce the Accepted 20 September 2004 hypersensitivity response. In the context of allergic diseases, T lymphocytes play a role in allergic inflam- Abbreviations: HDM, house-dust-mite; IP3, inositol 1,4,5-triphos- matory reaction. Signal transduction through T lym- phate; PA, phosphatidic acid; PBt, phosphatidy butanol; PC, phos- phocyte antigen receptor is believed to result in the phatidylcholine; PIP2, phosphatidylinositol 4,5-bisphosphate; PKC activation of key signal transducing systems such as α, protein kinase C-α; PLC, phospholipase C; PLD, phospholipase the phosphatidylinositol 4,5-bisphosphate (PIP2)-speci- D; PMA, phorbol myristate acetate fic phospholipase C-γ (PLC-γ). Phospholipase C (PLC) generates the second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DG) by metabolizing inositol-containing phospholipids such as Abstract phophatidylinositol 4,5-biphosphate. IP3 releases cal- The major house-dust mite allergen, Der f 2, cium from intracellular storage vesicles, thereby in- stimulates the phospholipase D (PLD) in T lym- creasing cytosolic-free calcium. DG activates PKC, phocytes from Dermatophagoides farinae speci- which in turn induces the activation of various fic allergic individuals. PLD activity increased transcription factors. Calcium mobilization may also more than two-fold in T cells from allergic pa- take place through G protein-dependent activation of tients compared with those cells from normal PLC. However, T lymphocyte activation via the T cell controls with maximal responses within 30 min receptor (TCR) has been shown to occur in the after exposure of Der f 2. A well-known PLD absence of activation of PLC (O'Rourke and Mescher, activator PKC-α was found to be translocated to 1988) and it is demonstrated that PLC-mediated membrane from cytosol in Der f 2-treated T cells hydrolysis of PIP2 is not sufficient to stimulate T cell proliferation (Exton, 1994). Therefore, it remains un- from Dermatophagoides farinae specific allergic clear that the mechanism of signal transduction individuals. Down-regulation of PKC-α with phor- between the ligation of TCR with allergen and se- bol myristate acetate pretreatment for 24 h cretion of arachidonic acid in allergic inflammatory abolished Der f 2-induced PLD activation. Ro reaction. 320432, PKC inhibitor also reduced the effects House dust mites (HDMs) are the most important of Der f 2-induced PLD activation suggesting source of indoor aeroallergens (Plattis-Mills TAE and α that PKC- acts as upstream activator of PLD de Weck AL, 1989). Antigens from two common in Der f 2-treated T cells. Taken together, the house dust mite species are Dermatophagoides fa- present data suggest that Der f 2 can stimulate rinae (Der f) and Dermatophagoides pteronyssinus Der f 2 activates phospholipase D in human T lymphocytes 487 (Der p). These antigens are group 2 allergens mean of Der f specific IgE level was 89.7 IU/ml. Der produced by D. farinae and D. pteronyssinus, respec- f specific IgE was measured by using UniCap assay tively, having the amino acid sequence similar to each (Upjohn-Pharmacia, Sweden) as shown Table 1. other (Chua et al., 1990; Yuuki et al., 1991). Der f This study was permitted by Ethical Committee of and Der p are believed to be the major cause for Hanyang University, Guri Hospital. The mean age of allergic disease, because group 2 allergen-specific the patients was 20.3 years old. Among the healthy IgE antibodies are found in sera of allergic patients people who do not have any clinical and family history (Holck et al., 1986; Yasueda et al., 1986, 1989; van of allergy, three healthy volunteers with serum IgE der Zee et al., 1988; Heymann et al., 1989; Baldo levels (mean value: 32.8 IU/ml) were included. and Donovan, 1990; Smith et al., 2001; Jeong et al., 2002). Skin prick tests and serum IgE levels Phospholipase D (PLD) is a widely distributed enzyme that hydrolyzes phosphatidylcholine, a major Skin prick tests were performed with allergen extracts phospholipids in the cell membrane, to form phos- of house dust mite (ALK, Copenhagen, Denmark; phatidic acid (PA) which acts by itself as a cellular Greer Lab). Histamine was used as a positive control messenger (Exton, 1990, 1999) or can be trans- (10 mg/ml, ALK, Copenhagen, Denmark), and a di- formed by PA phosphohydrolase into diacyglycerol luent of an unbuffered saline containing 0.03% human (DAG), which is essential for the activation of protein serum albumin (ALK, Copenhagen, Denmark), was kinase C (PKC) (Nishizuka, 1995). Recently, PLD has used as a negative control. Reactions to each skin been shown to be coupled to TCR in the leukemic test solution were measured 15 min after the pricks. T cell line, Jurkat, resulting in the induction of pro- The contours of each wheal reaction were outlined liferation of T cells (Reid et al., 1997) and activated with a fine filter tip pen. The contours were then by Der p 1 in peripheral blood mononuclear cells from transferred to the record sheet by means of trans- allergic patients (Oh et al., 2000). lucent tapes. The size of each wheal was docu- In this study, we evaluated whether Der f 2 induces mented as the mean of the longest diameter (a) and PLD activation in T cells isolated from allergic indi- the diameter perpendicular to it at its mid-point (b): viduals. In addition, we have explored an insight of (a + b)/2. Wheals with more than half of the histamine the mechanism of PLD activation by confirming the reaction after substracting the response to the diluent involvement of PLD activity in the allergic reaction control were considered as expressions of clear-cut induced by Der f 2 in allergic T-cells. positively. Total serum IgE was measured by the paper radioimmunosorbent test (Kabi-Pharmacia, Up- psala, Sweden). The lower detection limit of IgE was Materials and Methods <1.5 IU/ml. Subjects CD4+ T lymphocytes purification and culture Six patients who referred with symptoms of allergic Fifty ml of whole blood was collected from each diseases had positive skin prick tests to house dust subject at each setting and total 10 times. Fifty µl mite (Dermatophagoides farinae) extracts and mean of Rossette Sep antibody cocktail per ml of blood was of total serum IgE level was 765.3 IU/ml and the mixed well with blood and then incubated for 20 min Table 1. The clinical features of allergic individuals. ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ Serum IgE Der f specific IgE Der f specific Patient Age (yr) Sex Diagnosis (IU/mL) (IU/mL) Skin prick test ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ A 21 F AD, AR, AC 566 85 +++ B 18 F AS, AR 1,446 >100 +++ C 19 M AS 238 95 +++ D 21 F AS, AD 328 72 +++ E 23 M AS, AR, AC 284 86 ++ F 20 M AS, AR 1,730 >100 ++++ ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ AD, atopic dermatitis; AR, allergic rhinitis; AC, allergic conjunctivitis; AS, asthma; Dp, Dermatophagoides pternyssinus; Df, Dermatophagoides farinae; M, male; F, female; Der f 2 specific IgE was measured by using UniCap assay (Upjohn-Pharmacia, Sweden) 488 Exp. Mol. Med. Vol. 36(5), 486-492, 2004 at room temperature. After incubation, sample was cultured on 6-well plate were metabolically labeled diluted with an equal volume of PBS containing 2% with 2 µCi/ml of [3H]palmitate in serum free medium FBS and mixed thoroughly. This diluted sample was for 18 h. The cells were then pretreated with 0.3 % carefully layered on the top of 15 ml of Hypaque 1-butanol for 15 min before the treatment with Der Ficoll density medium to isolate autologous CD4+ T f2. In some experiments the cells were treated with lymphocytes. The sample was centrifuged for 20 min phorbol myristate acetate (PMA) (200 nM) for 24 h at 1,200 g at room temperature, with the brake off. to down-regulate PKC before labeling with [3H]pal- The enriched cells were removed from the interface mitate. Also, the cells were pre-incubated with Ro between the density medium and plasma and washed 320432 for 30 min, after being labeled with [3H]pal- with PBS containing 2% FBS. The isolated cells were mitate and serum-starved for 18 h. After treatment of washed again with PBS containing 2% FBS. One× Der f 2 for 30 min, the cells were quickly washed with 106 cells of CD4+ T lymphocytes were loaded on ice-cold PBS and suspended in ice-cold methanol. each well of 24 well culture plate with 5 mg of Der Lipids were extracted according to the method of f2 recombinant protein and 2×106 macrophages as Bligh and Dyer (Bligh and Dyer, 1959), and PBt was antigen presenting cell (APC) and then incubate for separated by a thin layer chromatography using a 7 days.
Recommended publications
  • ATP-Induced Focal Adhesion Kinase Activity Is Negatively Modulated by Phospholipase D2 in PC12 Cells
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 33, No. 3, 150-155, September 2001 ATP-induced focal adhesion kinase activity is negatively modulated by phospholipase D2 in PC12 cells Yoe-Sik Bae1 and Sung Ho Ryu1,2 Introduction 1 Division of Molecular and Life Sciences, Pohang University of Purinergic receptors have been reported to play impor- Science and Technology, Pohang 790-784, Korea tant roles on the regulation of neuronal cell functions 2 Corresponding author: Tel, +82-54-279-2292; (Communi et al., 2000; Di Iorio et al., 1998). ATP, a Fax, +82-54-279-2199; E-mail, [email protected] ligand for the receptors modulate various cellular re- sponses such as mitogenic and morphogenic activity in Accepted 18 September 2001 PC12 rat pheochromocytoma cells (Neary et al., 1996; Soltoff et al., 1998; Schindelholz et al., 2000). Stimu- Abbreviations: Fak, focal adhesion kinase; PLD, phospholipase D; lation of cells with ATP induces tyrosine phosphorylation PA, phosphatidic acid; PC, phosphatidylcholine; DAG, diacylglyc- of several cytoskeletal proteins and focal adhesion erol; PBt, phosphatidylbutanol; PKC, protein kinase C; PAP, phos- molecules such as focal adhesion kinase (Fak), proline- phatidic acid phosphohydrolase rich tyrosine kinase (Pyk2), and paxillin (Soltoff et al., 1998; Schindelholz et al., 2000). Since these cytosk- eleton-associated proteins have been regarded as important factors for the regulation of neuronal cell Abstract functions, the study on the regulatory mechanism for the proteins remains an important issue. Extracellular ATP has been known to modulate vari- Phospholipase D (PLD) catalyzes the hydrolysis of ous cellular responses including mitogenesis, secre- phosphatidylcholine (PC) into phosphatidic acid (PA) tion and morphogenic activity in neuronal cells.
    [Show full text]
  • PLCG1) Mutations in Sézary Syndrome
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Functional interrogations of Phospholipase C Gamma 1 (PLCG1) mutations in Sézary Syndrome Patel, Varsha Maheshkumar Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 Functional interrogations of Phospholipase C Gamma 1 (PLCG1) mutations in Sézary Syndrome Varsha Maheshkumar Patel Skin Tumour Unit, St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London.
    [Show full text]
  • (4,5) Bisphosphate-Phospholipase C Resynthesis Cycle: Pitps Bridge the ER-PM GAP
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Topological organisation of the phosphatidylinositol (4,5) bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM GAP Shamshad Cockcroft and Padinjat Raghu* Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK; *National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India Address correspondence to: Shamshad Cockcroft, University College London UK; Phone: 0044-20-7679-6259; Email: [email protected] Abstract Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane– associated diacylglycerol (DG) and the consumption of plasma membrane PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the plasma membrane, the DG formed during PLC activation is rapidly converted to phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the plasma membrane where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2.
    [Show full text]
  • Identification of Lithium-Regulated Genes in Cultured Lymphoblasts of Lithium Responsive Subjects with Bipolar Disorder
    Neuropsychopharmacology (2004) 29, 799–804 & 2004 Nature Publishing Group All rights reserved 0893-133X/04 $25.00 www.neuropsychopharmacology.org Identification of Lithium-Regulated Genes in Cultured Lymphoblasts of Lithium Responsive Subjects with Bipolar Disorder 1 1 1 2 3 4 Xiujun Sun , L Trevor Young , Jun-Feng Wang , Paul Grof , Gustavo Turecki , Guy A Rouleau ,5 and Martin Alda* 1Department of Psychiatry, University of Toronto, Toronto, Canada; 2Department of Psychiatry, University of Ottawa, Ottawa, Canada; 3 4 Department of Psychiatry, McGill University, Montreal, Canada; Center for Research in Neuroscience, McGill University, Montreal, Canada; 5 Department of Psychiatry, Dalhousie University, Halifax, Canada Lithium, a common drug for the treatment of bipolar disorder (BD), requires chronic administration to prevent recurrences of the illness. The necessity for long-term treatment suggests that changes in genes expression are involved in the mechanism of its action. We studied effects of lithium on gene expression in lymphoblasts from BD patients, all excellent responders to lithium prophylaxis. Gene expression was analyzed using cDNA arrays that included a total of 2400 cDNAs. We found that chronic lithium treatment at a therapeutically relevant concentration decreased the expression of seven genes in lymphoblasts from lithium responders. Five of these candidate lithium- regulated genes, including alpha1B-adrenoceptor (a1B-AR), acetylcholine receptor protein alpha chain precursor (ACHR), cAMP- 0 0 dependent 3 ,5 -cyclic phosphodiesterase 4D (PDE4D), substance-P receptor (SPR), and ras-related protein RAB7, were verified by Northern blotting analysis in lithium responders. None of these genes were regulated by lithium in healthy control subjects. When we compared the expression of these five genes between bipolar subjects and healthy control subjects at baseline, prior to lithium administration, we found that a1B-AR gene expression was higher in bipolar subjects than in healthy control subjects.
    [Show full text]
  • The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions
    International Journal of Molecular Sciences Review The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions Csaba Máthé *, Márta M-Hamvas, Csongor Freytag and Tamás Garda Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (M.M.-H.); [email protected] (C.F.); [email protected] (T.G.) * Correspondence: [email protected] Abstract: The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP–GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole Citation: Máthé, C.; M-Hamvas, M.; plant development.
    [Show full text]
  • 1. Introduction
    1 1. Introduction 1.1 Phospholipids in cellular signalling Signalling through lipid metabolites has gained a lot of attention since the finding of MABEL R. and LOWELL E. HOKIN (1953) that [32P]-orthophosphate is incorporated into phosphatidylinositol upon acetylcholine stimulation. This reaction step is now recognised as part of the phosphoinositide cascade. Its activation results in the release of D-meso-inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol (DAG) from phosphatidyl- inositol-4,5-bisphosphate (PIP2) (BERRIDGE and IRVINE, 1984). These second messengers are products of a phospholipase C (PLC), other second messengers are generated by phospholi- pase A2 (PLA2) and phospholipase D (PLD) (Fig. 1). O O O- P R3 R1 O O O phospholipase D R2 O phospholipase C O phospholipase A2 Figure 1. Mechanism of action of phospholipases involved in signalling on phospholipids. R1 is mostly a saturated, R2 an unsaturated carbon chain and R3 is a polar head group like choline, ethanolamine or inositol. Activation of the phosphoinositide cascade occurs through many cell surface receptors and has been characterised in great detail. Its second messenger D-meso-inositol-1,4,5-tris- phosphate releases Ca2+ from intracellular stores whereas sn-1,2-diacylglycerol activates protein kinase C (PKC). At present, three PIP2-specific phospholipase C families are characte- rised, referred to as phospholipase Cb, phospholipase Cg and phospholipase Cd (REBECCHI and PENTYALA, 2000). Each of these families comprises several members and is used in different signal transduction pathways. Receptors coupled to heterotrimeric G-proteins activate phospholipase Cb through the latter while activation of phospholipase Cg is mediated via tyrosine kinase receptors.
    [Show full text]
  • The Role of Phospholipase D (Pld) and Grb2 in Chemotaxis
    THE ROLE OF PHOSPHOLIPASE D (PLD) AND GRB2 IN CHEMOTAXIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By KATIE J. KNAPEK B.S., Indiana University of Pennyslvania, 2006 2008 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES December 19, 2008 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISON BY Katie J. Knapek ENTITLED The Role of Phospholipase D (PLD) and Grb2 in Chemotaxis BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _____________________________ Julian Gomez-Cambronero, Ph. D. Thesis Director _____________________________ Barbara Hull, Ph. D. Program Director Committee on Final Examination _______________________ Julian Gomez-Cambronero, Ph. D. _______________________ Nancy Bigley, Ph. D. _______________________ Mill Miller, Ph. D. ________________________ Joseph F. Thomas Jr., Ph. D. Dean, School of Graduate Studies ABSTRACT Knapek, Katie J. M.S., Department of Biological Sciences, Microbiology and Immunology Program, Wright State University, 2008. The Role of Phospholipase D (PLD) and Grb2 in Chemotaxis. Phospholipase D (PLD) is an enzyme that hydrolyzes phosphatidylcholine yielding choline and phosphatidic acid. PLD is activated by mitogens (lead to cell division) and motogens (leading to cell migration). PLD is known to contribute to cellular proliferation and deregulated expression of PLD has been implicated in several human cancers. PLD has been found to play a role in leukocyte chemotaxis and adhesion as studied through the formation of chemokine gradients. We have established a model of cell migration comprising three cell lines: macrophages RAW 264.7 and LR-5 (for innate defense), and fibroblast COS-7 cells (for wound healing).
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This article was originally published in the book Encyclopedia of Immunobiology, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Myers, D.R., Roose, J.P., 2016. Kinase and Phosphatase Effector Pathways in T Cells. In: Ratcliffe, M.J.H. (Editor in Chief), Encyclopedia of Immunobiology, Vol. 3, pp. 25–37. Oxford: Academic Press. Copyright © 2016 Elsevier Ltd. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Kinase and Phosphatase Effector Pathways in T Cells Darienne R Myers and Jeroen P Roose, University of California, San Francisco (UCSF), San Francisco, CA, USA Ó 2016 Elsevier Ltd. All rights reserved. Abstract Multiple interconnected effector pathways mediate the activation of T cells following recognition of cognate antigen. These kinase and phosphatase pathways link proximal T cell receptor (TCR) signaling to changes in gene expression and cell physiology.
    [Show full text]
  • Enhancement in Phospholipase D Activity As a New Proposed Molecular Mechanism of Haloperidol-Induced Neurotoxicity
    International Journal of Molecular Sciences Communication Enhancement in Phospholipase D Activity as a New Proposed Molecular Mechanism of Haloperidol-Induced Neurotoxicity Marek Krzystanek 1,*, Ewa Krzystanek 2 , Katarzyna Skałacka 3 and Artur Pałasz 4 1 Department and Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences, Medical School of Silesia in Katowice, Ziołowa 45/47, 40-635 Katowice, Poland 2 Department of Neurology, Faculty of Medical Sciences, Medical School of Silesia in Katowice, Medyków 14, 40-772 Katowice, Poland; [email protected] 3 Institute of Psychology, University of Opole, Kopernika 11A Street, 45-040 Opole, Poland; [email protected] 4 Department of Histology, Faculty of Medical Sciences, Medical School of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland; [email protected] * Correspondence: [email protected] or [email protected] Received: 19 November 2020; Accepted: 1 December 2020; Published: 4 December 2020 Abstract: Membrane phospholipase D (PLD) is associated with numerous neuronal functions, such as axonal growth, synaptogenesis, formation of secretory vesicles, neurodegeneration, and apoptosis. PLD acts mainly on phosphatidylcholine, from which phosphatidic acid (PA) and choline are formed. In turn, PA is a key element of the PLD-dependent secondary messenger system. Changes in PLD activity are associated with the mechanism of action of olanzapine, an atypical antipsychotic. The aim of the present study was to assess the effect of short-term administration of the first-generation antipsychotic drugs haloperidol, chlorpromazine, and fluphenazine on membrane PLD activity in the rat brain. Animals were sacrificed for a time equal to the half-life of the antipsychotic drug in the brain, then the membranes in which PLD activity was determined were isolated from the tissue.
    [Show full text]
  • Phospholipase D-Catalyzed Hydrolysis of Phosphatidylcholine Provides
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10086-10090, November 1993 Applied Biological Sciences Phospholipase D-catalyzed hydrolysis of phosphatidylcholine provides the choline precursor for acetylcholine synthesis in a human neuronal cell line (neuroblastoma/LA-N-2 celis/Alzhehier disease) HE-CHONG LEE*, MARY-PAT FELLENZ-MALONEY*, MORDECHAI LISCOVITCHt, AND JAN KRZYSZTOF BLUSZTAJN**§ Departments of *Pathology and *Psychiatry, Boston University School of Medicine, Boston, MA 02118; and tDepartment of Hormone Research, Weizmann Institute of Science, Rehovot 76100, Israel Communicated by Vernon R. Young, July 28, 1993 ABSTRACT To identify the metabolic pathway that gen- PtdCho can be hydrolyzed to Cho by a multienzymatic erates choline (Cho) for acetylcholine (AcCho) from its storage pathway (Fig. 1) consisting of phospholipase (PL) A2 (EC pool in membrane phosphatidylcholine (PtdCho), human neu- 3.1.1.4) and lysophospholipase (EC 3.1.1.5), whose com- ronal ceUs (LA-N-2) were radioisotopically labeled with 1-0- bined actions produce glycerophosphocholine (GroPCho), hexadecyl-2-hydroxy-sn-glycero(3)phospho[14CJcholine. The which is then degraded by GroPCho phosphodiesterase (EC compound was efficiently taken up by the ceUls and metaboli- 3.1.4.2). In human brain in vitro the latter enzyme has low cally labeled PtdCho, Cho, AcCho, and phosphocholine pools. activity and GroPCho tends to be converted to phosphocho- In pulse-chase experiments, the specific radioactivities of the line (PCho) by GroPCho cholinephosphodiesterase (EC metabolites of 1-O-hexadecyl-2-hydroxy-sn-glycero(3)phos- 3.1.4.38) (9). Alternatively, PtdCho may be degraded by a pho[14C]choline indicated that it was rapidly acylated to Ptd- PLC (EC 3.1.4.3) also producingPCho, which may be further Cho and then hydrolyzed first to free Cho and not to phos- broken down to free Cho by alkaline phosphatase (EC phocholine or glycerophosphocholine.
    [Show full text]
  • Phospholipase D in Cell Proliferation and Cancer
    Vol. 1, 789–800, September 2003 Molecular Cancer Research 789 Subject Review Phospholipase D in Cell Proliferation and Cancer David A. Foster and Lizhong Xu The Department of Biological Sciences, Hunter College of The City University of New York, New York, NY Abstract trafficking, cytoskeletal reorganization, receptor endocytosis, Phospholipase D (PLD) has emerged as a regulator of exocytosis, and cell migration (4, 5). A role for PLD in cell several critical aspects of cell physiology. PLD, which proliferation is indicated from reports showing that PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to activity is elevated in response to platelet-derived growth factor phosphatidic acid (PA) and choline, is activated in (PDGF; 6), fibroblast growth factor (7, 8), epidermal growth response to stimulators of vesicle transport, endocyto- factor (EGF; 9), insulin (10), insulin-like growth factor 1 (11), sis, exocytosis, cell migration, and mitosis. Dysregula- growth hormone (12), and sphingosine 1-phosphate (13). PLD tion of these cell biological processes occurs in the activity is also elevated in cells transformed by a variety development of a variety of human tumors. It has now of transforming oncogenes including v-Src (14), v-Ras (15, 16), been observed that there are abnormalities in PLD v-Fps (17), and v-Raf (18). Thus, there is a growing body of expression and activity in many human cancers. In this evidence linking PLD activity with mitogenic signaling. While review, evidence is summarized implicating PLD as a PLD has been associated with many aspects of cell physiology critical regulator of cell proliferation, survival signaling, such as membrane trafficking and cytoskeletal organization cell transformation, and tumor progression.
    [Show full text]
  • Phospholipase D in Cell Proliferation and Cancer
    Vol. 1, 789–800, September 2003 Molecular Cancer Research 789 Subject Review Phospholipase D in Cell Proliferation and Cancer David A. Foster and Lizhong Xu The Department of Biological Sciences, Hunter College of The City University of New York, New York, NY Abstract trafficking, cytoskeletal reorganization, receptor endocytosis, Phospholipase D (PLD) has emerged as a regulator of exocytosis, and cell migration (4, 5). A role for PLD in cell several critical aspects of cell physiology. PLD, which proliferation is indicated from reports showing that PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to activity is elevated in response to platelet-derived growth factor phosphatidic acid (PA) and choline, is activated in (PDGF; 6), fibroblast growth factor (7, 8), epidermal growth response to stimulators of vesicle transport, endocyto- factor (EGF; 9), insulin (10), insulin-like growth factor 1 (11), sis, exocytosis, cell migration, and mitosis. Dysregula- growth hormone (12), and sphingosine 1-phosphate (13). PLD tion of these cell biological processes occurs in the activity is also elevated in cells transformed by a variety development of a variety of human tumors. It has now of transforming oncogenes including v-Src (14), v-Ras (15, 16), been observed that there are abnormalities in PLD v-Fps (17), and v-Raf (18). Thus, there is a growing body of expression and activity in many human cancers. In this evidence linking PLD activity with mitogenic signaling. While review, evidence is summarized implicating PLD as a PLD has been associated with many aspects of cell physiology critical regulator of cell proliferation, survival signaling, such as membrane trafficking and cytoskeletal organization cell transformation, and tumor progression.
    [Show full text]