Real and Complex Measures

Total Page:16

File Type:pdf, Size:1020Kb

Real and Complex Measures Chapter 9 Real and Complex Measures A measure is a countably additive function from a s-algebra to [0, ¥]. In this chapter, we consider countably additive functions from a s-algebra to either R or C. The first section of this chapter shows that these functions, called real measures or complex measures, form an interesting Banach space with an appropriate norm. The second section of this chapter focuses on decomposition theorems that help us understand real and complex measures. These results will lead to a proof that the dual space of Lp(m) can be identified with Lp0(m). Dome in the main building of the University of Vienna, where Johann Radon (1887–1956) was a student and then later a faculty member. The Radon–Nikodym Theorem, which will be proved in this chapter using Hilbert space techniques, provides information analogous to differentiation for measures. CC-BY-SA Hubertl © Sheldon Axler 2020 S. Axler, Measure, Integration & Real Analysis, Graduate Texts 255 in Mathematics 282, https://doi.org/10.1007/978-3-030-33143-6_9 256 Chapter 9 Real and Complex Measures 9A Total Variation Properties of Real and Complex Measures Recall that a measurable space is a pair (X, ), where is a s-algebra on X. Recall S S also that a measure on (X, ) is a countably additive function from to [0, ¥] that takes Æ to 0. Countably additiveS functions that take values in R orSC give us new objects called real measures or complex measures. 9.1 Definition real and complex measures Suppose (X, ) is measurable space. S A function n : F is called countably additive if • S! ¥ ¥ n Ek = ∑ n(Ek) = k[=1 k 1 for every disjoint sequence E , E ,... of sets in . 1 2 S A real measure on (X, ) is a countably additive function n : R. • S S! A complex measure on (X, ) is a countably additive function n : C. • S S! The word measure can be ambiguous The terminology nonnegative in the mathematical literature. The most measure would be more appropriate common use of the word measure is as than positive measure because the we defined it in Chapter 2 (see 2.54). function m : F defined by However, some mathematicians use the S! m(E) = 0 for every E is a word measure to include what are here positive measure. However,2 S we will called real and complex measures; they stick with tradition and use the then use the phrase positive measure to phrase positive measure. refer to what we defined as a measure in 2.54. To help relieve this ambiguity, in this chapter we usually use the phrase (positive) measure to refer to measures as defined in 2.54. Putting positive in paren- theses helps reinforce the idea that it is optional while distinguishing such measures from real and complex measures. 9.2 Example real and complex measures Let l denote Lebesgue measure on [ 1, 1]. Define n on the Borel subsets of • [ 1, 1] by − − n(E) = l E [0, 1] l E [ 1, 0) . \ − \ − Then n is a real measure. If m1 and m2 are finite (positive) measures, then m1 m2 is a real measure and • a m + a m is a complex measure for all a , a C−. 1 1 2 2 1 2 2 If n is a complex measure, then Re n and Im n are real measures. • Section 9A Total Variation 257 Note that every real measure is a complex measure. Note also that by definition, ¥ is not an allowable value for a real or complex measure. Thus a (positive) measure m on (X, ) is a real measure if and only if m(X) < ¥. Some authorsS use the terminology signed measure instead of real measure; some authors allow a real measure to take on the value ¥ or ¥ (but not both, because the expression ¥ ¥ must be avoided). However, real measures− as defined here serve us better because− we need to avoid ¥ when considering the Banach space of real or complex measures on a measurable space (see 9.18). For (positive) measures, we had to make m(Æ) = 0 part of the definition to avoid the function m that assigns ¥ to all sets, including the empty set. But ¥ is not an allowable value for real or complex measures. Thus n(Æ) = 0 is a consequence of our definition rather than part of the definition, as shown in the next result. 9.3 absolute convergence for a disjoint union Suppose n is a complex measure on a measurable space (X, ). Then S (a) n(Æ) = 0; ¥ ¥ (b) ∑ n(Ek) < for every disjoint sequence E1, E2,... of sets in . k=1j j S Proof To prove (a), note that Æ, Æ,... is a disjoint sequence of sets in whose union equals Æ. Thus S ¥ n(Æ) = ∑ n(Æ). k=1 The right side of the equation above makes sense as an element of R or C only when n(Æ) = 0, which proves (a). To prove (b), suppose E1, E2,... is a disjoint sequence of sets in . First suppose n is a real measure. Thus S n E = ∑ n(E ) = ∑ n(E ) k k j k j k : n(E )>0 k : n(Ek)>0 k : n(Ek)>0 f [k g f g f g and n E = ∑ n(E ) = ∑ n(E ) . − k − k j k j k : n(E )<0 k : n(Ek)<0 k : n(Ek)<0 f [k g f g f g Because n(E) R for every E , the right side of the last two displayed equations ∑2¥ 2¥ S is finite. Thus k=1 n(Ek) < , as desired. Now consider thej case wherej n is a complex measure. Then ¥ ¥ ¥ ∑ n(Ek) ∑ (Re n)(Ek) + (Im n)(Ek) < , k=1j j ≤ k=1 j j j j where the last inequality follows from applying the result for real measures to the real measures Re n and Im n. 258 Chapter 9 Real and Complex Measures The next definition provides an important class of examples of real and complex measures. 9.4 measure determined by an 1-function L Suppose m is a (positive) measure on a measurable space (X, ) and h 1(m). Define n : F by S 2 L S! n(E) = h dm. ZE Then n is a real measure on (X, ) if F = R and is a complex measure on (X, ) if F = C. S S Proof Suppose E , E , ... is a disjoint sequence of sets in . Then 1 2 S ¥ ¥ ¥ ¥ 9.5 n E = ∑ c (x)h(x) dm(x) = ∑ c h dm = ∑ n(E ), k Ek Ek k = = = k[=1 Z k 1 k 1 Z k 1 where the first equality holds because the sets E1, E2,... are disjoint and the second equality follows from the inequality m ∑ c (x)h(x) h(x) , Ek ≤ j j k=1 which along with the assumption that h 1( m) allows us to interchange the integral and limit of the partial sums by the Dominated2 L Convergence Theorem (3.31). The countable additivity shown in 9.5 means n is a real or complex measure. The next definition simply gives a notation for the measure defined in the previous result. In the notation that we are about to define, the symbol d has no separate meaning—it functions to separate h and m. 9.6 Definition h dm Suppose m is a (positive) measure on a measurable space (X, ) and h 1(m). S 2 L Then h dm is the real or complex measure on (X, ) defined by S (h dm)(E) = h dm. ZE Note that if a function h 1(m) takes values in [0, ¥), then h dm is a finite (positive) measure. 2 L The next result shows some basic properties of complex measures. No proofs are given because the proofs are the same as the proofs of the corresponding results for (positive) measures. Specifically, see the proofs of 2.57, 2.61, 2.59, and 2.60. Because complex measures cannot take on the value ¥, we do not need to worry about hypotheses of finite measure that are required of the (positive) measure versions of all but part (c). Section 9A Total Variation 259 9.7 properties of complex measures Suppose n is a complex measure on a measurable space (X, ). Then S (a) n(E D) = n(E) n(D) for all D, E with D E; n − 2 S ⊂ (b) n(D E) = n(D) + n(E) n(D E) for all D, E ; [ − \ 2 S ¥ (c) n Ek = lim n(Ek) k ¥ k[=1 ! for all increasing sequences E E of sets in ; 1 ⊂ 2 ⊂ · · · S ¥ (d) n Ek = lim n(Ek) k ¥ k\=1 ! for all decreasing sequences E E of sets in . 1 ⊃ 2 ⊃ · · · S Total Variation Measure We use the terminology total variation measure below even though we have not yet shown that the object being defined is a measure. Soon we will justify this terminology (see 9.11). 9.8 Definition total variation measure Suppose n is a complex measure on a measurable space (X, ). The total variation measure is the function n : [0, ¥] defined by S j j S! n (E) = sup n(E ) + + n(E ) : n Z+ and E ,..., E j j j 1 j ··· j n j 2 1 n are disjoint sets in such that E E E . S 1 [···[ n ⊂ To start getting familiar with the definition above, you should verify that if n is a complex measure on (X, ) and E , then S 2 S n(E) n (E); • j j ≤ j j n (E) = n(E) if n is a finite (positive) measure; • j j n (E) = 0 if and only if n(A) = 0 for every A such that A E.
Recommended publications
  • Complex Measures 1 11
    Tutorial 11: Complex Measures 1 11. Complex Measures In the following, (Ω, F) denotes an arbitrary measurable space. Definition 90 Let (an)n≥1 be a sequence of complex numbers. We a say that ( n)n≥1 has the permutation property if and only if, for ∗ ∗ +∞ 1 all bijections σ : N → N ,theseries k=1 aσ(k) converges in C Exercise 1. Let (an)n≥1 be a sequence of complex numbers. 1. Show that if (an)n≥1 has the permutation property, then the same is true of (Re(an))n≥1 and (Im(an))n≥1. +∞ 2. Suppose an ∈ R for all n ≥ 1. Show that if k=1 ak converges: +∞ +∞ +∞ + − |ak| =+∞⇒ ak = ak =+∞ k=1 k=1 k=1 1which excludes ±∞ as limit. www.probability.net Tutorial 11: Complex Measures 2 Exercise 2. Let (an)n≥1 be a sequence in R, such that the series +∞ +∞ k=1 ak converges, and k=1 |ak| =+∞.LetA>0. We define: + − N = {k ≥ 1:ak ≥ 0} ,N = {k ≥ 1:ak < 0} 1. Show that N + and N − are infinite. 2. Let φ+ : N∗ → N + and φ− : N∗ → N − be two bijections. Show the existence of k1 ≥ 1 such that: k1 aφ+(k) ≥ A k=1 3. Show the existence of an increasing sequence (kp)p≥1 such that: kp aφ+(k) ≥ A k=kp−1+1 www.probability.net Tutorial 11: Complex Measures 3 for all p ≥ 1, where k0 =0. 4. Consider the permutation σ : N∗ → N∗ defined informally by: φ− ,φ+ ,...,φ+ k ,φ− ,φ+ k ,...,φ+ k ,..
    [Show full text]
  • The Total Variation Flow∗
    THE TOTAL VARIATION FLOW∗ Fuensanta Andreu and Jos´eM. Maz´on† Abstract We summarize in this lectures some of our results about the Min- imizing Total Variation Flow, which have been mainly motivated by problems arising in Image Processing. First, we recall the role played by the Total Variation in Image Processing, in particular the varia- tional formulation of the restoration problem. Next we outline some of the tools we need: functions of bounded variation (Section 2), par- ing between measures and bounded functions (Section 3) and gradient flows in Hilbert spaces (Section 4). Section 5 is devoted to the Neu- mann problem for the Total variation Flow. Finally, in Section 6 we study the Cauchy problem for the Total Variation Flow. 1 The Total Variation Flow in Image Pro- cessing We suppose that our image (or data) ud is a function defined on a bounded and piecewise smooth open set D of IRN - typically a rectangle in IR2. Gen- erally, the degradation of the image occurs during image acquisition and can be modeled by a linear and translation invariant blur and additive noise. The equation relating u, the real image, to ud can be written as ud = Ku + n, (1) where K is a convolution operator with impulse response k, i.e., Ku = k ∗ u, and n is an additive white noise of standard deviation σ. In practice, the noise can be considered as Gaussian. ∗Notes from the course given in the Summer School “Calculus of Variations”, Roma, July 4-8, 2005 †Departamento de An´alisis Matem´atico, Universitat de Valencia, 46100 Burjassot (Va- lencia), Spain, [email protected], [email protected] 1 The problem of recovering u from ud is ill-posed.
    [Show full text]
  • Appendix A. Measure and Integration
    Appendix A. Measure and integration We suppose the reader is familiar with the basic facts concerning set theory and integration as they are presented in the introductory course of analysis. In this appendix, we review them briefly, and add some more which we shall need in the text. Basic references for proofs and a detailed exposition are, e.g., [[ H a l 1 ]] , [[ J a r 1 , 2 ]] , [[ K F 1 , 2 ]] , [[ L i L ]] , [[ R u 1 ]] , or any other textbook on analysis you might prefer. A.1 Sets, mappings, relations A set is a collection of objects called elements. The symbol card X denotes the cardi- nality of the set X. The subset M consisting of the elements of X which satisfy the conditions P1(x),...,Pn(x) is usually written as M = { x ∈ X : P1(x),...,Pn(x) }.A set whose elements are certain sets is called a system or family of these sets; the family of all subsystems of a given X is denoted as 2X . The operations of union, intersection, and set difference are introduced in the standard way; the first two of these are commutative, associative, and mutually distributive. In a { } system Mα of any cardinality, the de Morgan relations , X \ Mα = (X \ Mα)and X \ Mα = (X \ Mα), α α α α are valid. Another elementary property is the following: for any family {Mn} ,whichis { } at most countable, there is a disjoint family Nn of the same cardinality such that ⊂ \ ∪ \ Nn Mn and n Nn = n Mn.Theset(M N) (N M) is called the symmetric difference of the sets M,N and denoted as M #N.
    [Show full text]
  • Integration 1 Measurable Functions
    Integration References: Bass (Real Analysis for Graduate Students), Folland (Real Analysis), Athreya and Lahiri (Measure Theory and Probability Theory). 1 Measurable Functions Let (Ω1; F1) and (Ω2; F2) be measurable spaces. Definition 1 A function T :Ω1 ! Ω2 is (F1; F2)-measurable if for every −1 E 2 F2, T (E) 2 F1. Terminology: If (Ω; F) is a measurable space and f is a real-valued func- tion on Ω, it's called F-measurable or simply measurable, if it is (F; B(<))- measurable. A function f : < ! < is called Borel measurable if the σ-algebra used on the domain and codomain is B(<). If the σ-algebra on the domain is Lebesgue, f is called Lebesgue measurable. Example 1 Measurability of a function is related to the σ-algebras that are chosen in the domain and codomain. Let Ω = f0; 1g. If the σ-algebra is P(Ω), every real valued function is measurable. Indeed, let f :Ω ! <, and E 2 B(<). It is clear that f −1(E) 2 P(Ω) (this includes the case where f −1(E) = ;). However, if F = f;; Ωg is the σ-algebra, only the constant functions are measurable. Indeed, if f(x) = a; 8x 2 Ω, then for any Borel set E containing a, f −1(E) = Ω 2 F. But if f is a function s.t. f(0) 6= f(1), then, any Borel set E containing f(0) but not f(1) will satisfy f −1(E) = f0g 2= F. 1 It is hard to check for measurability of a function using the definition, because it requires checking the preimages of all sets in F2.
    [Show full text]
  • Measure and Integration (Under Construction)
    Measure and Integration (under construction) Gustav Holzegel∗ April 24, 2017 Abstract These notes accompany the lecture course ”Measure and Integration” at Imperial College London (Autumn 2016). They follow very closely the text “Real-Analysis” by Stein-Shakarchi, in fact most proofs are simple rephrasings of the proofs presented in the aforementioned book. Contents 1 Motivation 3 1.1 Quick review of the Riemann integral . 3 1.2 Drawbacks of the class R, motivation of the Lebesgue theory . 4 1.2.1 Limits of functions . 5 1.2.2 Lengthofcurves ....................... 5 1.2.3 TheFundamentalTheoremofCalculus . 5 1.3 Measures of sets in R ......................... 6 1.4 LiteratureandFurtherReading . 6 2 Measure Theory: Lebesgue Measure in Rd 7 2.1 Preliminaries and Notation . 7 2.2 VolumeofRectanglesandCubes . 7 2.3 Theexteriormeasure......................... 9 2.3.1 Examples ........................... 9 2.3.2 Propertiesoftheexteriormeasure . 10 2.4 Theclassof(Lebesgue)measurablesets . 12 2.4.1 The property of countable additivity . 14 2.4.2 Regularity properties of the Lebesgue measure . 15 2.4.3 Invariance properties of the Lebesgue measure . 16 2.4.4 σ-algebrasandBorelsets . 16 2.5 Constructionofanon-measurableset. 17 2.6 MeasurableFunctions ........................ 19 2.6.1 Some abstract preliminary remarks . 19 2.6.2 Definitions and equivalent formulations of measurability . 19 2.6.3 Properties 1: Behaviour under compositions . 21 2.6.4 Properties 2: Behaviour under limits . 21 2.6.5 Properties3: Behaviourof sums and products . 22 ∗Imperial College London, Department of Mathematics, South Kensington Campus, Lon- don SW7 2AZ, United Kingdom. 1 2.6.6 Thenotionof“almosteverywhere”. 22 2.7 Building blocks of integration theory .
    [Show full text]
  • LEBESGUE MEASURE and L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References
    LEBESGUE MEASURE AND L2 SPACE. ANNIE WANG Abstract. This paper begins with an introduction to measure spaces and the Lebesgue theory of measure and integration. Several important theorems regarding the Lebesgue integral are then developed. Finally, we prove the completeness of the L2(µ) space and show that it is a metric space, and a Hilbert space. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References 9 1. Measure Spaces Definition 1.1. Suppose X is a set. Then X is said to be a measure space if there exists a σ-ring M (that is, M is a nonempty family of subsets of X closed under countable unions and under complements)of subsets of X and a non-negative countably additive set function µ (called a measure) defined on M . If X 2 M, then X is said to be a measurable space. For example, let X = Rp, M the collection of Lebesgue-measurable subsets of Rp, and µ the Lebesgue measure. Another measure space can be found by taking X to be the set of all positive integers, M the collection of all subsets of X, and µ(E) the number of elements of E. We will be interested only in a special case of the measure, the Lebesgue measure. The Lebesgue measure allows us to extend the notions of length and volume to more complicated sets. Definition 1.2. Let Rp be a p-dimensional Euclidean space . We denote an interval p of R by the set of points x = (x1; :::; xp) such that (1.3) ai ≤ xi ≤ bi (i = 1; : : : ; p) Definition 1.4.
    [Show full text]
  • 1 Measurable Functions
    36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Dol´eans-Dade; Sec 1.3 and 1.4 of Durrett. 1 Measurable Functions 1.1 Measurable functions Measurable functions are functions that we can integrate with respect to measures in much the same way that continuous functions can be integrated \dx". Recall that the Riemann integral of a continuous function f over a bounded interval is defined as a limit of sums of lengths of subintervals times values of f on the subintervals. The measure of a set generalizes the length while elements of the σ-field generalize the intervals. Recall that a real-valued function is continuous if and only if the inverse image of every open set is open. This generalizes to the inverse image of every measurable set being measurable. Definition 1 (Measurable Functions). Let (Ω; F) and (S; A) be measurable spaces. Let f :Ω ! S be a function that satisfies f −1(A) 2 F for each A 2 A. Then we say that f is F=A-measurable. If the σ-field’s are to be understood from context, we simply say that f is measurable. Example 2. Let F = 2Ω. Then every function from Ω to a set S is measurable no matter what A is. Example 3. Let A = f?;Sg. Then every function from a set Ω to S is measurable, no matter what F is. Proving that a function is measurable is facilitated by noticing that inverse image commutes with union, complement, and intersection.
    [Show full text]
  • Gsm076-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/076 Measur e Theor y an d Integratio n This page intentionally left blank Measur e Theor y an d Integratio n Michael E.Taylor Graduate Studies in Mathematics Volume 76 M^^t| American Mathematical Society ^MMOT Providence, Rhode Island Editorial Board David Cox Walter Craig Nikolai Ivanov Steven G. Krantz David Saltman (Chair) 2000 Mathematics Subject Classification. Primary 28-01. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-76 Library of Congress Cataloging-in-Publication Data Taylor, Michael Eugene, 1946- Measure theory and integration / Michael E. Taylor. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 76) Includes bibliographical references. ISBN-13: 978-0-8218-4180-8 1. Measure theory. 2. Riemann integrals. 3. Convergence. 4. Probabilities. I. Title. II. Series. QA312.T387 2006 515/.42—dc22 2006045635 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2006 by the American Mathematical Society.
    [Show full text]
  • Dirichlet Is Natural Vincent Danos, Ilias Garnier
    Dirichlet is Natural Vincent Danos, Ilias Garnier To cite this version: Vincent Danos, Ilias Garnier. Dirichlet is Natural. MFPS 31 - Mathematical Foundations of Program- ming Semantics XXXI, Jun 2015, Nijmegen, Netherlands. pp.137-164, 10.1016/j.entcs.2015.12.010. hal-01256903 HAL Id: hal-01256903 https://hal.archives-ouvertes.fr/hal-01256903 Submitted on 15 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MFPS 2015 Dirichlet is natural Vincent Danos1 D´epartement d'Informatique Ecole normale sup´erieure Paris, France Ilias Garnier2 School of Informatics University of Edinburgh Edinburgh, United Kingdom Abstract Giry and Lawvere's categorical treatment of probabilities, based on the probabilistic monad G, offer an elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This family is widely used in non-parametric Bayesian learning. Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M ∗(X) the set of non-zero finite measures over X. The construction relies on two ingredients.
    [Show full text]
  • About and Beyond the Lebesgue Decomposition of a Signed Measure
    Lecturas Matemáticas Volumen 37 (2) (2016), páginas 79-103 ISSN 0120-1980 About and beyond the Lebesgue decomposition of a signed measure Sobre el teorema de descomposición de Lebesgue de una medida con signo y un poco más Josefina Alvarez1 and Martha Guzmán-Partida2 1New Mexico State University, EE.UU. 2Universidad de Sonora, México ABSTRACT. We present a refinement of the Lebesgue decomposition of a signed measure. We also revisit the notion of mutual singularity for finite signed measures, explaining its connection with a notion of orthogonality introduced by R.C. JAMES. Key words: Lebesgue Decomposition Theorem, Mutually Singular Signed Measures, Orthogonality. RESUMEN. Presentamos un refinamiento de la descomposición de Lebesgue de una medida con signo. También revisitamos la noción de singularidad mutua para medidas con signo finitas, explicando su relación con una noción de ortogonalidad introducida por R. C. JAMES. Palabras clave: Teorema de Descomposición de Lebesgue, Medidas con Signo Mutua- mente Singulares, Ortogonalidad. 2010 AMS Mathematics Subject Classification. Primary 28A10; Secondary 28A33, Third 46C50. 1. Introduction The main goal of this expository article is to present a refinement, not often found in the literature, of the Lebesgue decomposition of a signed measure. For the sake of completeness, we begin with a collection of preliminary definitions and results, including many comments, examples and counterexamples. We continue with a section dedicated 80 Josefina Alvarez et al. About and beyond the Lebesgue decomposition... specifically to the Lebesgue decomposition of a signed measure, where we also present a short account of its historical development. Next comes the centerpiece of our exposition, a refinement of the Lebesgue decomposition of a signed measure, which we prove in detail.
    [Show full text]
  • Total Variation Deconvolution Using Split Bregman
    Published in Image Processing On Line on 2012{07{30. Submitted on 2012{00{00, accepted on 2012{00{00. ISSN 2105{1232 c 2012 IPOL & the authors CC{BY{NC{SA This article is available online with supplementary materials, software, datasets and online demo at http://dx.doi.org/10.5201/ipol.2012.g-tvdc 2014/07/01 v0.5 IPOL article class Total Variation Deconvolution using Split Bregman Pascal Getreuer Yale University ([email protected]) Abstract Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV) regularization is a successful technique for achieving this balance in de- blurring problems. It was introduced to image denoising by Rudin, Osher, and Fatemi [4] and then applied to deconvolution by Rudin and Osher [5]. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher [16]. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.
    [Show full text]
  • Guaranteed Deterministic Bounds on the Total Variation Distance Between Univariate Mixtures
    Guaranteed Deterministic Bounds on the Total Variation Distance between Univariate Mixtures Frank Nielsen Ke Sun Sony Computer Science Laboratories, Inc. Data61 Japan Australia [email protected] [email protected] Abstract The total variation distance is a core statistical distance between probability measures that satisfies the metric axioms, with value always falling in [0; 1]. This distance plays a fundamental role in machine learning and signal processing: It is a member of the broader class of f-divergences, and it is related to the probability of error in Bayesian hypothesis testing. Since the total variation distance does not admit closed-form expressions for statistical mixtures (like Gaussian mixture models), one often has to rely in practice on costly numerical integrations or on fast Monte Carlo approximations that however do not guarantee deterministic lower and upper bounds. In this work, we consider two methods for bounding the total variation of univariate mixture models: The first method is based on the information monotonicity property of the total variation to design guaranteed nested deterministic lower bounds. The second method relies on computing the geometric lower and upper envelopes of weighted mixture components to derive deterministic bounds based on density ratio. We demonstrate the tightness of our bounds in a series of experiments on Gaussian, Gamma and Rayleigh mixture models. 1 Introduction 1.1 Total variation and f-divergences Let ( R; ) be a measurable space on the sample space equipped with the Borel σ-algebra [1], and P and QXbe ⊂ twoF probability measures with respective densitiesXp and q with respect to the Lebesgue measure µ.
    [Show full text]