Temperature Dependent Gibbs Free Energies of Reaction of Uranyl Containing Materials Based on Density Functional Theory Francisco Colmeneroa*, Ana María Fernándezb, Joaquín Cobosb and Vicente Timóna aInstituto de Estructura de la Materia (CSIC). C/ Serrano, 113. 28006 – Madrid, Spain. bCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Avda/ Complutense, 40. 28040 – Madrid, Spain. Orcid Francisco Colmenero: https://orcid.org/0000-0003-3418-0735 Orcid Ana María Fernández: https://orcid.org/0000-0002-8392-0165 Orcid Joaquín Cobos: https://orcid.org/0000-0003-0285-7617 Orcid Vicente Timón: https://orcid.org/0000-0002-7460-7572 *E-mail:
[email protected] 1 ABSTRACT The thermodynamic properties of uranyl containing materials including dehydrated schoepite, metastudtite, studtite, soddyite, rutherfordine and γ − UO3, determined by means of density functional theory using a new norm-conserving pseudopotential for uranium atom in previous works, were used to obtain the enthalpies and Gibbs free energies of eight reactions involving these materials and its variation with the temperature. The first five reactions represent the formation of the first five considered materials in terms of the corresponding oxides, and the remaining reactions are the transformations of rutherfordine into dehydrated schoepite, studtite into metastudtite and uranium trioxide into triuranium octoxide, respectively. The experimental values of the enthalpies of these reactions, which are only known at the standard state (temperature of 298.15 K and pressure of 1 bar), were reproduced accurately by these calculations, the errors being 2.5, 2.5, 0.2, 0.0, 12.3, -1.1, 0.9 and 4.0 kJ · mol−1, respectively.