Origin and Distribution of the Brachial Plexus in the Spix's Yellow-Toothed
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of the Estrous Cycle in Galea Spixii (Wagler, 1831)1
Pesq. Vet. Bras. 35(1):89-94, janeiro 2015 DOI: 10.1590/S0100-736X2015000100017 Characterization of the estrous cycle in Galea spixii (Wagler, 1831)1 Amilton C. Santos2, Diego C. Viana2, Bruno M. Bertassoli3, Gleidson B. Oliveira4, Daniela M. Oliveira2, Ferdinando V.F. Bezerra4, Moacir F. Oliveira4 and Antônio C. Assis-Neto2* ABSTRACT.- Santos A.C., Viana D.C., Bertassoli B.M., Oliveira G.B., Oliveira D.M., Bezerra F.V.F., Oliveira M.F. & Assis-Neto A.C. 2015. Characterization of the estrous cycle in Galea spixii (Wagler, 1831). Pesquisa Veterinária Brasileira 35(1):89-94. Setor de Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Univer- sidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo, SP 05508-030, Brazil. E-mail: [email protected] The Galea spixii inhabits semiarid vegetation of Caatinga in the Brazilian Northeast. They are bred in captivity for the development of researches on the biology of reproduction. The- refore, the aim of this study is characterize the estrous cycle of G. spixii, in order to provide information to a better knowledge of captive breeding of the species. The estrous cycle was monitored by vaginal exfoliative cytology in 12 adult females. After the detection of two complete cycles in each animal, the same were euthanized. Then, histological study of the vaginal epithelium, with three females in each phase of the estrous cycle was performed; three other were used to monitor the formation and rupture of vaginal closure membrane. five were paired with males for performing the control group for estrous cycle phases, and- te cells in proestrus, intermediate and parabasal cells, with neutrophils, in diestrus and me- testrusBy vaginal respectively exfoliative was cytology, found. -
Repositiorio | FAUBA | Artículos De Docentes E Investigadores De FAUBA
Biodivers Conserv (2011) 20:3077–3100 DOI 10.1007/s10531-011-0118-9 REVIEW PAPER Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina Diego Medan • Juan Pablo Torretta • Karina Hodara • Elba B. de la Fuente • Norberto H. Montaldo Received: 23 July 2010 / Accepted: 15 July 2011 / Published online: 24 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract In this paper we summarize for the first time the effects of agriculture expansion and intensification on animal diversity in the Pampas of Argentina and discuss research needs for biodiversity conservation in the area. The Pampas experienced little human intervention until the last decades of the 19th century. Agriculture expanded quickly during the 20th century, transforming grasslands into cropland and pasture lands and converting the landscape into a mosaic of natural fragments, agricultural fields, and linear habitats. In the 1980s, agriculture intensification and replacement of cattle grazing- cropping systems by continuous cropping promoted a renewed homogenisation of the most productive areas. Birds and carnivores were more strongly affected than rodents and insects, but responses varied within groups: (a) the geographic ranges and/or abundances of many native species were reduced, including those of carnivores, herbivores, and specialist species (grassland-adapted birds and rodents, and probably specialized pollinators), sometimes leading to regional extinction (birds and large carnivores), (b) other native species were unaffected (birds) or benefited (bird, rodent and possibly generalist pollinator and crop-associated insect species), (c) novel species were introduced, thus increasing species richness of most groups (26% of non-rodent mammals, 11.1% of rodents, 6.2% of birds, 0.8% of pollinators). -
Genetic Diversity and Population Structure of the Guinea Pig (Cavia Porcellus, Rodentia, Caviidae) in Colombia
Genetics and Molecular Biology, 34, 4, 711-718 (2011) Copyright © 2011, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia William Burgos-Paz1, Mario Cerón-Muñoz1 and Carlos Solarte-Portilla2 1Grupo de Investigación en Genética, Mejoramiento y Modelación Animal, Facultad Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia. 2Grupo de Investigación en Producción y Sanidad Animal, Universidad de Nariño, Pasto, Colombia. Abstract The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven produc- tion zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and ob- served heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically signifi- cant (p < 0.05), genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the popu- lations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogi- cal and production records in order to reduce the inbreeding values in the populations. -
Ecology and Status of the Jaguarundi Puma Yagouaroundi: a Synthesis of Existing Knowledge
Giordano, A. J. (2015). Ecology and status of the jaguarundi Puma yagouaroundi: a synthesis of existing knowledge. Mammal Review 46: 30-43. Keywords: 2MX/diet/distribution/ecology/food/habitat/Herpailurus yagouaroundi/home range/home range size/human-wildlife conflict/jaguarundi/movement/prey/prey species/Puma yagouaroundi/review/status/threats Abstract: 1. The ecology of the jaguarundi is poorly known, so I reviewed the literature for all original data and remarks on jaguarundi observations, ecology, and behaviour, to synthesize what is known about the species. 2. Jaguarundis occupy and use a range of habitats with dense undergrowth from northern Mexico to central Argentina, but may be most abundant in seasonal dry, Atlantic, gallery, and mixed grassland/agricultural forest landscapes. 3. Jaguarundis are principally predators of small (sigmodontine) rodents, although other mammals, birds, and squamate reptiles are taken regularly. 4. The vast majority of jaguarundi camera-trap records occurred during daylight hours (0600 h-1800 h); jaguaurndis are also predominantly terrestrial, although they appear to be capable tree climbers. 5. Home range sizes for jaguarundis vary greatly, but most are .25 km2; females' territories may be much smaller than or similar in size to those of males. Males may concentrate movements in one area before shifting to another and, as with other felids, intersexual overlap in habitat use appears to be common. 6. Interference competition may be important in influencing the distribution and ecology of jaguarundis, although their diurnal habits may somewhat mitigate its effect. 7. Conflict between humans and jaguarundis over small livestock may be widespread among rural human communities and is likely to be underreported. -
Morphological Development of the Testicles and Spermatogenesis in Guinea Pigs (Cavia Porcellus Linnaeus, 1758)
Original article http://dx.doi.org/10.4322/jms.107816 Morphological development of the testicles and spermatogenesis in guinea pigs (Cavia porcellus Linnaeus, 1758) NUNES, A. K. R.1, SANTOS, J. M.1, GOUVEIA, B. B.1, MENEZES, V. G.1, MATOS, M. H. T.2, FARIA, M. D.3 and GRADELA, A.3* 1Projeto de Irrigação Senador Nilo Coelho, Universidade Federal do Vale de São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 2Projeto de Irrigação Senador Nilo Coelho, Medicina Veterinária, Núcleo de Biotecnologia Aplicada ao Desenvolvimento Folicular Ovariano, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 3Projeto de Irrigação Senador Nilo Coelho, Laboratório de Anatomia dos Animais Domésticos e Silvestres, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil *E-mail: [email protected] Abstract Introduction: Understanding the dynamics of spermatogenesis is crucial to clinical andrology and to understanding the processes which define the ability to produce sperm. However, the entire process cannot be modeled in vitro and guinea pig may be an alternative as animal model for studying human reproduction. Objective: In order to establish morphological patterns of the testicular development and spermatogenesis in guinea pigs, we examined testis to assess changes in the testis architecture, transition time from spermatocytes to elongated spermatids and stablishment of puberty. Materials and methods: We used macroscopic analysis, microstructural analysis and absolute measures of seminiferous tubules by light microscopy in fifty-five guinea pigs from one to eleven weeks of age. -
IGUAZU FALLS Extension 1-15 December 2016
Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 A Tropical Birding SET DEPARTURE tour NW ARGENTINA: High Andes, Yungas and Monte Desert and IGUAZU FALLS Extension 1-15 December 2016 TOUR LEADER: ANDRES VASQUEZ (All Photos by Andres Vasquez) A combination of breathtaking landscapes and stunning birds are what define this tour. Clockwise from bottom left: Cerro de los 7 Colores in the Humahuaca Valley, a World Heritage Site; Wedge-tailed Hillstar at Yavi; Ochre-collared Piculet on the Iguazu Falls Extension; and one of the innumerable angles of one of the World’s-must-visit destinations, Iguazu Falls. www.tropicalbirding.com +1-409-515-9110 [email protected] p.1 Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 Introduction: This is the only tour that I guide where I feel that the scenery is as impressive (or even surpasses) the birds themselves. This is not to say that the birds are dull on this tour, far from it. Some of the avian highlights included wonderfully jeweled hummingbirds like Wedge-tailed Hillstar and Red-tailed Comet; getting EXCELLENT views of 4 Tinamou species of, (a rare thing on all South American tours except this one); nearly 20 species of ducks, geese and swans, with highlights being repeated views of Torrent Ducks, the rare and oddly, parasitic Black-headed Duck, the beautiful Rosy-billed Pochard, and the mountain-dwelling Andean Goose. And we should not forget other popular bird features like 3 species of Flamingos on one lake, 11 species of Woodpeckers, including the hulking Cream-backed, colorful Yellow-fronted and minuscule Ochre-collared Piculet on the extension to Iguazu Falls. -
Patagonian Cavy (Patagonian Mara) Dolichotis Patagonum
Patagonian Cavy (Patagonian Mara) Dolichotis patagonum Class: Mammalia Order: Rodentia Family: Caviidae Characteristics: The Patagonian mara is a distinctly unusual looking rodent that is about the size of a small dog. They have long ears with a body resembling a small deer. The snout and large dark eyes are also unusual for a rodent. The back and upper sides are brownish grey with a darker patch near the rump. There is one white patch on either side of the rump and down the haunches. Most of the body is a light brown or tan color. They have long, powerful back legs which make them excellent runners. The back feet are a hoof like claw with three digits, while the front feet have four sharp claws to aid in burrowing (Encyclopedia of Life). Behavior: The Patagonian mara is just as unusual in behavior as it is in appearance. These rodents are active during the day and spend a large portion of their time sunbathing. If threatened by a predator, they will escape quickly by galloping or stotting away at speeds over 25 mph. The cavy can be found in breeding pairs that rarely interact with other pairs (Arkive). During breeding season, maras form large groups called settlements, consisting of many individuals sharing the same communal dens. Some large dens are shared by 29-70 maras (Animal Diversity). Reproduction: This species is strictly monogamous and usually bonded for life (BBC Nature). The female has an extremely short estrous, only 30 minutes every 3-4 months. The gestation period is around 100 days in the wild. -
Description of Pudica Wandiquei N. Sp. (Heligmonellidae: Pudicinae)
ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Original Article Description of Pudica wandiquei n. sp. (Heligmonellidae: Pudicinae), a nematode found infecting Proechimys simonsi (Rodentia: Echimyidae) in the Brazilian Amazon Descrição de Pudica wandiquei n. sp. (Heligmonellidae: Pudicinae), nematódeo encontrado infectando Proechimys simonsi (Rodentia: Echimyidae) na Amazônia brasileira B. E. Andrade-Silvaa,b* , G. S. Costaa,c and A. Maldonado Júniora aFundação Oswaldo Cruz – FIOCRUZ, Instituto Oswaldo Cruz – IOC, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Rio de Janeiro, RJ, Brasil bFundação Oswaldo Cruz – FIOCRUZ, Instituto Oswaldo Cruz – IOC, Programa de Pós-graduação em Biologia Parasitária, Rio de Janeiro, RJ, Brasil cFundação Centro Universitário Estadual da Zona Oeste – UEZO, Rio de Janeiro, RJ, Brasil Abstract A new species of nematode parasite of the subfamily Pudicinae (Heligmosomoidea: Heligmonellidae) is described from the small intestine of Proechimys simonsi (Rodentia: Echimyidae) from the locality of Nova Cintra in the municpality of Rodrigues Alves, Acre state, Brazil. The genus Pudica includes 15 species parasites of Neotropical rodents of the families Caviidae, Ctenomyidae, Dasyproctidae, Echimyidae, Erethizontidae, and Myocastoridae. Four species of this nematode were found parasitizing three different species rodents of the genus Proechimys in the Amazon biome. Pudica wandiquei n. sp. can be differentiated from all other Pudica species by the distance between the ends of rays 6 and 8 and the 1-3-1 pattern of the caudal bursa in both lobes. Keywords: spiny rats, Nematoda, Acre State, Amazon rainforest. Resumo Uma nova espécie de nematódeo da subfamília Pudicinae (Heligmosomoidea: Heligmonellidae) é descrito parasitando o intestino delgado de Proechimys simonsi (Rodentia: Echimyidae) em Nova Cintra, município de Rodrigues Alves, Estado do Acre, Brasil. -
Pdf (Last Access Plínio Barbosa De Camargo: Contribution to Data Analysis and on 03/Apr/2017)
Biota Neotropica 18(2): e20170395, 2018 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Human-modified landscape acts as refuge for mammals in Atlantic Forest Alex Augusto de Abreu Bovo1 , Marcelo Magioli1 , Alexandre Reis Percequillo1 , Cecilia Kruszynski2,3 , Vinicius Alberici1 , Marco A. R. Mello4 , Lidiani Silva Correa1, João Carlos Zecchini Gebin1, Yuri Geraldo Gomes Ribeiro1 , Francisco Borges Costa5, Vanessa Nascimento Ramos5, Hector Ribeiro Benatti5, Beatriz Lopes1, Maísa Z. A. Martins1, Thais Rovere Diniz-Reis2 , Plínio Barbosa de Camargo6, Marcelo Bahia Labruna5 & Katia Maria Paschoaletto Micchi de Barros Ferraz1* 1Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciências Florestais, Laboratório de Ecologia, Manejo e Conservação da Fauna Silvestre, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brasil 2Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, SP, Brasil 3Leibniz Institut fur Zoo und Wildtierforschung eV, Berlin, Germany 4Universidade Federal de Minas Gerais, Biologia Geral, Belo Horizonte, MG, Brasil 5Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP Brasil 6Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, CENA - Laboratório de Ecologia Isotópica, Piracicaba, SP, Brasil *Corresponding author: Katia Maria Paschoaletto Micchi de Barros Ferraz, e-mail: [email protected] BOVO, A.A.A, MAGIOLI, M.; PERCEQUILLO, A.R., KRUSZYNSKI, C., ALBERICI, V., MELLO, M.A.R., CORREA, L.S., GEBIN, J.C.Z., RIBEIRO, Y.G.G., COSTA, F.B.; RAMOS, V.N., BENATTI, H.R., LOPES, B., MARTINS, M.Z.A., DINIZ-REIS, T.R., CAMARGO, P.B.; LABRUNA, M.B., FERRAZ, K.M.P.M.B. -
1 Genetic Characterization of South
Tropical and Subtropical Agroecosystems, 21 (2018): 1 – 10 Avilés-Esquivel et al., 2018 GENETIC CHARACTERIZATION OF SOUTH AMERICA DOMESTIC GUINEA PIG USING MOLECULAR MARKERS1 [CARACTERIZACIÓN GENÉTICA DEL CUY DOMÉSTICO EN AMÉRICA DEL SUR USANDO MARCADORES MOLECULARES] D. F. Avilés-Esquivel1,*, A. M. Martínez2, V. Landi2, L. A. Álvarez3, A. Stemmer4, N. Gómez-Urviola5 and J.V. Delgado2 ¹Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Cantón Cevallos vía a Quero, sector el Tambo- La Universidad, 1801334, Tungurahua, Ecuador. Email: [email protected] 2Departamento de Genética, Universidad de Córdoba, Campus Universitario de Rabanales 14071 Córdoba, España. 3Universidad Nacional de Colombia. 4Universidad Mayor de San Simón, Cochabamba, Bolivia. 5Universidad Nacional Micaela Bastidas de Apurímac, Perú. *Corresponding author SUMMARY Twenty specific primers were used to define the genetic diversity and structure of the domestic guinea pig (Cavia porcellus). The samples were collected from the Andean countries (Colombia, Ecuador, Peru and Bolivia). In addition, samples from Spain were used as an out-group for topological trees. The microsatellite markers were used and showed a high polymorphic content (PIC) 0.750, and heterozygosity values indicated microsatellites are highly informative. The genetic variability in populations of guinea pigs from Andean countries was (He: 0.791; Ho: 0.710), the average number of alleles was high (8.67). A deficit of heterozygotes (FIS: 0.153; p<0.05) was detected. Through the analysis of molecular variance (AMOVA) no significant differences were found among the guinea pigs of the Andean countries (FST: 2.9%); however a genetic differentiation of 16.67% between South American populations and the population from Spain was detected. -
Middle Miocene Rodents from Quebrada Honda, Bolivia
MIDDLE MIOCENE RODENTS FROM QUEBRADA HONDA, BOLIVIA JENNIFER M. H. CHICK Submitted in partial fulfillment of the requirements for the degree of Master of Science Thesis Adviser: Dr. Darin Croft Department of Biology CASE WESTERN RESERVE UNIVERSITY May, 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables ...................................................................................................................... ii List of Figures.................................................................................................................... iii Abstract.............................................................................................................................. iv Introduction..........................................................................................................................1 Materials and Methods.........................................................................................................7 -
Downloaded from Bioscientifica.Com at 10/10/2021 10:51:38AM Via Free Access 394 J
REPRODUCTION IN FEMALE WILD GUINEA-PIGS J. P. ROOD and BARBARA J. WEIR Department ofZoology, MichiganState University, East Lansing, Michigan, U.S.A. and Wellcome Institute of Comparative Physiology, Zoological Society of London, Regent's Park, London, jV. W. 1 (Received 10th December 1969) Summary. The breeding characteristics of three species of wild guinea- pig (F. Caviidae) are reported. Cavia aperea, Galea musteloides and Micro- cavia australis were studied in Argentina in the field and in outdoor pens, and laboratory colonies of the two former species were also established in England. Pens of domestic guinea-pigs (Cavia porcellus) and of C. aperea \m=x\C. porcellus hybrids were maintained in Argentina for comparisons with C. aperea. C. aperea and G. musteloides gave birth in every month but there was a breeding peak in spring (September to December). Microcavia had a more restricted breeding season ; in the field study area, births occurred only between August and April. Gestation length in C. aperea was variable but the mode was at 61 days, while the modes of Galea and Microcavia were much shorter at 53 and 54 days, respectively. All three species exhibited a post-partum oestrus and Galea may experience a lactation anoestrus. Oestrous cycle lengths in C. aperea and Galea varied consider- ably but the mean length in Cavia was 20\m=.\6\m=+-\0\m=.\8days and in Galea it was 22\m=.\3\m=+-\1 \m=.\4days; in the latter species, the presence of a male in the same cage was necessary for the induction of oestrus. Average litter size was 2\m=.\2for C.