Searching for Novel Cancer Chemopreventive Plants and Their Products: the Genus Zanthoxylum

Total Page:16

File Type:pdf, Size:1020Kb

Searching for Novel Cancer Chemopreventive Plants and Their Products: the Genus Zanthoxylum Current Drug Targets, 2011, 12, 1895-1902 1895 Searching for Novel Cancer Chemopreventive Plants and their Products: The Genus Zanthoxylum Francesco Epifano*,1, Massimo Curini2, Maria Carla Marcotullio2 and Salvatore Genovese1 1Dipartimento di Scienze del Farmaco, Università “G. D’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo (CH), Italy 2Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Organica, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy Abstract: The genus Zanthoxylum (Rutaceae) comprises about 250 species, of which many are used as food, often as condiments, substituting pepper due to the pungent taste of fruits, seeds, leaves, and bark, and therapeutic remedies especially in Eastern Asian countries and in Central America. The whole plant is also consumed as an ingredient of soups and salads. The aim of this review is to examine in detail from a phytochemical and pharmacological point of view what is reported in the current literature about the anti-cancer and chemopreventive properties of phytopreparations or individual active compounds obtained from edible plants belonging to this genus. Keywords: Anti-cancer activity, cancer chemoprevention, edible plants, prenyloxyphenylpropanoids, Rutaceae, Zanthoxylum. INTRODUCTION EDIBLE PLANTS OF THE GENUS ZANTHOXYLUM EXHIBITING ANTI-CANCER PROPERTIES Cancer is nowadays one of the major causes of death all over the world. Although many therapeutic remedies have Zanthoxylum ailanthoides Siebold & Zucc. been developed and used, most of which with appreciable Zanthoxylum ailanthoides, commonly known as success, prevention and cure of this severe syndrome is a “Japanese prickly-ash”, is a plant originary of the East-Asia, research field of current interest. In the last decade several growing most abundantly in the mountain regions of central reports indicated that different kinds of tumors could be prevented “simply” following a correct and suitable lifestyle and south Japan. Leaves are used as condiment, like cooked seeds, due to their pungent flavour and taste, that closely [1]. In this frame dietary factors seem to play a crucial role, resemble red pepper-based condiments. The resin contained especially in the prevention of cancers affecting the gastro- in the bark and roots is medically used as an anti-tussive, intestinal and respiratory apparatus, blood, kidney, and many carminative, and stimulant agent [3]. An active principle other organs and tissues [2]. Following this tendency from Z. ailanthoides, the neolignan ailanthoidol (AT) (1), numerous studies were carried out showing that dietary feeding with edible plants led to favorable epidemiological was seen to exert at different levels marked chemopreventive effects against tumor promotion [4]. outcomes in terms of tumor incidence and mortality. So the search for novel vegetables and fruits as dietary feeding cancer chemopreventive remedies is a field of current and HO growing interest. OH The genus Zanthoxylum (Rutaceae) comprises about 250 O species, small trees and shrubs, all native to warm temperate OCH OCH3 and subtropical areas worldwide. Many species are used as 3 food and therapeutic remedies especially in Eastern Asian 1 countries and in Central America, often as condiments, substituting pepper-based ones due to the pungent taste of In their study Tseng and coworkers first assessed the fruits, seeds, leaves, and bark. Moreover the whole plant is radical quenching properties of compound (1). At a con- also consumed as an ingredient of soups and salads. Being centration of 0.05 mM, AT scavenged 64% of DPPH free several species of the genus Zanthoxylum employed as food radicals. Basing on these preliminary results, they tested the in many parts of the world, the aim of this review has been to anti-oxidant properties of (1) in an in vivo system. The examine in detail the anti-tumor properties of such plants in Authors employed the ICR mouse as a model to investigate view of their potential use as alimentary cancer preventive the effect of AT on 12-O-tetradecanoyl-phorbol-13-acetate- remedies. (TPA)-induced H2O2 production in skin. Pre-treatment with AT at three dosage levels (0.5, 1.0, and 2.5 mM) signifi- cantly diminished the TPA (5nM)-mediated production of *Address correspondence to this author at the Dipartimento di Scienze del H2O2 by 83%, 90%, and 96% respectively. It’s noteworthy Farmaco, Università “G. D’Annunzio” di Chieti-Pescara, Via dei Vestini 31, that animals treated only with TPA (5 nM) recorded a 3-fold 66013 Chieti Scalo (CH), Italy; Tel: +3908713554654; Fax: increase in H2O2 concentration compared to untreated con- +3908713554912; E-mail: [email protected] trols. As myeloperoxidase (MPO) levels are used as a marker 1873-5592/11 $58.00+.00 © 2011 Bentham Science Publishers 1896 Current Drug Targets, 2011, Vol. 12, No. 13 Epifano et al. for the quantification of reactive oxygen species (ROS)- of tambulin was seen to be effective in ameliorating the producing leukocyte infiltration into the derms [5], Tseng tumor mass in solid tumors harbouring animals, and and coworkers also measured the extent of TPA-induced- significantly increased the life spam in ascites tumor MPO activation and the effect of AT. While the individual harbouring animals (89.5 %). It’s also noteworthy that the response to TPA led to a 28-fold increase in MPO activity simultaneous i.p. administration of tambulin (20 mg/kg) compared to controls, the application of the same dosages potentiated the effects of known chemotherapeutics like seen above of (1) inhibited significantly (58%, 61%, and cyclophosphamide and γ-radiation treatment leading to a 97% respectively) the MPO activation. Being well known substantial decrease of the volume of solid tumors in mice. that inflammatory processes are closely linked to tumor pro- motion and development, in another series of experiments, Zanthoxylum americanum Mill. Tseng and coworkers determined the inhibitory effects of AT on TPA-induced ear oedema in mice, as well as the exp- Zanthoxylum americanum, commonly known as ression and activation of inflammation marker enzymes like “northern prickly ash”, is a plant native to North America, cycloxygenase-2 (COX-2) and ornithine decarboxylase ranging from Quebec region (where it’s also known as (OD). The topical application of 20 µL of AT 2.5 mM prior “Clavalier”) to Georgia and Oklahoma. It has been used for a to TPA (5nM) was seen to inhibit the formation of oedema very long time as a medicinal plant for the relief of toothache by nearly 96%. It’s also important to put in evidence that AT and several other complaints [9, 10]. Still and coworkers alone did not provoke any oedema formation. The topical isolated from this plant four pyranocoumarins, namely application of AT was also accompanied by the inhibition of dipetalyne (3), alloxanthoxyletin (4), xanthoxyletin (5), and induction of epidermal hyperplasia and inflammatory cells xanthyletin (6), and two lignans, sesamin (7) and asarine (8). infiltration. The effect of AT on COX-2 and OD consisted also in a significant dose-dependent decrease of the expres- sion and/or activity of these two latter enzymes. Finally O R Tseng and coworkers assessed the effect of AT in the pro- motion of mouse skin carcinogenesis induced by benzo[a] pyrene (B[a]P) and TPA. Pre-treatment with AT topically administered in the range of concentrations 0.5 – 2.5 mM, H3CO O O O O O led to a 25% - 50% decrease in papillomas formation, as well R as in their multiplicity: in fact the average number of papillo- 5 R = OCH3 mas/mouse was 4.9 in animals treated only with B[a]P and 3 R = isopentenyl 4 R = H 6 R = H TPA, while decreased to 1.9, 1.9, and 0.8 in animals pre- treated with AT at the dosages of 0.5, 1.0, and 2.5 mM O respectively. O O O O Zanthoxylum alatum Roxb. O H H Zanthoxylum alatum, commonly known as “winged pric- H H O kly ash”, is a plant growing in East Asia, particularly wide- O O O spread in forests and hot valleys to 1800 meters in the 8 Himalayas. Seeds, ground into a fine powder, are used as a O 7 O condiment in substitution of pepper. Roasted seeds are also an ingredient of the Chinese dish called “five spice mixture” [6]. Moreover seeds are medically used by local populations All these secondary metabolites were able to inhibit the as a tonic in the treatment of fevers, dyspepsia, and cholera incorporation of tritiated thymidine into HL-60 (human [7]. Fruits, branches, and thorns are considered to be carmi- leukemia) cells, being the IC50 values 2.18 µM for dipetaline, native and stomachic and are often used as a remedy for 5.08 µM for alloxanthoxyletin, 15.28 µM for xanthoxyletin, toothache. Tambulin (3,5-dihydroxy-7,8,4’-trimethoxyfla- 14.91 µM for xanthyletin, 7.66 µM for sesamin, and finally vone) (2), a flavone extracted from this plant, was seen to 11.64 µM for asarin [9]. exert a mild in vitro anti-cancer activity [8]. Zanthoxylum chalibeum O Zanthoxylum chalibeum is commonly medically used in OH the East African countries, especially Rwanda and Tanzania as an anti-plasmodial agent [11, 12]. The dichloromethane and methanol extracts from the leaves of this plant exhibited H3CO O a mild cytotoxic activities in vitro against HL-60 cells (IC50 OCH3 30.16 and 137.31 µg/mL respectively). OCH3 2 Zanthoxylum fagara (L.) Sarg. Zanthoxylum fagara, commonly known as “limoncillo” The recorded IC50 values were 33.0 µM in L929 (murine in Central America, is a plant growing in Florida, Caribbean aneuploid fibrosarcoma), 42.0 µM in HT-29 (human colon Islands, northern Mexico, Colombia, and Brazil. Decoction adenocarcinoma), and 45.1 µM in K562 (human erythro- of its bark is used as a diaphoretic and stimulant agent and to myeloblastoid leukemia) cells.
Recommended publications
  • Oxidation of Geraniol Using Niobia Modified With
    Revista Facultad de Ingeniería, Universidad de Antioquia, No.91, pp. 106-112, Apr-Jun 2019 Oxidation of geraniol using niobia modified with hydrogen peroxide Oxidación de geraniol utilizando niobia modificada con peróxido de hidrógeno Jairo Cubillos 1*, Jose J. Martínez 1, Hugo Rojas 1, Norman Marín-Astorga2 1Grupo de Catálisis, Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia UPTC. Avenida Central del Norte 39-115. A.A. 150003 Tunja. Boyacá, Colombia. 2Eurecat U.S. Incorporated. 13100 Bay Park Rd. C.P. 77507. Pasadena, Texas, USA. ABSTRACT: Nb2O5 bulk and Nb2O5 modified with H2O2 were studied in the epoxidation of geraniol at 1 bar and room temperature. The structural and morphological properties ARTICLE INFO: for both catalysts were very similar, indicating that the peroxo-complex species were not Received: April 27, 2018 formed. The order of the reaction was one with respect to geraniol and close to zero respect Accepted: April 16, 2019 to H2O2, these values fit well with the kinetic data obtained. The geraniol epoxidation is favored by the presence of peroxo groups, which is reached using an excess of H2O2. Moreover, the availability of the geraniol to adopt the three-membered-ring transition state AVAILABLE ONLINE: was found as the best form for this type of compound. April 22, 2019 RESUMEN: El óxido de niobio (niobia), Nb2O5 y Nb2O5 modificado con H2O2 fue explorado como catalizador en la epoxidación de geraniol a 1 bar y temperatura ambiente. Las KEYWORDS: propiedades estructurales y morfológicas de ambos catalizadores fueron muy similares, Niobium oxide, peroxo lo cual sugiere que no se formaron especies de complejo peroxo.
    [Show full text]
  • Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 Toward Endogenous Substrates S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/03/02/dmd.116.069633.DC1 1521-009X/44/5/771–780$25.00 http://dx.doi.org/10.1124/dmd.116.069633 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:771–780, May 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 Toward Endogenous Substrates s Yan Zhao, Debin Wan, Jun Yang, Bruce D. Hammock, and Paul R. Ortiz de Montellano Department of Pharmaceutical Chemistry, University of California, San Francisco (Y.Z., P.R.O.M.) and Department of Entomology and Cancer Center, University of California, Davis, CA (D.W., J.Y., B.D.H.) Received January 25, 2015; accepted February 29, 2016 ABSTRACT CYP2W1 is a recently discovered human cytochrome P450 enzyme 4-OH all-trans retinol, and it also oxidizes retinal. The enzyme much with a distinctive tumor-specific expression pattern. We show here less efficiently oxidizes 17b-estradiol to 2-hydroxy-(17b)-estradiol and that CYP2W1 exhibits tight binding affinities for retinoids, which have farnesol to a monohydroxylated product; arachidonic acid is, at best, Downloaded from low nanomolar binding constants, and much poorer binding constants a negligible substrate. These findings indicate that CYP2W1 probably in the micromolar range for four other ligands. CYP2W1 converts all- plays an important role in localized retinoid metabolism that may be trans retinoic acid (atRA) to 4-hydroxy atRA and all-trans retinol to intimately linked to its involvement in tumor development.
    [Show full text]
  • Novel Intranasal Drug Delivery: Geraniol Charged Polymeric Mixed Micelles for Targeting Cerebral Insult As a Result of Ischaemia/Reperfusion
    pharmaceutics Article Novel Intranasal Drug Delivery: Geraniol Charged Polymeric Mixed Micelles for Targeting Cerebral Insult as a Result of Ischaemia/Reperfusion Sara M. Soliman 1, Nermin M. Sheta 1, Bassant M. M. Ibrahim 2, Mohammad M. El-Shawwa 3 and Shady M. Abd El-Halim 1,* 1 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, 6th of October University, Central Axis, Sixth of October City, Giza 12585, Egypt; [email protected] (S.M.S.); [email protected] (N.M.S.) 2 Department of Pharmacology, Medical Research Division, National Research Centre, Dokki, Giza 12622, Egypt; [email protected] 3 Department of Physiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-11-199-94874 Received: 16 November 2019; Accepted: 13 January 2020; Published: 17 January 2020 Abstract: Brain damage caused by cerebral ischaemia/reperfusion (I/R) can lead to handicapping. So, the present study aims to evaluate the prophylactic and therapeutic effects of geraniol in the form of intranasal polymeric mixed micelle (PMM) on the central nervous system in cerebral ischaemia/reperfusion (I/R) injury. A 32 factorial design was used to prepare and optimize geraniol PMM to investigate polymer and stabilizer different concentrations on particle size (PS) and percent entrapment efficiency (%EE). F3 possessing the highest desirability value (0.96), with a PS value of 32.46 0.64 nm, EE of 97.85 1.90%, and release efficiency of 59.66 0.64%, was selected for ± ± ± further pharmacological and histopathological studies. In the prophylactic study, animals were classified into a sham-operated group, a positive control group for which I/R was done without treatment, and treated groups that received vehicle (plain micelles), geraniol oil, and geraniol micelles intranasally before and after I/R.
    [Show full text]
  • Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2021 doi:10.20944/preprints202106.0500.v1 Review Lemongrass essential oil components with antimicrobial and anticancer activities Mohammad Mukarram 1,2,*, Sadaf Choudhary 1 , Mo Ahamad Khan 3 , Palmiro Poltronieri 4,* , M. Masroor A. Khan 1 , Jamin Ali 5 , Daniel Kurjak 2 and Mohd Shahid 6 1 Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; [email protected] (M.M.); [email protected] (S.C.); [email protected] (M.M.A.K.) 2 Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia; [email protected] (D.K.) 3 Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; [email protected] (M.A.K.) 4 Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, via Monteroni km 7, 73100 Lecce, Italy; [email protected] (P.P.) 5 Centre for Applied Entomology & Parasitology, School of Life Sciences, Keele University, United Kingdom; [email protected] (J.A.) 6 Department of Microbiology, Immunology & Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Kingdom of Bahrain; [email protected] (M.S.) * Correspondence: [email protected] (P.P.); [email protected] (M.M.) Abstract: The prominent cultivation of lemongrass relies on the pharmacological incentives of its essential oil. The lemongrass essential oil (LEO) has a significant amount of citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol in addition to numerous other bioactive compounds.
    [Show full text]
  • Combination of the Natural Product Capsaicin and Docetaxel
    Sánchez et al. Cancer Cell Int (2019) 19:54 https://doi.org/10.1186/s12935-019-0769-2 Cancer Cell International PRIMARY RESEARCH Open Access Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase Belén G. Sánchez1, Alicia Bort1, Pedro A. Mateos‑Gómez1, Nieves Rodríguez‑Henche1 and Inés Díaz‑Laviada1,2* Abstract Background: Current chemotherapy for castration‑resistant prostate cancer is established on taxane‑based com‑ pounds like docetaxel. However, eventually, the development of toxic side efects and resistance limits the thera‑ peutic beneft being the major concern in the treatment of prostate cancer. Combination therapies in many cases, enhance drug efcacy and delay the appearance of undesired efects, representing an important option for the treat‑ ment of castration‑resistant prostate cancer. In this study, we tested the efcacy of the combination of docetaxel and capsaicin, the pungent ingredient of hot chili peppers, on prostate cancer cells proliferation. Methods: Prostate cancer LNCaP and PC3 cell lines were used in this study. Levels of total and phosphorylated forms of Akt, mTOR, S6, LKB1, AMPK and ACC were determined by Western blot. AMPK, LKB1 and Akt knock down was performed by siRNA. PTEN was overexpressed by transient transfection with plasmids. Xenograft prostate tumors were induced in nude mice and treatments (docetaxel and capsaicin) were administered intraperitoneally. Statistical analyses were performed with GraphPad software. Combination index was calculated with Compusyn software. Results: Docetaxel and capsaicin synergistically inhibited the growth of LNCaP and PC3 cells, with a combina‑ tion index lower than 1 for most of the combinations tested.
    [Show full text]
  • Development of a Process for the Preparation of Linalool from Cis -2-Pinanol
    1 DEVELOPMENT OF A PROCESS FOR THE PREPARATION OF LINALOOL FROM CIS -2-PINANOL Subash Ramnarain Buddoo Thesis submitted in fulfilment of the requirements for the degree DOCTOR TECHNOLOGIAE In the faculty of Applied Science at the NELSON MANDELA METROPOLITAN UNIVERSITY June 2008 Promoter : Prof. B. Zeelie Co-promoter : Dr. J. Dudas 2 ACKNOWLEDGEMENTS The author wishes to express his sincere appreciation to: • My promoters, Prof. B. Zeelie and Dr. J. Dudas for their assistance, guidance and encouragement to conclude this project; • The Department of Science and Technology for funding the project under the Support Programme for Industrial Innovation (SPII); • The THRIP fund for providing funds for the purchase of equipment required for the laboratory experimental investigations; • Teubes Pty. Ltd. for financial support, provision of starting material (CST and α-pinene) and for permission to use this material for a thesis; • S. Farnworth for the management of the CST project; • N. Siyakatshana for his assistance with the reaction kinetics and computer modelling of the process; • B. Cowan for assistance with the GC-MS analysis; and • My wife (Shelina), son (Kavish) and daughter (Sarisha) for their encouragement, patience and tolerance. 3 SUMMARY Linalool is a key intermediate for the production of important fragrance chemicals such as geraniol, nerol, geranial, and neral. Linalool can be produced via a two-step process from α-pinene which is a major component of crude sulphated turpentine (CST) a foul-smelling, volatile waste product of the pulp and paper industry. The key step in this process is the pyrolysis step which involves the isomerisation of cis -2- pinanol to linalool and requires high temperatures (600-650°C) and is not very selective due to the decomposition of the product itself under these conditions.
    [Show full text]
  • Dysprosium-Doped Zinc Tungstate Nanospheres As Highly Efficient Heterogeneous Catalysts in Green Oxidation of Terpenic Alcohols with Hydrogen Peroxide
    Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021 Dysprosium-doped zinc tungstate nanospheres as highly efficient heterogeneous catalysts in green oxidation of terpenic alcohols with hydrogen peroxide Daniel Carreira Batalha,a Kellen Cristina Mesquita Borges,b Rosana de Fátima Gonçalves,b Murillo Henrique de Matos Rodrigues,b Mário Júnior Godinho,b Humberto Vieira Fajardoc and Márcio José da Silva*a a. Chemistry Department, Federal University of Viçosa, Viçosa, Minas Gerais, CEP 36570‑900, Brazil. b. Chemistry Institute, Federal University of Catalão, Catalão, Goiás, CEP 75.704-020, Brazil. c. Chemistry Department, Federal University of Ouro Preto, Ouro Preto, CEP 35400-000, Minas Gerais, Brazil. SUPPLEMENTAL MATERIAL Neraldehyde epoxide Nerol epoxide Neraldehyde Others Conversion K8SiW11O39 [1] Na2WO4 [2] ZnWO4 - 2.0% Dy This study s Na PW O [3] t 7 11 39 s y l a t a Cs8SiW11O39 [4] C Nb2O5 [5] WO3 - SiO2 - 700 [6] Nb2O5 - SiO2 (a) [7] 0 20 40 60 80 100 Nerol conversion an d selectivities / % Ref.1 - Nerol:H2O2 (1:3); Catalyst (1.3 mol %); solvent DMA; 3 h; 363 K Ref. 2 - Nerol:H2O2 (1:2); Catalyst (1.3 mol %); solvent DMA; 4 h; 363 K This study - Nerol:H2O2 (1:2); Catalyst (3.5 mol %); solvent ACN; 8 h; 333 K Ref. 3 - Nerol:H2O2 (1:1); Catalyst (0.3 mol %); solvent ACN; 4 h; 298 K Ref. 4 - Nerol:H2O2 (1:2); Catalyst (4.0 mol %); solvent ACN; 8 h; 333 K Ref.
    [Show full text]
  • Geraniol Profile Integrated Pest Management Cornell Cooperative Extension Program
    http://hdl.handle.net/1813/56127 New York State Geraniol Profile Integrated Pest Management Cornell Cooperative Extension Program Geraniol Profile Active Ingredient Eligible for Minimum Risk Pesticide Use Brian P. Baker and Jennifer A. Grant New York State Integrated Pest Management, Cornell University, Geneva NY Active Ingredient Name: Geraniol Other Names: ß-Geraniol; Lemonol; Geranyl alcohol; trans-Geraniol; Geranial; (E)-Geraniol; Active Components: Geraniol trans-3,7-Dimethyl-2,6-octadien-1-ol; (E)-Nerol; nerol; Geraniol Extra; Vernol CAS Registry #: 106-24-1 Other Codes: BRN: 1722455 & 1722456; U.S. EPA PC Code: 597501 ChemSpider: 13849989; FEMA—2507; RTECS— RG5830000; EC—233-377-1; EINECS : 203-339-4, CA DPR Chem Code: 309 203-377-1; 203-378-7 Summary: Geraniol, a naturally-occurring terpenoid found in food plants, is often used as a fragrance or ingredient in cosmetics. When used as a pesticide, it is primarily a mosquito and tick repellent, or used against mites. Most studies show geraniol poses little risk to the environment or human health, although a portion of the population suffers from sub-lethal allergies upon dermal or inhalation exposure. Pesticidal Uses: As a pesticide, geraniol is used as a mosquito and tick repellent and as an insecticide for other target pests (including mites). It has antimicrobial and fungicidal applications as well. Formulations and Combinations: Often formulated with other essential oils, including citronellol, farne- sol, nerolidol, eugenol, thymol, lemongrass oil, cinnamon oil and cedarwood oil. May be formulated with sodium lauryl sulfate, glycerin, isopropyl myristate, ethyl lactate, cinnemaldehyde, 2-phenylethyl propio- nate, potassium sorbate and mineral oil.
    [Show full text]
  • Compositions for Treating Itch Zusammensetzungen Zur Behandlung Von Juckreiz Compositions Pour Traiter Les Démangeaisons
    (19) TZZ Z¥_T (11) EP 2 446 903 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/085 (2006.01) A61K 31/165 (2006.01) 09.10.2019 Bulletin 2019/41 A61K 31/167 (2006.01) A61K 31/14 (2006.01) A61K 9/00 (2006.01) A61K 45/06 (2006.01) (2006.01) (2006.01) (21) Application number: 11007949.8 A61P 17/04 A61P 29/00 (22) Date of filing: 19.11.2007 (54) Compositions for treating itch Zusammensetzungen zur Behandlung von Juckreiz Compositions pour traiter les démangeaisons (84) Designated Contracting States: WO-A2-99/11252 US-A- 3 519 631 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR US-A- 4 069 309 US-B1- 6 362 197 HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE US-B1- 6 413 961 SI SK TR • OMANA-ZAPATA I ET AL: "QX-314 inhibits (30) Priority: 20.11.2006 US 860124 P ectopic nerve activity associated with 06.07.2007 US 958594 P neuropathic pain.", BRAIN RESEARCH 17 OCT 03.10.2007 US 997510 P 1997,vol. 771, no. 2, 17 October 1997 (1997-10-17), pages 228-237, XP002486707, ISSN: 0006-8993 (43) Date of publication of application: • STRICHARTZ G R: "The inhibition of sodium 02.05.2012 Bulletin 2012/18 currents in myelinated nerve by quaternary derivatives of lidocaine.", THE JOURNAL OF (62) Document number(s) of the earlier application(s) in GENERAL PHYSIOLOGY JUL 1973, vol.
    [Show full text]
  • Biosynthesis of Monoterpene Scent Compounds in Roses Jean-Louis Magnard Et Al
    RESEARCH | REPORTS PLANT VOLATILES plasma to more than 50 in eukaryotes (12). In sequenced genomes of Arabidopsis, rice, and grapevine, the number of genes coding for pu- Biosynthesis of monoterpene scent tative NUDX proteins is 28, 33, and 30, respectively (12, 13). RhNUDX1 shows the closest similarity to AtNUDX1 (fig. S1). This protein was proposed compounds in roses to have a similar function to Escherichia coli mutator protein (MutT), which acts to eliminate Jean-Louis Magnard,1 Aymeric Roccia,1,2 Jean-Claude Caissard,1 harmful compounds, such as 8-oxo–deoxyguanosine Philippe Vergne,2 Pulu Sun,1 Romain Hecquet,1 Annick Dubois,2 triphosphate (8-oxo-dGTP), which may be mis- Laurence Hibrand-Saint Oyant,3 Frédéric Jullien,1 Florence Nicolè,1 incorporated in DNA during replication (14). We Olivier Raymond,2 Stéphanie Huguet,4 Raymonde Baltenweck,5 Sophie Meyer,5 have searched rose transcriptome database (15) Patricia Claudel,5 Julien Jeauffre,3 Michel Rohmer,6 Fabrice Foucher,3 and identified 55 expressed sequence tags (ESTs) Philippe Hugueney,5* Mohammed Bendahmane,2* Sylvie Baudino1* corresponding to putative NUDX genes, indicat- ing that, like in other species, NUDX1 belongs to The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. a gene family. All ESTs corresponding to RhNUDX1 Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as showed high expression levels in fully opened the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized flowers (data S3). The other ESTs show no or weak terpene synthases. Combining transcriptomic and genetic approaches, we show that expression levels in blooming flowers.
    [Show full text]
  • Geraniol Natural
    aurochemicals.com Allergenic Substances for Food and Fragrance PRODUCT: Geraniol, Natural FEMA No: 2507 FOOD ALLERGENS PRESENT/ABSENT AMOUNT Dairy, milk and milk products (including lactose) Absent Egg and egg containing products Absent Fish or fish derivatives Absent Molluscs, Shellfish, Crustaceans Absent Peanuts Absent Soybean and soybean products Absent Tree nuts and products thereof Absent Wheat, Barley, Rye and Gluten containing cereals and Absent products thereof FOOD SENSITIZERS 3-MCP/ (MPC/DCP) Absent Apple Absent Aspartame Absent Autolyzed yeast Absent AZO dyes Absent Barley or Barley derivatives Absent Bee Pollen Absent Beef Absent Benzoic Acid and parabens (E210-E219) Absent BHA Absent BHT Absent Breadcrumbs Absent Buckwheat or derivatives Absent Carmine/cochineal Absent Carrots Absent Celery and celery products Absent Chicken Absent Chocolate/Chocolate derivatives Absent Cinnamon Oil, Cinnamon Absent Cocoa or derivatives Absent Coffee Absent Colorings (Tartrazine) (E102, E110, E120, E122, E123, Absent E124, E127, E128, E129, E131, E132, E151, E160) Coriander Absent Aurochemicals, 7 Nicoll Street, Washingtonville, NY 10992 P: 845-496-6065 F: 845-496-6248 “The Natural Choice for Flavor and Fragrance Ingredients” 1 aurochemicals.com Allergenic Substances for Food and Fragrance PRODUCT: Geraniol, Natural FEMA No: 2507 FOOD SENSITIZERS PRESENT/ABSENT AMOUNT Corn or corn derivatives, Maize Absent Enzymes Absent Ethanol Absent Food Starch Modified Absent Food Starch Unmodified Absent Garlic or derivatives Absent Gelatin Absent Grains
    [Show full text]
  • Supplementary Material
    Supplementary material Figure S1. Cluster analysis of the proteome profile based on qualitative data in low and high sugar conditions. Figure S2. Expression pattern of proteins under high and low sugar cultivation of Granulicella sp. WH15 a) All proteins identified in at least two out of three replicates (excluding on/off proteins). b) Only proteins with significant change t-test p=0.01. 2fold change is indicated by a red line. Figure S3. TigrFam roles of the differentially expressed proteins, excluding proteins with unknown function. Figure S4. General overview of up (red) and downregulated (blue) metabolic pathways based on KEGG analysis of proteome. Table S1. growth of strain Granulicella sp. WH15 in culture media supplemented with different carbon sources. Carbon Source Growth Pectin - Glycogen - Glucosamine - Cellulose - D-glucose + D-galactose + D-mannose + D-xylose + L-arabinose + L-rhamnose + D-galacturonic acid - Cellobiose + D-lactose + Sucrose + +=positive growth; -=No growth. Table S2. Total number of transcripts reads per sample in low and high sugar conditions. Sample ID Total Number of Reads Low sugar (1) 15,731,147 Low sugar (2) 12,624,878 Low sugar (3) 11,080,985 High sugar (1) 11,138,128 High sugar (2) 9,322,795 High sugar (3) 10,071,593 Table S3. Differentially up and down regulated transcripts in high sugar treatment. ORF Annotation Log2FC GWH15_14040 hypothetical protein 3.71 GWH15_06005 hypothetical protein 3.12 GWH15_00285 tRNA-Asn(gtt) 2.74 GWH15_06010 hypothetical protein 2.70 GWH15_14055 hypothetical protein 2.66
    [Show full text]