Contents 2 Public-Key Cryptography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Potentially Fast Primality Test
A Potentially Fast Primality Test Tsz-Wo Sze February 20, 2007 1 Introduction In 2002, Agrawal, Kayal and Saxena [3] gave the ¯rst deterministic, polynomial- time primality testing algorithm. The main step was the following. Theorem 1.1. (AKS) Given an integer n > 1, let r be an integer such that 2 ordr(n) > log n. Suppose p (x + a)n ´ xn + a (mod n; xr ¡ 1) for a = 1; ¢ ¢ ¢ ; b Á(r) log nc: (1.1) Then, n has a prime factor · r or n is a prime power. The running time is O(r1:5 log3 n). It can be shown by elementary means that the required r exists in O(log5 n). So the running time is O(log10:5 n). Moreover, by Fouvry's Theorem [8], such r exists in O(log3 n), so the running time becomes O(log7:5 n). In [10], Lenstra and Pomerance showed that the AKS primality test can be improved by replacing the polynomial xr ¡ 1 in equation (1.1) with a specially constructed polynomial f(x), so that the degree of f(x) is O(log2 n). The overall running time of their algorithm is O(log6 n). With an extra input integer a, Berrizbeitia [6] has provided a deterministic primality test with time complexity 2¡ min(k;b2 log log nc)O(log6 n), where 2kjjn¡1 if n ´ 1 (mod 4) and 2kjjn + 1 if n ´ 3 (mod 4). If k ¸ b2 log log nc, this algorithm runs in O(log4 n). The algorithm is also a modi¯cation of AKS by verifying the congruent equation s (1 + mx)n ´ 1 + mxn (mod n; x2 ¡ a) for a ¯xed s and some clever choices of m¡ .¢ The main drawback of this algorithm¡ ¢ is that it requires the Jacobi symbol a = ¡1 if n ´ 1 (mod 4) and a = ¡ ¢ n n 1¡a n = ¡1 if n ´ 3 (mod 4). -
Public-Key Cryptography
http://dx.doi.org/10.1090/psapm/062 AMS SHORT COURSE LECTURE NOTES Introductory Survey Lectures published as a subseries of Proceedings of Symposia in Applied Mathematics Proceedings of Symposia in APPLIED MATHEMATICS Volume 62 Public-Key Cryptography American Mathematical Society Short Course January 13-14, 2003 Baltimore, Maryland Paul Garrett Daniel Lieman Editors ^tfEMAT , American Mathematical Society ^ Providence, Rhode Island ^VDED Editorial Board Mary Pugh Lenya Ryzhik Eitan Tadmor (Chair) LECTURE NOTES PREPARED FOR THE AMERICAN MATHEMATICAL SOCIETY SHORT COURSE PUBLIC-KEY CRYPTOGRAPHY HELD IN BALTIMORE, MARYLAND JANUARY 13-14, 2003 The AMS Short Course Series is sponsored by the Society's Program Committee for National Meetings. The series is under the direction of the Short Course Subcommittee of the Program Committee for National Meetings. 2000 Mathematics Subject Classification. Primary 54C40, 14E20, 14G50, 11G20, 11T71, HYxx, 94Axx, 46E25, 20C20. Library of Congress Cataloging-in-Publication Data Public-key cryptography / Paul Garrett, Daniel Lieman, editors. p. cm. — (Proceedings of symposia in applied mathematics ; v. 62) Papers from a conference held at the 2003 Baltimore meeting of the American Mathematical Society. Includes bibliographical references and index. ISBN 0-8218-3365-0 (alk. paper) 1. Computers—Access control-—Congresses. 2. Public key cryptography—Congresses. I. Garrett, Paul, 1952— II. Lieman, Daniel, 1965- III. American Mathematical Society. IV. Series. QA76.9.A25P82 2005 005.8'2—dc22 2005048178 Copying and reprinting. Material in this book may be reproduced by any means for edu• cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg• ment of the source is given. -
ATKIN's ECPP (Elliptic Curve Primality Proving) ALGORITHM
ATKIN’S ECPP (Elliptic Curve Primality Proving) ALGORITHM OSMANBEY UZUNKOL OCTOBER 2004 ATKIN’S ECPP (Elliptic Curve Primality Proving ) ALGORITHM A THESIS SUBMITTED TO DEPARTMENT OF MATHEMATICS OF TECHNICAL UNIVERSITY OF KAISERSLAUTERN BY OSMANBEY UZUNKOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF MATHEMATICS October 2004 abstract ATKIN’S ECPP ALGORITHM Uzunkol, Osmanbey M.Sc., Department of Mathematics Supervisor: Prof. Dr. Gerhard Pfister October 2004, cxxiii pages In contrast to using a strong generalization of Fermat’s theorem, as in Jacobi- sum Test, Goldwasser and Kilian used some results coming from Group Theory in order to prove the primality of a given integer N ∈ N. They developed an algorithm which uses the group of rational points of elliptic curves over finite fields. Atkin and Morain extended the idea of Goldwasser and Kilian and used the elliptic curves with CM (complex multiplication) to obtain a more efficient algorithm, namely Atkin’s ECPP (elliptic curve primality proving) Algorithm. Aim of this thesis is to introduce some primality tests and explain the Atkin’s ECPP Algorithm. Keywords: Cryptography, Algorithms, Algorithmic Number Theory. ii oz¨ Herg¨unbir yere konmak ne g¨uzel, Bulanmadan donmadan akmak ne ho¸s, D¨unleberaber gitti canca˘gızım! Ne kadar s¨ozvarsa d¨uneait, S¸imdi yeni ¸seylers¨oylemeklazım... ...............Mevlana Celaleddini’i Rumi............... iii I would like to thank first of all to my supervisor Prof. Dr . Gerhard Pfister for his help before and during this work. Secondly, I would like to thank also Hans Sch¨onemann and Ra¸sitS¸im¸sekfor their computer supports in computer algebra system SINGULAR and programming language C++, respectively. -
Primality Testing and Sub-Exponential Factorization
Primality Testing and Sub-Exponential Factorization David Emerson Advisor: Howard Straubing Boston College Computer Science Senior Thesis May, 2009 Abstract This paper discusses the problems of primality testing and large number factorization. The first section is dedicated to a discussion of primality test- ing algorithms and their importance in real world applications. Over the course of the discussion the structure of the primality algorithms are devel- oped rigorously and demonstrated with examples. This section culminates in the presentation and proof of the modern deterministic polynomial-time Agrawal-Kayal-Saxena algorithm for deciding whether a given n is prime. The second section is dedicated to the process of factorization of large com- posite numbers. While primality and factorization are mathematically tied in principle they are very di⇥erent computationally. This fact is explored and current high powered factorization methods and the mathematical structures on which they are built are examined. 1 Introduction Factorization and primality testing are important concepts in mathematics. From a purely academic motivation it is an intriguing question to ask how we are to determine whether a number is prime or not. The next logical question to ask is, if the number is composite, can we calculate its factors. The two questions are invariably related. If we can factor a number into its pieces then it is obviously not prime, if we can’t then we know that it is prime. The definition of primality is very much derived from factorability. As we progress through the known and developed primality tests and factorization algorithms it will begin to become clear that while primality and factorization are intertwined they occupy two very di⇥erent levels of computational di⇧culty. -
1 Problem Summary & Motivation 2 Previous Work
Primality Testing Report CS6150 December 9th, 2011 Steven Lyde, Ryan Lindeman, Phillip Mates 1 Problem Summary & Motivation Primes are used pervasively throughout modern society. E-commerce, privacy, and psuedorandom number generators all make heavy use of primes. There currently exist many different primality tests, each with their distinct advantages and disadvantages. These tests fall into two general categories, probabilistic and deterministic. Probabilistic algorithms determine with a certain probability that a number is prime, while deterministic algorithms prove whether a number is prime or not. Probabilistic algorithms are fast but contain error. Deterministic algorithms are much slower but produce proofs of correctness with no potential for error. Furthermore, some deterministic algorithms don't have proven upper bounds on their run time complexities, relying on heuristics. How can we combine these algorithms to create a fast, deterministic primality proving algorithm? Is there room for improvement of existing algorithms by hybridridizing them? This is an especially interesting question due to the fact that AKS is relatively new and unexplored. These are the questions we will try to answer in this report. 2 Previous Work For this project we focused on three algorithms, Miller-Rabin, Elliptic Curve Primality Proving (ECPP), and AKS. What is the state of the art for these different implementations? 2.1 ECPP Originally a purely theoretical construct, elliptic curves have recently proved themselves useful in many com- putational applications. Their elegance and power provide considerable leverage in primality proving and factorization studies [6]. From our reference [6], the following describes Elliptic curve fundamentals. Consider the following two or three variable homogeneous equations of degree-3: ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0 ax3 + bx2y + cxy2 + dy3 + ex2z + fxyz + gy2z + hxz2 + iyz2 + jz3 = 0 For these to be degree-3 polynomials, we must ensure at least a, b, c, d, or j is nonzero. -
Comparing AKS Algorithm for Deterministic Primality Testing Using Matlab Updated with Mapple and C++ 1Chidozie, K
Futo Journal Series (FUTOJNLS) e-ISSN : 2476-8456 p-ISSN : 2467-8325 Volume-5, Issue-1, pp- 189 - 209 www.futojnls.org Research Paper July 2019 Comparing AKS Algorithm for Deterministic Primality Testing Using Matlab Updated With Mapple and C++ 1Chidozie, K. K, 1*Obi, M. C. and 2Nwamba, I. 1Department of Mathematics, Federal University of Technology, Owerri, Imo State, Nigeria 2ICT Department, Imo State University, Owerri, Imo State, Nigeria *Corresponding Author’s Email: [email protected]; [email protected] Abstract This work compared the use of MATLAB updated with MAPPLE and C++ to implement AKS algorithm which is the first deterministic primality testing algorithm in polynomial time. To test if the number 9965468763136528274628451 is prime took about 210 minutes in AKS algorithm. This is inefficient especially in cryptography where large numbers are often tested for primality. Thus implementing AKS algorithm in MATLAB updated with MAPPLE is faster and efficient than using C++. 1. Introduction The study of prime numbers dates back to 300BC. An ancient Greek Mathematician called Euclid used the method of contradiction to prove that there were infinitely many prime numbers. He also proved the fundamental theorem of arithmetic. In 200BC, another Greek Mathematician called Eratosthenes introduced an algorithm for primality testing called the Sieve of Eratosthenes when given integer numbers from 2 to , mark all the even numbers except 2. Then start with the next unmarked number, which in our case is 3, mark all the numbers which are multiplies of three except 3. Continue in this way until there are no new unmarked numbers. -
Primality Proving Via One Round in Ecpp and One Iteration in Aks∗
PRIMALITY PROVING VIA ONE ROUND IN ECPP AND ONE ITERATION IN AKS∗ QI CHENGy Abstract. On August 2002, Agrawal, Kayal and Saxena announced the first deterministic and polynomial time primality testing algorithm. For an input n, the AKS algorithm runs in heuristic time O~(log6 n). Verification takes roughly the same amount of time. On the other hand, the Elliptic Curve Primality Proving algorithm (ECPP) runs in random heuristic time O~(log6 n)( O~(log5 n) if the fast multiplication is used), and generates certificates which can be easily verified. More recently, Berrizbeitia gave a variant of the AKS algorithm, in which some primes cost much less time to prove than a general prime does. Building on these celebrated results, this paper explores the possibility of designing a more efficient algorithm. A random primality proving algorithm with heuristic time complexity O~(log4 n) is presented. It generates a certificate of primality which is O(log n) bits long and can be verified in deterministic time O~(log4 n). The reduction in time complexity is achieved by first generalizing Berrizbeitia's algorithm to one which has higher density of easily-proved primes. For a general prime, one round of ECPP is deployed to reduce its primality proof to the proof of a random easily-proved prime. 1. Introduction. Testing whether a number is prime or not is one of the fun- damental problems in computational number theory. It has wide applications in computer science, especially in cryptography. After tremendous efforts invested by researchers in hundreds of years, it was finally proved by Agrawal, Kayal and Saxena [3] that the set of primes is in the complexity class P. -
Improving the Speed and Accuracy of the Miller-Rabin Primality Test
Improving the Speed and Accuracy of the Miller-Rabin Primality Test Shyam Narayanan Mentor: David Corwin MIT PRIMES-USA Abstract Currently, even the fastest deterministic primality tests run slowly, with the Agrawal- Kayal-Saxena (AKS) Primality Test runtime O~(log6(n)), and probabilistic primality tests such as the Fermat and Miller-Rabin Primality Tests are still prone to false re- sults. In this paper, we discuss the accuracy of the Miller-Rabin Primality Test and the number of nonwitnesses for a composite odd integer n. We also extend the Miller- '(n) Rabin Theorem by determining when the number of nonwitnesses N(n) equals 4 5 and by proving that for all n, if N(n) > · '(n) then n must be of one of these 3 32 forms: n = (2x + 1)(4x + 1), where x is an integer, n = (2x + 1)(6x + 1), where x is an integer, n is a Carmichael number of the form pqr, where p, q, r are distinct primes congruent to 3 (mod 4). We then find witnesses to certain forms of composite numbers with high rates of nonwitnesses and find that Jacobi nonresidues and 2 are both valuable bases for the Miller-Rabin test. Finally, we investigate the frequency of strong pseudoprimes further and analyze common patterns using MATLAB. This work is expected to result in a faster and better primality test for large integers. 1 1 Introduction Data is growing at an astoundingly rapid rate, and better information security is re- quired to protect increasing quantities of data. Improved data protection requires more sophisticated cryptographic methods. -
Primality Testing : a Review
Primality Testing : A Review Debdas Paul April 26, 2012 Abstract Primality testing was one of the greatest computational challenges for the the- oretical computer scientists and mathematicians until 2004 when Agrawal, Kayal and Saxena have proved that the problem belongs to complexity class P . This famous algorithm is named after the above three authors and now called The AKS Primality Testing having run time complexity O~(log10:5(n)). Further improvement has been done by Carl Pomerance and H. W. Lenstra Jr. by showing a variant of AKS primality test has running time O~(log7:5(n)). In this review, we discuss the gradual improvements in primality testing methods which lead to the breakthrough. We also discuss further improvements by Pomerance and Lenstra. 1 Introduction \The problem of distinguishing prime numbers from a composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such and extent that its would be superfluous to discuss the problem at length . Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated." - Johann Carl Friedrich Gauss, 1781 A number is a mathematical object which is used to count and measure any quantifiable object. The numbers which are developed to quantify natural objects are called Nat- ural Numbers. For example, 1; 2; 3; 4;::: . Further, we can partition the set of natural 1 numbers into three disjoint sets : f1g, set of fprime numbersg and set of fcomposite numbersg. -
The Miller-Rabin Randomized Primality Test
Introduction to Algorithms (CS 482) Cornell University Instructor: Bobby Kleinberg Lecture Notes, 5 May 2010 The Miller-Rabin Randomized Primality Test 1 Introduction Primality testing is an important algorithmic problem. In addition to being a fun- damental mathematical question, the problem of how to determine whether a given number is prime has tremendous practical importance. Every time someone uses the RSA public-key cryptosystem, they need to generate a private key consisting of two large prime numbers and a public key consisting of their product. To do this, one needs to be able to check rapidly whether a number is prime. The simplestp algorithm to test whether n is prime is trial division:p for k = 2; 3;:::; b nc test whether n ≡ 0 (mod k). This runs in time O( n log2(n)), but this running time is exponential in the input size since the input represents n as a binary number with dlog2(n)e digits. (A good public key these days relies on using prime numbers with at least 2250 binary digits; testing whether such a number is prime using trial division would require at least 2125 operations.) In 1980, Michael Rabin discovered a randomized polynomial-time algorithm to test whether a number is prime. It is called the Miller-Rabin primality test because it is closely related to a deterministic algorithm studied by Gary Miller in 1976. This is still the most practical known primality testing algorithm, and is widely used in software libraries that rely on RSA encryption, e.g. OpenSSL. 2 Randomized algorithms What does it mean to say that there is a randomized polynomial-time algorithm to solve a problem? Here are some definitions to make this notion precise. -
Fibonacci's Answer to Primality Testing?
FIBONACCI'S ANSWER TO PRIMALITY TESTING? JULIAN BEAUCHAMP Abstract. In this paper, we consider various approaches to primality testing and then ask whether an effective deterministic test for prime numbers can be found in the Fibonacci numbers. Introduction Prime numbers play an important role in encryption and cyber-security. They protect digitial data, including personal data and bank details. Testing whether a number is prime or not, is therefore becoming increasingly important for mathe- maticians and for those working in digitial security. The study of prime numbers and their properties go back to the ancient Greek mathematician Pythagoras (570-495 BC) who understood the idea of primality. But a primality test is a test to determine whether or not a number is prime. This is different from finding a number's constituent prime factors (also known as prime factorization). A number is said to be prime if it is divisible only by 1 and itself. Otherwise it is composite. When the numbers are small, it is relatively easy to determine whether a number is prime. But as they get exponentially larger they get harder to determine. So the pressing question is what makes an efficient algorithm? The following characteristics make an efficient algorithm - general, deterministic, unconditional, and polynomial:1 General. An algorithm that is general works for all numbers. Algorithms that are not general only work on certain numbers (e.g. the Lucas-Lehmer test for Mersenne numbers). Deterministic.A deterministic test (e.g. the Lucas-Lehmer Test) will tell us with absolute certainty whether a number is prime or not every time it is run. -
Quantum Computation of Prime Number Functions
Quantum Computation of Prime Number Functions Jos´eI. Latorre1 and Germ´anSierra2 1 Departament d'Estructura i Constituents de la Mat`eria,Universitat de Barcelona, Barcelona, Spain, Centre for Quantum Technologies, National University of Singapore, Singapore. 2 Instituto de F´ısicaTe´oricaUAM/CSIC, Universidad Aut´onomade Madrid, Cantoblanco, Madrid, Spain. We propose a quantum circuit that creates a pure state corresponding to the quantum super- position of all prime numbers less than 2n, where n is the number of qubits of the register. This Prime state can be built using Grover's algorithm, whose oracle is a quantum implementation of the classical Miller-Rabin primality test. The Prime state is highly entangled, and its entangle- ment measures encode number theoretical functions such as the distribution of twin primes or the Chebyshev bias. This algorithm can be further combined with the quantum Fourier transform to yield an estimate of the prime counting function, more efficiently than any classical algorithm and with an error below the bound that allows for the verification of the Riemann hypothesis. We also propose a Twin Prime state to measure the number of twin primes and another state to test the Goldbach conjecture. Arithmetic properties of prime numbers are then, in principle, amenable to experimental verifications on quantum systems. I. INTRODUCTION Prime numbers are central objects in Mathematics and Computer Science. They appeared dramatically in Quantum Computation through the Shor's algorithm, which converts the hard problem of factorization into a polynomial one using quantum interference1,2. In Number Theory, prime numbers are fully characterized by the prime counting function π(x), which is the number of primes less or equal to x.