Spring 2008 Gazecswp Tte the Newsletter of the Committee on the Status of Women in Physics of the American Physical Society

Total Page:16

File Type:pdf, Size:1020Kb

Spring 2008 Gazecswp Tte the Newsletter of the Committee on the Status of Women in Physics of the American Physical Society Vol. 27, No. 1 Spring 2008 GazeCSWP tte The Newsletter of the Committee on the Status of Women in Physics of the American Physical Society INSIDE GUEST EDITORIAL: When Life Intervenes, One University Steps Up to Help Guest Editorial By Bernice Durand, University of Wisconsin–Madison 1 Balancing Career and he’s making good prog- decision) when it is more difficult to recover from a Family: Suggestions Sress toward tenure. setback. At the University of Wisconsin—Madison 1 Wham! Her young child is (UW-Madison), we are privileged to have Vilas Life diagnosed with cancer. The Cycle Professorships, as a safety net against such crises Take a Student child’s oncologist says the (1). These grants, limited to $30,000 (not to be used for to Lunch! prognosis is good with im- the salary of the recipient), are available to UW-Madi- 3 mediate and repeated che- son tenure-track and tenured faculty and permanent motherapy. Her big grant principle investigators (PI’s), regardless of discipline Special Events renewal proposal is due in or gender, who “are at critical junctures in their pro- Focusing on two months. fessional careers and whose research productivity has Women in Physics He’s enjoying mid-ca- been directly affected by personal life events (e.g., ill- 4 Bernice Durand reer national prominence. ness of a dependent, parent, spouse/partner, or oneself; Non-traditional Wham! He has a heart at- complications from childbirth; combination of major Careers tack. His cardiologist says he needs bypass surgery life events)” (1). 5 — soon! His big grant renewal proposal is due in two Where did the Life Cycle grants come from? From months. A lot of people’s livelihoods and careers de- 2002 to 2006, we had one of the first NSF five-year MGM Award pend on those grants. ADVANCE Institutional Transformation grants (2). 7 Health and family crises are often career crises, The grant was named WISELI (3), for Women in Sci- and they can be ruinous. Overnight your career can be ence and Engineering Leadership Institute. The two 25 Women Named in serious jeopardy. Although men and women experi- PI’s and Co-Directors were Molly Carnes (4) and Jo APS Fellows ence these kinds of events, for women they may tend continued on page 10 8 to occur earlier in the career (e.g., prior to the tenure Careers Corner 11 Balancing Career and Family: Suggestions Ask the By Andrea Liu, University of Pennsylvania Physics Mentor 12 t the 2007 APS March Meeting, CSWP spon- members who have young children as well as highly Asored a panel discussion on the topic, “Women in successful scientific careers. The second aim was to Katherine Weimer academic science: balancing career and family.” The collect practical strategies for balancing career and Award panel members were Susan Coppersmith (University family from the panelists. The final aim was to compile 12 of Wisconsin, Madison), Marija Drndic (University of a list of recommendations for departments, academic Pennsylvania), Ka Yee Lee (University of Chicago), institutions, funding agencies and professional societ- Thank you, ies. Several female graduate students in the audience Nina Byers! Nadya Mason (University of Illinois, Urbana-Cham- commented that they came from departments with no 13 paign), and Katharina Vollmayr-Lee (Bucknell Col- lege). The panel was chaired by Andrea Liu (University women faculty and that it was inspiring merely to see Blewett Scholarship of Pennsylvania). the panelists gathered together as a group. 14 The challenge of balancing career with family is Each panelist presented a list of recommenda- listed by many women as the primary reason for leav- tions that she felt would make a real and immediate Forms ing academic science. The panel discussion had three difference to women academic scientists. As several 15-19 aims. One aim was to provide the audience with an panelists pointed out, many of the recommendations “existence proof” by gathering several women faculty continued on page 2 2 Balancing Career and Family, continued from page 1 The Editor for this issue: Bernice Durand would benefit men as well as women. These recom- responsibility, but the resources must come from (past member of CSWP) mendations were collected and distilled into a final list, the university. University of Wisconsin presented below. Those viewed to be the most impor- • Provide high-quality, extended day care on Managing Editor tant by the panel are in boldfaced font. Many of the campus. Sue Otwell, APS Staff recommendations concern special policies for faculty 1. Priority should be given to faculty who members who are undergoing major life events, de- Members of the are single parents, and those with full-time fined as follows: childbirth, adoption, serious illness, Committee working partners. extraordinary emotional stress or primary care of sick Catherine Fiore, parent. 2. Subsidize this for graduate students and Chair 2008 postdocs, with priority for those who are MIT Recommendations to Departments: single parents, and for those with partners Nora Berrah who are full-time students or hold full-time Western Michigan • Do not schedule activities after 5 PM or on University jobs. weekends, unless children may attend. Nancy M Haegel 3. This should have enough capacity that Naval Postgraduate • Make meetings, etc., as efficient as possible. trying to get a slot is not stressful. School • Make it clear that faculty members are welcome Apriel Hodari to bring babies/children to work. Recommendations to Funding Agencies: CNA Corporation • Allow dual-academic couples to have non- • Make it clear that diversity is an important goal Eliane Lessner overlapping teaching schedules, even if (the NSF has worked hard on this). Argonne National this requires some coordination with other • Allow no-cost extensions for grants to allow part- Laboratory departments. time postdoc and graduate researcher positions. Andrea Liu • Support climate changes (more role models, University of • Be flexible enough to quickly establish more mentoring; see APS Best Practices Pennsylvania fellowship programs for part-time postdocs. http://www.aps.org/ programs/women/reports/ Mary Hall Reno • Establish programs similar to the NSF RUI Univ of Iowa bestpractices/female-faculty.cfm). (Research in Undergraduate Institutions), to • Provide up to one year of relief from recognize the toll on research productivity of Lidija Sekaric departmental service for major life events (see IBM TJ Watson parents with young children. examples at top of page). • Provide one-year funded grant extensions for Yevgeniya V Zastavker • Provide up to one year teaching relief for Franklin W Olin College major life events. of Engineering major life events. This is best carried out in the broader context of all the science and • Make dependent child care to enable traveling an APS Liaisons engineering departments; see below. The policy allowable expense. should be clear and should be consistent from Theodore Hodapp Recommendations to Professional Societies: Director, Education & chairperson to chairperson and across science Diversity and engineering departments. • Provide dependent child care awards to enable people to attend conferences. The Division of Sue Otwell Recommendations to Academic Institutions: Education Programs Chemical Physics of the American Physical Administrator • Make it clear that diversity is an important goal. Society now provides such grants for its members to attend the March meeting. Note: Leanne Poteet • Do not schedule meetings after 5 PM. Graphic Designer In 2008, APS will provide small grants of up to • Provide faculty grants for child care while $200 to assist attendees who are bringing small Publication Information attending a meeting or participating in off-site children to the annual March (New Orleans) The CSWP GAZETTE, a research. and April (St. Louis) meetings of the society. newsletter of the American Physical Society • Adopt an automatic one-year delay in tenure A bulletin board has been set up for those who Committee on the Status clock for major life events, with the option of wish to share child care. Preference will be given of Women in Physics turning this down. to applicants in the early stages of their careers. (CSWP), is mailed free Details at http://www.aps.org/meetings/march/ of charge to all those • Provide one year of relief from university service listed on the “Roster of for major life events. general.cfm. Women in Physics,” all • Advocate part-time postdoctoral positions for U.S. physics department • Adopt a flexible approach to the two-body chairs, and others problem. This includes showing willingness people who wish to have children. upon request. Because to release new FTE’s for spousal hiring if the • Provide active support for all of the above editorial responsibility department involved is in favor, and allowing recommendations to departments, academic rotates among CSWP members, please address split appointments (e.g. 2/3 appointment institutions and funding agencies. all correspondence to: for each), especially at primarily teaching CSWP Gazette, American institutions. Most of the recommendations are self-explanatory, but Physical Society, One Physics Ellipse, College • Provide up to one year of paid teaching relief the recommendation of up to one year of paid teaching Park, MD 20740-3844, or for major life events (see examples preceding relief deserves some discussion. Why teaching relief, email to: [email protected]. list). This is often considered a departmental continued on page 6 3 Take a Student to Lunch! By Catherine Fiore, MIT, CSWP chair 2008 ncreasing the number of women who have success- Over the past few years some of the members of our Iful physics careers will rely not only on expanding lunch group have experienced divorce, single mother- We welcome all the available pipeline, but also on closing the leaks hood, pregnancy, cancer. We celebrate graduations and women students to in the pipeline we have. There are two recent trends babies as they come.
Recommended publications
  • Marietta Blau in the History of Cosmic Rays Per Carlson
    Physics Today Marietta Blau in the history of cosmic rays Per Carlson Citation: Physics Today 65(10), 8 (2012); doi: 10.1063/PT.3.1729 View online: http://dx.doi.org/10.1063/PT.3.1729 View Table of Contents: http://scitation.aip.org/content/aip/magazine/physicstoday/65/10?ver=pdfcov Published by the AIP Publishing Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP: 149.28.91.2 On: Thu, 30 Jun 2016 17:53:16 readers’ forum Marietta Blau in the history of cosmic rays er Carlson, in his article “A century have been formed by cosmic particles ex- contributions deserve a prominent and Pof cosmic rays” (PHYSICS TODAY, plosively disintegrating heavy nuclei in permanent place in any history of February 2012, page 30), states that the emulsion. That discovery, in 1937, cosmic-ray and particle physics. And I the investigation of cosmic rays opened created a sensation among nuclear and believe it is also important, given the up the field of particle physics. How- cosmic-ray physicists worldwide, and by much-discussed problem of the under- ever, he neglects the importance of nu- demonstrating that nuclear emulsions representation of women in physics, clear emulsions in the progress of par- had come of age for recording rare high- that PHYSICS TODAY take care not to ticle physics, and he fails to mention a energy nuclear events, it paved the way overlook women who, like Blau, made key figure, Austrian physicist Marietta for further research in particle physics.
    [Show full text]
  • Marietta Blau's Work After World War II Arnold Perlmutter Department Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Marietta Blau's Work After World War II Arnold Perlmutter Department of Physics University of Miami Coral Gables, Florida 33124 completed, October 27, 2000 This paper has been translated into German and will be included, in a somewhat altered form, in a book Sterne der Zertrummerung, Marietta Blau, Wegbereiterin der Moderne Teilchenphysik, Brigitte Strohmaier and Robert Rosner, eds., Boehlau Verlag, Wien. 1 A. Introduction While it is clear that the seminal work of Dr. Marietta Blau was done in the 1920’s and especially in the 1930’s, it is also evident that her separation from the great research centers from 1938 to 1944 had a devastating effect on her productivity. It was during this period that Cecil F. Powell, at Bristol University, made use of Blau’s earlier tutelage on the preparation and analysis of photographic emulsions. According to Blau’s conversations with me (much later), she consulted with Ilford in the 1930’s to improve emulsion sensitivity and uniformity, and presumably had also imparted crucial lore of the technique to Powell. C.F. Powell, who had been a student of C.T.R. Wilson, had employed cloud chambers in a wide variety of studies in vulcanology, mechanical engineering, and nuclear physics. In 1938 and 1939 Powell’s experimental efforts turned to the use of photographic emulsions to investigate neutron interactions, and then to nuclear reactions1. With the coming of the war and then the British nuclear atomic bomb project, Powell established a formidable laboratory and collaboration for the analysis of emulsions and for their improvement by Ilford and Kodak.
    [Show full text]
  • An Investigation Into Jamming Percolation Using Renormalization
    An investigation into jamming percolation using renormalization group methods. Samuel Schoenholz Under the supervision of Professor Amy Bug and Professor Andrea Liu March 22, 2010 1 1 Overview Many systems in nature fail to satisfy the ergodic hypothesis and feature strong nonequilibrium behavior. These systems have proven remarkably difficult to study. In recent years theorists have studied a phase transition known as the jamming phase transition. The jamming phase transition unifies several far from equilibrium phase transitions including: the glass transition, the solidification of granular media in response to shearing forces, and the stiffening of colloids in response to increases in pressure. It has recently been shown that certain correlated percolation models can exhibit behavior analogous to the jamming phase transition. In particular this has been shown for two models, coined the spiral model and the force-balance model. The primary goal of this study was to determine whether or not the spiral model and the force-balance model reside in the same universality class. To investigate this issue we used the renormalization group to perform a numerical investigation of the spiral model and force balance model. There is evidence to suggest that both models feature exponential, as opposed to power-law scaling of the correlation function. It was therefore difficult to investigate, in a computationally feasible way, large enough systems so as to reduce the finite size effects. To do this we came up with a variety of algorithms including: a Monte-Carlo method, a binary search, and a linear time culling algorithm. The combination of these three strategies allowed us to investigate significantly larger systems than had been investigated in the past.
    [Show full text]
  • Chapter 6 the Aftermath of the Cambridge-Vienna Controversy: Radioactivity and Politics in Vienna in the 1930S
    Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 6 The Aftermath of the Cambridge-Vienna Controversy: Radioactivity and Politics in Vienna in the 1930s Consequences of the Cambridge-Vienna episode ranged from the entrance of other 1 research centers into the field as the study of the atomic nucleus became a promising area of scientific investigation to the development of new experimental methods. As Jeff Hughes describes, three key groups turned to the study of atomic nucleus. Gerhard Hoffman and his student Heinz Pose studied artificial disintegration at the Physics Institute of the University of Halle using a polonium source sent by Meyer.1 In Paris, Maurice de Broglie turned his well-equipped laboratory for x-ray research into a center for radioactivity studies and Madame Curie started to accumulate polonium for research on artificial disintegration. The need to replace the scintillation counters with a more reliable technique also 2 led to the extensive use of the cloud chamber in Cambridge.2 Simultaneously, the development of electric counting methods for measuring alpha particles in Rutherford's laboratory secured quantitative investigations and prompted Stetter and Schmidt from the Vienna Institute to focus on the valve amplifier technique.3 Essential for the work in both the Cambridge and the Vienna laboratories was the use of polonium as a strong source of alpha particles for those methods as an alternative to the scintillation technique. Besides serving as a place for scientific production, the laboratory was definitely 3 also a space for work where tasks were labeled as skilled and unskilled and positions were divided to those paid monthly and those supported by grant money or by research fellowships.
    [Show full text]
  • From the Discovery of Radioactivity to the First Accelerator Experiments
    Chapter 2 From the Discovery of Radioactivity to the First Accelerator Experiments Michael Walter 2.1 Introduction The article reviews the historical phases of cosmic ray research from the very be- ginning around 1900 until the 1940s, when the first particle accelerators replaced cosmic particles as a source for elementary particle interactions. Contrary to the discovery of X-rays or the ionising α-, β- and γ -rays, it was an arduous path to the definite acceptance of the new radiation. The development in the years before the discovery is described in Sect. 2.2. The following section deals with the work of Victor F. Hess, especially with the detection of extraterrestrial radiation in 1912 and the years until the final acceptance by the scientific community. In Sect. 2.4 the study of the properties of cosmic rays is discussed. Innovative detectors and meth- ods like the cloud chamber, the Geiger–Müller counter and the coincidence circuit brought new stimuli. The origin of cosmic rays was and is still an unsolved ques- tion. The different hypotheses of the early time are summarised in Sect. 2.5.Inthe 1930s a scientific success story started which nobody of the first protagonists might have imagined. The discovery of the positron by C.D. Anderson was the birth of elementary particle physics. The 15 years until a new era started in 1947 with first accelerator experiments at the Berkeley synchro-cyclotron are described in Sect. 2.6. It is obvious that this article can only cover the main steps of the historical de- velopment. An excellent description of the research on the “Höhenstrahlung” in the years between 1900 and 1936 was given by Miehlnickel (1938).
    [Show full text]
  • The Dynamics Is Encoded in the Pair Correlation Function François Landes, Giulio Biroli, Olivier Dauchot, Andrea Liu, David Reichman
    Attractive versus truncated repulsive supercooled liquids: The dynamics is encoded in the pair correlation function François Landes, Giulio Biroli, Olivier Dauchot, Andrea Liu, David Reichman To cite this version: François Landes, Giulio Biroli, Olivier Dauchot, Andrea Liu, David Reichman. Attractive versus truncated repulsive supercooled liquids: The dynamics is encoded in the pair correlation function. Physical Review E , American Physical Society (APS), 2020, 101 (1), 10.1103/PhysRevE.101.010602. hal-02439295 HAL Id: hal-02439295 https://hal.inria.fr/hal-02439295 Submitted on 14 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Attractive versus truncated repulsive supercooled liquids: The dynamics is encoded in the pair correlation function Fran¸coisP. Landes,1, 2, 3, 4 Giulio Biroli,2 Olivier Dauchot,5 Andrea J. Liu,3 and David R. Reichman4 1LRI, AO team, B^at660 Universit´eParis Sud, Orsay 91405, France∗ 2Laboratoire de Physique de l'Ecole´ normale sup´erieure, ENS, Universit´ePSL, CNRS, Sorbonne Universit´e, Universit´eParis-Diderot, Sorbonne Paris Cit´e,Paris, France 3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 4Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA 5UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France We compare glassy dynamics in two liquids that differ in the form of their interaction poten- tials.
    [Show full text]
  • Of Cosmic Ray Physics
    Some Unsung Heroines (and a Few Heroes) of Cosmic Ray Physics Virginia Trimble Dept. of Physics & Astronomy, University of California, Irvine CA 92697-4575 and Las Cumbres Observatory Global Telescope Network Abstract. The women physicists whose work will be featured are Marietta Blau, Madelaine Forro Barnothy, Phyllis Freier, and Connie Dilworth. The "gluons" that connected their lives to each other (and to the author) included Georges Lemaitre, Manuel Sandoval Vallarta, Cecil Powell, Guiseppi Occhialini, Ken Greisen, Beatrice Tinsley, Hannelore Sexl, and perhaps Elizabeth Rona. Most of the stories are not entirely happy ones. For instance it was Sandoval Vallarta who offered Blau (and her mother) refuge in Mexico when they had to leave Vienna. Vallarta was also Lemaitre's collaborator in calculations of how cosmic rays got to us through the earth's magnetic field. The sad part there is that somehow Lemaitre was never disabused of the view that cosmic rays were direct remnants of his primordial atom and not primarily protons. The result was his gradual exile from main-stream scientific communities. Keywords: cosmic ray, women scientists PACS: 96.50.S-, 01.65.+g INTRODUCTION This presentation had its origins in an invitation from the Victor F. Hess Foundation of Poellau, Austria to speak on some topic in the history of cosmic ray physics at their May, 2012 celebration of the discovery centenary. In due course I decided that a better description than heroines and heroes might be quarks (very important but very hard to observe in isolation) and gluons. This summary makes use of incomplete sentences and references run into the text as space-saving measures.
    [Show full text]
  • Biography Handout Marietta Blau, Austrian Particle Physicist
    Biography Handout Marietta Blau, Austrian Particle Physicist Marietta Blau was a particle physicist who played an important role in developing photographic techniques to detect particles. After completing her doctorate in 1919 at the University of Vienna, she could not find any suitable research positions with income or status in Vienna. She pursued her own research as an unpaid volunteer at the Institute for Radium Research in Vienna, where she performed groundbreaking research throughout much of the 1920s and 1930s. While at the Institute, Blau developed photographic nuclear emulsions, a way to take pictures of high energy interactions of nuclear particles. She recruited doctoral student Hertha Wambacher to aid her, and together in 1937 they discovered cosmic ray “disintegration stars” – micro configurations of particle paths resulting from the split of a nucleus hit by a cosmic ray. She also worked on identifying alpha particles and protons and attempting to determine their energy, among other new research. Blau faced great prejudice due to her gender and Jewish religion. When Hitler annexed Austria in 1938, Blau was working in Norway but was forced to flee. With the help of a recommendation from Albert Einstein, she acquired a secure position as a professor in Mexico City. Before she left Austria, her scientific papers were confiscated by German officials in Hamburg, some of which included plans for future research. Later on, some of the ideas were published by her former collaborator Wambacher and G. Stetter, both who were supporters of the Nazi party. Blau spent a few years in Mexico before moving to the United States in 1944 to further her research.
    [Show full text]
  • Arxiv:2006.09592V4 [Cond-Mat.Soft] 21 Apr 2021 13]
    Mean-Field Predictions of Scaling Prefactors Match Low-Dimensional Jammed Packings James D. Sartor∗, Sean A. Ridout†, Eric I. Corwin∗ ∗Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA †Department of Physics and Astronomy University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Dated: April 22, 2021) No known analytic framework precisely explains all the phenomena observed in jamming. The replica theory for glasses and jamming is a mean-field theory which attempts to do so by working in the limit of infinite dimensions, such that correlations between neighbors are negligible. As such, results from this mean-field theory are not guaranteed to be observed in finite dimensions. However, many results in mean field for jamming have been shown to be exact or nearly exact in low dimensions. This suggests that the infinite dimensional limit is not necessary to obtain these results. In this Letter, we perform precision measurements of jamming scaling relationships between pressure, excess packing fraction, and number of excess contacts from dimensions 2–10 in order to extract the prefactors to these scalings. While these prefactors should be highly sensitive to finite dimensional corrections, we find the mean-field predictions for these prefactors to be exact in low dimensions. Thus the mean-field approximation is not necessary for deriving these prefactors. We present an exact, first-principles derivation for one, leaving the other as an open question. Our results suggest that mean-field theories of critical phenomena may compute more for d du than has been previously appreciated. ≥ Introduction – Granular materials exhibit universal these results.
    [Show full text]
  • Jamming Phase Diagram, Effective Temperature, and Heterogeneous Dynamics of Model Glass-Forming Liquids
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 2010 Jamming Phase Diagram, Effective Temperature, and Heterogeneous Dynamics of Model Glass-Forming Liquids Thomas K. Haxton University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Condensed Matter Physics Commons Recommended Citation Haxton, Thomas K., "Jamming Phase Diagram, Effective Temperature, and Heterogeneous Dynamics of Model Glass-Forming Liquids" (2010). Publicly Accessible Penn Dissertations. 235. https://repository.upenn.edu/edissertations/235 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/235 For more information, please contact [email protected]. Jamming Phase Diagram, Effective Temperature, and Heterogeneous Dynamics of Model Glass-Forming Liquids Abstract We establish that the behavior of fluids consisting of epulsivr e spheres under the combined effects of pressure p, temperature T, and applied shear stress s can be organized in a jamming phase diagram parameterized by the dimensionless quantities T/pd^3, s/p, and pd^3/e, where d is the diameter of the spheres and e is the interaction energy scale. The jamming phase diagram describes the three- dimensional parameter space as the product of an equilibrium plane at s/p=0 and a hard sphere plane at pd^3/e=0. Near the hard sphere plane, the jamming phase diagram is universal in the sense that material properties are insensitive to the details of the interaction potential. We demonstrate that within the universal regime, the conventional approach to the dynamic glass transition along a decreasing temperature trajectory is equivalent to the colloidal glass transition approach along an increasing pressure trajectory.
    [Show full text]
  • 6 X 10. Three Lines .P65
    Cambridge University Press 978-0-521-82197-1 - Out of the Shadows: Contributions of Twentieth-Century Women to Physics Edited by Nina Byers and Gary Williams Index More information Name index Page numbers in italics indicate photographs or figures. Names (page numbers) in bold are chapter subjects (pages). Adler, Hanna 104 Bolt, Bruce 6 Alexandrov, P. S. 85, 94 Boltzmann, Ludwig 79 Alpher, Ralph 349 Born, Max 3, 123, 128–9, 134, 187 Ambler, E. 275, 281 Bothe, W. 138 Anderson, Carl D. 77, 138 Bourbaki 84 Anderson, Elizabeth Garrett 20 Bragg, W. H. 192, 198 Arrhenius, Svante 27–8, 32 Brodsky, S. J. 432 Artin, E. 84 Brooks, Harriet 2, 32, 66–73, 66 Astbury, W. T. 192 Bullen, K. E. 101 Auger, Pierre, 77, 143, 229 Burbidge, (Eleanor) Margaret 164, 282–93, Ayrton, Hertha 2, 15, 15–25, 23, 218 282, 350 Ayrton, Will, 20, 22, 24 Burbidge, Geoffrey R. 283, 288, 350 Burnell, Martin 423 Baeyer, Otto von 76 Burnell, (Susan) Jocelyn Bell xx, 419–26, 419 Bailey, Solon 64 Bardon, Marcel 375, 376 Bassi, Laura 1 Cameron, A. G. W. 285 Becker, H. 138 Cannon, Annie Jump 62, 159, 164–5, 289 Becquerel, Henri 7, 44, 46, 50–1, 69, 229, Carlisle, Harry 242, 251 232 Cartwright, Mary Lucy xx–xxi, xxiv, Bell, Susan Jocelyn, see Burnell, Susan 169–78, 169, 188 Jocelyn Bell Cattell, James M. 33 Bemont,´ Gustave 45, 47 Cauchois, Yvette 222–30, 222 Berley, David 375 Chadwick, James 68, 112, 138, 144, 273 Bernal, John Desmond 214, 218–9, 241–2, Chandrasekhar, Subramanyan 179, 187, 320 249–50 Charpak, George xxiii Berriman, R.W.
    [Show full text]
  • In the 1920S and 1930S, Marietta Blau Developed the Method of Detect- Ing
    Hafelekar-Observatory: Disintegration Stars Introduction Einleitung In the 1920s and 1930s, Marietta Blau developed the method of detect- In den 1920er und 1930er Jahren entwickelte Marietta Blau die erste ing particles with photographic emulsions, which was the first to record Methode zur Aufzeichnung und Speicherung von Teilchenspuren mit and store particle tracks. She applied the method to measure cosmic photografischen Emulsionen. Ab 1932 wandte sie die Methode zur Mes- rays as of 1932. By courtesy of Viktor F. Hess, Blau and her colleague sung kosmischer Strahlung an. 1937 exponierten Blau und ihre Kollegin Hertha Wambacher exposed photographic plates for several months at Hertha Wambacher mit Erlaubnis von Viktor F. Hess Photoplatten the cosmic-ray observatory at Hafelekar in 1937. The developed plates einige Monate lang am Hafelekar-Observatorium. Auf den entwickelten showed tracks of particles emitted in nuclear reactions of cosmic rays Platten fanden sie Spuren von Teilchen, die in Reaktionen der kosmis- with the emulsion. Due to the starlike shape of those tracks, they were chen Strahlung mit der Emulsion entstanden. Aufgrund der Sternform called Disintegration Stars. dieser Spuren nannten sie diese \Zertr¨ummerungssterne". Marietta Blau Marietta Blau - Curriculum Vitae Original Paper 1894 : April 29, born in Vienna. 1919 : PhD graduation with honours: \Uber¨ die Ab- sorption divergenter γ - Strahlung". 1921 : Physicist in X-ray tube factory in Berlin. 1922 - 1923 : Assistant professor at University of Frankfurt/Main. 1923 - 1938 : Researcher (unpaid!) at the Vienna Radium Institute. 1937 : Discovery of \disintegration stars" at the Hafelekar Observatory. 1938 : Emigration to Mexico. 1939 - 1959 : Professor in Mexico City, Columbia University, Brookhaven National Laboratory and Uni- versity of Miami; three Nobel Prize nominations.
    [Show full text]