Biodiversité, Biochimie Et Pharmacologie Des Peptides De Venins De Fourmis

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversité, Biochimie Et Pharmacologie Des Peptides De Venins De Fourmis UNIVERSITE DES ANTILLES ET DE LA GUYANE Faculté des Sciences Exactes et Naturelles École doctorale pluridisciplinaire Thèse pour le Doctorat en Sciences de la vie Axel TOUCHARD Biodiversité, biochimie et pharmacologie des peptides de venins de fourmis Sous la direction de Jérôme ORIVEL et Pierre ESCOUBAS Soutenue le 18 Mars 2015 à l’UMR EcoFoG (Kourou) N : [0000AGUY0000] Jury : Alain LENOIR , Professeur émérite, IRBI, Université de Tours Examinateur Sébastien DUTERTRE, CR CNRS, IBMM, Université de Montpellier Examinateur Jean ROSSIER, Professeur, CPN, Hôpital Sainte Anne Examinateur Alain MILON, Professeur, IPBS, Université de Toulouse Rapporteur Mohamed AMICHE, CR CNRS, IMRB U955 INSERM, Université Paris Est Créteil Rapporteur Jérôme ORIVEL, DR CNRS, UMR EcoFoG Directeur 2 3 —Remerciements— Remerciements En premier lieu je tiens à remercier Pierre Escoubas, co-directeur de cette thèse et directeur de mon stage de Master 2, pour la confiance qu’il a su m’accorder, pour son soutien et ses conseils. Ses connaissances sur les venins, les toxines peptidiques et la spectrométrie de masse furent indispensables pour l’élaboration de cette thèse. Un grand merci à mon directeur de thèse, Jérôme Orivel. Il a su me faire profiter de son savoir myrmécologique et a en plus, apporté des critiques constructives pour me faire aller de l’avant et orienter mes recherches dans la bonne direction. Toute ma reconnaissance à Alain Dejean, sans qui ce travail n’aurait pas été pareil et qui m’a fait profiter de sa passion pour les insectes sociaux. Alain était le porteur du projet FEDER BI-Appli (115/SGAR-DE/2011/052274) qui a financé le travail effectué au cours de cette thèse. Un grand merci également à Andrea Yockey-Dejean pour ses nombreuses corrections d’anglais dans les articles scientifiques. J’adresse mes sincères remerciements à Alain Milon et Mohamed Amiche pour avoir accepté d’être les rapporteurs de ce travail. Merci également à Alain Lenoir, Jean Rossier et Sébastien Dutertre d’avoir accepté de participer à l’évaluation de cette thèse. Certaines parties de ce travail ont été effectuées en collaboration avec des laboratoires australiens. Un grand merci notamment à Graham Nicholson, Samira Aili, Jennifer Koh et Glenn King pour l’accueil chaleureux dans leurs laboratoires de Sydney et de Brisbane ainsi que leur disponibilité. 4 —Remerciements— J’adresse un remerciement particulier à Christophe Duplais et le labo SNA, je remercie également les personnes que j’ai pu côtoyer à VenomeTech; Fab, Math, Seb, Mélo, M-J, Perrine et Wela ainsi qu’a EcoFoG; Audrey, Caro, Alex Salas, Olivier, Stan, Céline, Mélanie, Roro, Bender (Juju), Romain G, Kaka, Leeloo, Élo, Niklas, pour leur bonne humeur et toutes ces bonnes soirées passées ensemble autour d’un (ou plusieurs) Ti-punch. Merci également à tous mes colocs de Parcouri et de la Maison Bleue et plus particulièrement Mélaine, Gus, Bourget, Pierrot, Bennie et Gigi. La vie à Kourou aurait été bien différente sans eux. Un grand merci à tous mes autres potes kourouciens; Marie-Mélina, Giselle, Niko Ko, Sophie, Isa, Claire, Nathan, Costo, Colette et tous les étudiants EFT et stagiaires du campus. Enfin, je remercie ma famille (mes parents, mon frère Matt et mes grands parents) pour m’avoir toujours soutenu tout au long de mes études. J’ai une pensée particulière pour mon grand père Claude à qui je dédie cette thèse. 5 —Sommaire— Sommaire Avant propos ………………………………………………………………………………………………………… 7 Introduction générale …………………………………………………….………………………………….… 10 1. Sources de produits naturels pour la recherche pharmaceutique ……..….….. 10 2. Les animaux venimeux…………………………………………………….……………………..…. 14 3. Les fourmis ……………………………………………………………….…………………..…….…... 20 4. Les venins de fourmis ……………………………………………………………………..………… 27 5. Les peptides de venins de fourmis ………………………………………………….….…….. 31 5.1. Les peptides linéaires ………………………………………………………………….……. 32 5.2. Les peptides dimériques ………………………………………………………………….. 34 5.3. Les peptides ICK ………………………………………………………………………..…….. 36 6. Objectifs généraux …………………………………………………………………………………… 39 Chapitre 1. Biodiversité ………………………………………………………………………………….…….. 43 1. Taxonomie par spectrométrie de masse ……………………………………………..….. 45 2. Application aux venins de fourmis ………………………………………………………..….. 46 Article 2 ………………………………………………………………………………………………………….. 49 Chapitre 2. Écologie …………………………………………………………………………………..………… 82 1. Venin et polyéthisme ................................................................................... 84 Article 3 ……………………………………………………………………………………..…………..…….. 87 2. Spécialisation trophique ………………………………………………………………………….. 106 3. Spécialisation défensive ……………………………………………………..…………………... 114 Article 4 ………………………………………………………………………………………..…………..….. 119 Chapitre 3. Biochimie ………………………………………………………………….………………………. 145 1. Diversité structurale des peptides …………………………………….……………………… 147 Article 5 …………………………………………………………………………………….……………..……. 149 2. Caractérisation de peptides originaux ………………………………………….………….. 182 Chapitre 4. Pharmacologie ………………………………………………………………………….………. 185 1. Neurotoxines ………………………………………………………………………………….……….. 188 Article 6 ………………………………………………………………………………………………….…..…. 191 2. Nocitoxines ……………………………………………………………………………………….…….. 217 Discussion générale ……………………………………………………………….……………………………… 220 Conclusion et perspectives ………………………………………………………………………………….. 227 Bibliographie …………………………………………………………………………………………………….…. 230 6 —Sommaire— Annexe 1— Article 1 ……………………………………………………………………………………….….. 258 Annexe 2— Protocole électrophysiologie …………………………………………………..…….. 291 Annexe 3— Abstract ……………………………………………………………………………………….…. 292 7 —Avant-propos— Avant-propos Les venins sont des armes chimiques très sophistiquées, composées de plusieurs centaines de molécules bioactives qui ont été présélectionnées et pré-optimisées par la nature. Parmi ces composés chimiques, les peptides sont les toxines majoritaires qui possèdent une formidable diversité structurale et pharmacologique. De plus ces toxines peptidiques sont souvent structurées par des ponts disulfure leur conférant une remarquable stabilité chimique ainsi qu’une grande résistance aux dégradations enzymatiques. Ces peptides bioactifs sont promis à un grand avenir et pourraient trouver de nombreuses applications dans le domaine des biotechnologies et notamment pour l’industrie pharmaceutique. En effet les peptides présentent plusieurs avantages par rapport aux petites molécules qui constituent les médicaments traditionnels. Le principal atout des peptides est qu’ils offrent souvent une plus grande efficacité et surtout une plus haute sélectivité que les petites molécules. De surcroit, leur nature protéique leur apporte un temps de demi-vie très court bien que cela puisse également être une contrainte. De plus les produits de dégradation des peptides sont peu toxiques car ce sont des acides aminés. Tout cela offre l’espoir d’en dériver des agents thérapeutiques efficaces possédant des activités très ciblées et avec moins d’effets secondaires [King, 2011; Lewis and Garcia, 2003; Uhlig et al., 2014]. D’ailleurs plusieurs peptides issus de venins ont déjà permis le développement de médicaments et de nombreux autres sont actuellement en essais cliniques et précliniques. Le Prialt®, dérivé d’une conotoxine et le Captopril® issu d’un venin de serpent sont deux exemples remarquables de médicaments provenant de venin [Smith and Vane, 2003; Staats et al., 2004]. 8 —Avant-propos— La composition biochimique des venins est strictement spécifique et donc l’ensemble des venins représentent une source presque inépuisable de peptides bioactifs. La grande biodiversité des organismes venimeux va de pair avec une grande diversité de peptides aux pharmacologies variées. L’ensemble de ces venins constitue une importante librairie de peptides bioactifs exploitable pour la recherche de molécules d’intérêt. Ainsi l’exploration de l’ensemble de la diversité taxonomique des organismes venimeux est la clé pour la découverte de nouvelles molécules. Dans cette optique, l’étude des venins de certains groupes d’animaux inexploités à ce jour, pourrait permettre la découverte de nombreuses molécules originales aux propriétés pharmacologiques uniques. Parmi les venins d’animaux, les venins de fourmis restent parmi les moins étudiés en raison de plusieurs désavantages. Le problème majeur dans l'étude des venins de fourmis est la petite taille des animaux, posant un défi majeur pour l’obtention d’une quantité de venin exploitable. Pour la reproductibilité des études biochimiques et pharmacologiques, il est primordial de pouvoir identifier de façon indiscutable les espèces étudiées mais l’identification des espèces de fourmis reste l’apanage de quelques rares spécialistes. Enfin, au contraire des venins d’araignées ou de cônes, l’absence d’une base de données spécifique aux toxines peptidiques provenant des venins de fourmis est aussi un frein à l’exploration des ces peptides. Malgré cela, les fourmis (Formicidae) constituent probablement la famille la plus facilement exploitable parmi les hyménoptères car elles offrent plusieurs avantages. Ce sont des insectes sociaux qui vivent en colonie allant de quelques individus à plusieurs millions. En plus de cela, la taxonomie des fourmis est probablement l’une des mieux connues de tous les hyménoptères et plusieurs bases de données taxonomiques existent [AntWeb, 2014b]. L’immense biodiversité des fourmis laisse envisager une grande diversité biochimique des toxines. En parallèle les avancées technologiques en termes de biochimie analytique
Recommended publications
  • Rachel Carson for SILENT SPRING
    Silent Spring THE EXPLOSIVE BESTSELLER THE WHOLE WORLD IS TALKING ABOUT RACHEL CARSON Author of THE SEA AROUND US SILENT SPRING, winner of 8 awards*, is the history making bestseller that stunned the world with its terrifying revelation about our contaminated planet. No science- fiction nightmare can equal the power of this authentic and chilling portrait of the un-seen destroyers which have already begun to change the shape of life as we know it. “Silent Spring is a devastating attack on human carelessness, greed and irresponsibility. It should be read by every American who does not want it to be the epitaph of a world not very far beyond us in time.” --- Saturday Review *Awards received by Rachel Carson for SI LENT SPRING: • The Schweitzer Medal (Animal Welfare Institute) • The Constance Lindsay Skinner Achievement Award for merit in the realm of books (Women’s National Book Association) • Award for Distinguished Service (New England Outdoor Writers Association) • Conservation Award for 1962 (Rod and Gun Editors of Metropolitan Manhattan) • Conservationist of the Year (National Wildlife Federation) • 1963 Achievement Award (Albert Einstein College of Medicine --- Women’s Division) • Annual Founders Award (Isaak Walton League) • Citation (International and U.S. Councils of Women) Silent Spring ( By Rachel Carson ) • “I recommend SILENT SPRING above all other books.” --- N. J. Berrill author of MAN’S EMERGING MIND • "Certain to be history-making in its influence upon thought and public policy all over the world." --Book-of-the-Month Club News • "Miss Carson is a scientist and is not given to tossing serious charges around carelessly.
    [Show full text]
  • Medical Problems and Treatment Considerations for the Red Imported Fire Ant
    MEDICAL PROBLEMS AND TREATMENT CONSIDERATIONS FOR THE RED IMPORTED FIRE ANT Bastiaan M. Drees, Professor and Extension Entomologist DISCLAIMER: This fact sheet provides a review of information gathered regarding medical aspects of the red imported fire ant. As such, this fact sheet is not intended to provide treatment recommendations for fire ant stings or reactions that may develop as a result of a stinging incident. Readers are encouraged to seek health-related advice and recommendations from their medical doctors, allergists or other appropriate specialists. Imported fire ants, which include the red imported fire ant - Solenopsis invicta Buren (Hymenoptera: Formicidae), the black imported fire ant - Solenopsis richteri Forel and the hybrid between S. invicta and S. richteri, cause medical problems when sterile female worker ants from a colony sting and inject a venom that cause localized sterile blisters, whole body allergic reactions such as anaphylactic shock and occasionally death. In Texas, S. invicta is the only imported fire ant, although several species of native fire ants occur in the state such as the tropical fire ant, S. geminata (Fabricius), and the desert fire ant, S. xyloni McCook, which are also capable of stinging (see FAPFS010 and 013 for identification keys). Over 40 million people live in areas infested by the red imported fire ant in the southeastern United States. An estimated 14 million people are stung annually. According to The Scripps Howard Texas Poll (March 2000), 79 percent of Texans have been stung by fire ants in the year of the survey, while 20% of Texans report not ever having been stung.
    [Show full text]
  • Wildlife Trade Operation Proposal – Queen of Ants
    Wildlife Trade Operation Proposal – Queen of Ants 1. Title and Introduction 1.1/1.2 Scientific and Common Names Please refer to Attachment A, outlining the ant species subject to harvest and the expected annual harvest quota, which will not be exceeded. 1.3 Location of harvest Harvest will be conducted on privately owned land, non-protected public spaces such as footpaths, roads and parks in Victoria and from other approved Wildlife Trade Operations. Taxa not found in Victoria will be legally sourced from other approved WTOs or collected by Queen of Ants’ representatives from unprotected areas. This may include public spaces such as roadsides and unprotected council parks, and other property privately owned by the representatives. 1.4 Description of what is being harvested Please refer to Attachment A for an outline of the taxa to be harvested. The harvest is of live adult queen ants which are newly mated. 1.5 Is the species protected under State or Federal legislation Ants are non-listed invertebrates and are as such unprotected under Victorian and other State Legislation. Under Federal legislation the only protection to these species relates to the export of native wildlife, which this application seeks to satisfy. No species listed under the EPBC Act as threatened (excluding the conservation dependent category) or listed as endangered, vulnerable or least concern under Victorian legislation will be harvested. 2. Statement of general goal/aims The applicant has recently begun trading queen ants throughout Victoria as a personal hobby and has received strong overseas interest for the species of ants found.
    [Show full text]
  • The Ecology of the Gum Tree Scale
    WAITI. INSTII'UTE à1.3. 1b t.IP,RÅRY THE ECoLOGY 0F THE GUM TREE SCALE ( ERI0COCCUS CORIACEUS MASK.), AND ITS NATURAL ENEMIES BY Nei'l Gough , B. Sc. Hons . A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Ag¡icultural Science at the UniversitY of Adelaide. Department of Entomoì ogY' l^laite Agricultural Research Institute' Unj versi ty of Adelaide. .l975 May 't CONTENTS Page SUMMARY viii DECLARATION xii ACKNOl^lLEDGEMENTS xiii 1. INTRODUCTION I l 1 I Introduction I 2 Histori cal information 1 4 1 3 The study area tr I 4 The climate of Ade'laide 6 1 5 A brief description of the biology of E. coriaceus l 6 Initial observations 9 1.64 First generations observed 9 1.68 The measurement of causes of rnortality to the female scale and of the ìengths of the survivors l0 'l .6C Reproduction by the female scale. November 1971 t3 'l .6D The estimation of the number of craw'lers produced '15 in the second generation. November and December l97l l.6E The estimation of the number of nymphs on the tree l6 'l 7 Conc'lus ions f rom the 'i ni ti al observati ons and general p'l an of the study 21 2 ASPECTS OF THE BIOLOGY OF E. CORIACEUS 25 2 .t Biology of the irmature stages 25 2.1A The nymphal stages 25 2.18 The ínfluence of the density of nymphs on their rate of sett'ling 27 2 .2 The adult female 30 2.2A The adul t femal e sett'l i ng patterns 30 2.28 The distribution of the colonies on the twigs 30 2.2C Settl ing on the leaves 33 2.20 Seasona'l variation in the densities of the co'lonies of femal es 33 11.
    [Show full text]
  • The Venom Produced by Different Classes of Arthropods and Uses It As a Biological Control Agent
    Archive of SID The venom produced by different classes of arthropods and uses it as a biological control agent Kabir Eyidozehi1, Sultan Ravan2 1Ph.D. student of Agricultural Entomology, University of Zabol, Iran 2 Associate Professor Plant Protection Department, University of Zabol, Iran (Corresponding Author: Kabir Eyidozehi) Abstract Animal kingdom possesses numerous poisonous species that produce venoms or toxins. The biodiversity of venoms and toxins made it a unique source of leads and structural templates from which new therapeutic agents may be developed. Such richness can be useful to biotechnology and/or pharmacology in many ways, with the prospection of new toxins in this field. Venoms of several animal species such as snakes, scorpions, toads, frogs and their active components have shown potential biotechnological applications. Recently, using molecular biology techniques and advanced methods of fractionation, researchers have obtained different native and/or recombinant toxins and enough material to afford deeper insight into the molecular action of these toxins. Now a day to visualize the boundaries between cancerous tissues and normal tissues florescent labeled scorpion venom peptides are used. Still a lot of peptides in scorpion venom are not identified. Further studies are needed to identify therapeutically crucial peptides in scorpion venom. This paper reviews the knowledge about the various aspects related to the name, biological and medical importance of poisonous animals of different major animal phyla. Key words: Poisonous animals, Scorpion, Spider, Venoms, Insects www.SID.ir Archive of SID INTRODUCTION 1. The biological and medical significance of poisonous animals Animal venoms and toxins are now recognized as major sources of bioactive molecules that may be tomorrow’s new drug leads.
    [Show full text]
  • Genetic Characterization of Some Neoponera (Hymenoptera: Formicidae) Populations Within the Foetida Species Complex
    Journal of Insect Science, (2018) 18(4): 14; 1–7 doi: 10.1093/jisesa/iey079 Research Genetic Characterization of Some Neoponera Downloaded from https://academic.oup.com/jinsectscience/article-abstract/18/4/14/5077415 by Universidade Federal de Viçosa user on 03 April 2019 (Hymenoptera: Formicidae) Populations Within the foetida Species Complex Rebeca P. Santos,1 Cléa S. F. Mariano,1,2 Jacques H. C. Delabie,2,3 Marco A. Costa,1 Kátia M. Lima,1 Silvia G. Pompolo,4 Itanna O. Fernandes,5 Elder A. Miranda,1 Antonio F. Carvalho,1 and Janisete G. Silva1,6 1Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, Bahia, Brazil, 2Laboratório de Mirmecologia, Centro de Pesquisa do Cacau, Caixa Postal 7, 45600-970 Itabuna, Bahia, Brazil, 3Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna Km 16, 45662-900 Ilhéus, Bahia, Brazil, 4Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil, 5Coordenação de Biodiversidade COBio/Entomologia, Avenida André Araújo, 2936, Petrópolis, 69067- 375, Manaus, Amazonas, Brazil, and 6Corresponding author, e-mail: [email protected] Subject Editor: Paulo Oliveira Received 22 May 2018; Editorial decision 23 July 2018 Abstract The foetida species complex comprises 13 Neotropical species in the ant genus Neoponera Emery (1901). Neoponera villosa Fabricius (1804) , Neoponera inversa Smith (1858), Neoponera bactronica Fernandes, Oliveira & Delabie (2013), and Neoponera curvinodis (Forel, 1899) have had an ambiguous taxonomic status for more than two decades. In southern Bahia, Brazil, these four species are frequently found in sympatry.
    [Show full text]
  • Why Do We Study Animal Toxins?
    ZOOLOGICAL RESEARCH Why do we study animal toxins? Yun ZHANG* Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China ABSTRACT Biological roles of venoms........................................................................(187) Predation.....................................................................................................(187) Defense .......................................................................................................(187) Venom (toxins) is an important trait evolved along Competition ................................................................................................(188) the evolutionary tree of animals. Our knowledges on Antimicrobial defense ................................................................................(188) venoms, such as their origins and loss, the biological Communication ..........................................................................................(188) relevance and the coevolutionary patterns with other Venom loss..................................................................................................(188) Toxins in animal venoms..........................................................................(188) organisms are greatly helpful in understanding many Selection pressures and animal toxins........................................................(188) fundamental biological questions, i.e.,
    [Show full text]
  • Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales.
    [Show full text]
  • Taxonomic Classification of Ants (Formicidae)
    bioRxiv preprint doi: https://doi.org/10.1101/407452; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Taxonomic Classification of Ants (Formicidae) from Images using Deep Learning Marijn J. A. Boer1 and Rutger A. Vos1;∗ 1 Endless Forms, Naturalis Biodiversity Center, Leiden, 2333 BA, Netherlands *[email protected] Abstract 1 The well-documented, species-rich, and diverse group of ants (Formicidae) are important 2 ecological bioindicators for species richness, ecosystem health, and biodiversity, but ant 3 species identification is complex and requires specific knowledge. In the past few years, 4 insect identification from images has seen increasing interest and success, with processing 5 speed improving and costs lowering. Here we propose deep learning (in the form of a 6 convolutional neural network (CNN)) to classify ants at species level using AntWeb 7 images. We used an Inception-ResNet-V2-based CNN to classify ant images, and three 8 shot types with 10,204 images for 97 species, in addition to a multi-view approach, for 9 training and testing the CNN while also testing a worker-only set and an AntWeb 10 protocol-deviant test set. Top 1 accuracy reached 62% - 81%, top 3 accuracy 80% - 92%, 11 and genus accuracy 79% - 95% on species classification for different shot type approaches. 12 The head shot type outperformed other shot type approaches.
    [Show full text]
  • Poneromorfas Do Brasil Miolo.Indd
    10 - Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S. F. Mariano Igor S. Santos Janisete Gomes da Silva Marco Antonio Costa Silvia das Graças Pompolo SciELO Books / SciELO Livros / SciELO Libros MARIANO, CSF., et al. Citogenética e evolução do cariótipo em formigas poneromorfas. In: DELABIE, JHC., et al., orgs. As formigas poneromorfas do Brasil [online]. Ilhéus, BA: Editus, 2015, pp. 103-125. ISBN 978-85-7455-441-9. Available from SciELO Books <http://books.scielo.org>. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. 10 Citogenética e evolução do cariótipo em formigas poneromorfas Cléa S.F. Mariano, Igor S. Santos, Janisete Gomes da Silva, Marco Antonio Costa, Silvia das Graças Pompolo Resumo A expansão dos estudos citogenéticos a cromossomos de todas as subfamílias e aquela partir do século XIX permitiu que informações que apresenta mais informações a respeito de ca- acerca do número e composição dos cromosso- riótipos é também a mais diversa em número de mos fossem aplicadas em estudos evolutivos, ta- espécies: Ponerinae Lepeletier de Saint Fargeau, xonômicos e na medicina humana. Em insetos, 1835. Apenas nessa subfamília observamos carió- são conhecidos os cariótipos em diversas ordens tipos com número cromossômico variando entre onde diversos padrões cariotípicos podem ser ob- 2n=8 a 120, gêneros com cariótipos estáveis, pa- servados.
    [Show full text]
  • Evolução Do Veneno Em Cnidários Baseada Em Dados De Genomas E Proteomas
    Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data São Paulo 2015 i Adrian Jose Jaimes Becerra Evolução do veneno em cnidários baseada em dados de genomas e proteomas Venom evolution in cnidarians based on genomes and proteomes data Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências, na Área de Zoologia. Orientador: Prof. Dr. Antonio C. Marques São Paulo 2015 ii Jaimes-Becerra, Adrian J. Evolução do veneno em cnidários baseada em dados de genomas e proteomas. 103 + VI páginas Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Veneno; 2. Evolução; 3. Proteoma. 4. Genoma I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora Prof(a) Dr(a) Prof(a) Dr(a) Prof. Dr. Antonio Carlos Marques iii Agradecimentos Eu gostaria de agradecer ao meu orientador Antonio C. Marques, pela confiança desde o primeiro dia e pela ajuda tanto pessoal como profissional durantes os dois anos de mestrado. Obrigado por todo. Ao CAPES, pela bolsa de mestrado concedida. Ao FAPESP pelo apoio financeiro durante minha estadia em Londres. Ao Instituto de Biociências da Universidade de São Paulo, pela estrutura oferecida durante a execução desde estudo. Ao Dr. Paul F. Long pelas conversas, por toda sua ajuda, por acreditar no meu trabalho. Aos colegas e amigos de Laboratório de Evolução Marinha (LEM), Jimena Garcia, María Mendoza, Thaís Miranda, Amanda Cunha, Karla Paresque, Marina Fernández, Fernanda Miyamura e Lucília Miranda, pela amizade, dicas e ajuda em tudo e por me fazer sentir em casa, muito obrigado mesmo! Aos meus amigos fora do laboratório, John, Soly, Chucho, Camila, Faride, Cesar, Angela, Camilo, Isa, Nathalia, Susana e Steffania, pelo apoio e por me fazer sentir em casa.
    [Show full text]
  • 'Jack Jumper' Ant Venom by Mass Spectrometry
    Characterisation of Major Peptides in ‘Jack Jumper’ Ant Venom by Mass Spectrometry Noel W. Davies 1* , Michael D.Wiese 2 and Simon G. A. Brown 3 1. Central Science Laboratory University of Tasmania Private Bag 74 Hobart 7001 Tasmania, AUSTRALIA Fax: 61 3 6226 2494 Email: [email protected] 2. Department of Pharmacy Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia 3 Department of Emergency Medicine Royal Hobart Hospital GPO Box 1061L Hobart, Tasmania 7001 Australia * Corresponding author : Running title: ‘Jack Jumper’ ant venom peptides 1 Abstract: The jack jumper ant, Myrmecia pilosula , is endemic to South-Eastern Australia, where around 2.7% of the population has a history of systemic allergic reactions (anaphylaxis) to its venom. Previous work had indicated that there were several allergenic peptides derived from the cDNA Myr p 1, the major expressed allergenic product being a 56-residue peptide (Myr p 1 57 →112, "pilosulin 1", ~6052 Da). Another major allergen had been described as a 27 residue peptide derived from the cDNA Myr p 2 (Myr p 2 49 →75, "pilosulin 2", ~3212 Da), possibly existing as part of a disulfide complex. As a preliminary step in detailed stability studies of a pharmaceutical product used for venom immunotherapy, LC-MS and Edman sequencing analysis of venom collected from various locations by both electrical stimulation and venom sac dissection was undertaken. More than 50 peptides in the 4kDa to 9kDa range were detected in LC-MS analyses. A subsequence of Myr p 2 was found as part of the major peptide present in all samples; this was a bis- disulphide linked, antiparallel aligned heterodimer consisting of Myr p 2 49 →74, (des-Gly 27 -pilosulin 2, ~3155 Da) and a previously unreported peptide of ~2457 Da.
    [Show full text]