Cheat Sheet for Neurofeedback
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detecting Seizures in EEG Recordings Using Conformal Prediction
Proceedings of Machine Learning Research 1:1{16, 2018 COPA 2018 Detecting seizures in EEG recordings using Conformal Prediction Charalambos Eliades [email protected] Harris Papadopoulos [email protected] Dept. of Computer Science and Engineering Frederick University 7 Y. Frederickou St., Palouriotisa, Nicosia 1036, Cyprus Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, Evgueni Smirnov and Ralf Peeters Abstract This study examines the use of the Conformal Prediction (CP) framework for the provi- sion of confidence information in the detection of seizures in electroencephalograph (EEG) recordings. The detection of seizures is an important task since EEG recordings of seizures are of primary interest in the evaluation of epileptic patients. However, manual review of long-term EEG recordings for detecting and analyzing seizures that may have occurred is a time-consuming process. Therefore a technique for automatic detection of seizures in such recordings is highly beneficial since it can be used to significantly reduce the amount of data in need of manual review. Additionally, due to the infrequent and unpredictable occurrence of seizures, having high sensitivity is crucial for seizure detection systems. This is the main motivation for this study, since CP can be used for controlling the error rate of predictions and therefore guaranteeing an upper bound on the frequency of false negatives. Keywords: EEG, Seizure, Confidence, Credibility, Prediction Regions 1. Introduction Epileptic seizures reflect the clinical signs of the synchronized discharge of brain neurons. The effects of this situation can be characterized by disturbances of mental function and/or movements of body (Lehnertz et al., 2003). This neurological disorder occurs in approx- imately 0:6 − 0:8% of the entire population. -
University of Illinois at Urbana-Champaign Department of Mathematics
University of Illinois at Urbana-Champaign Department of Mathematics ASRM 410 Investments and Financial Markets Fall 2018 Chapter 5 Option Greeks and Risk Management by Alfred Chong Learning Objectives: 5.1 Option Greeks: Black-Scholes valuation formula at time t, observed values, model inputs, option characteristics, option Greeks, partial derivatives, sensitivity, change infinitesimally, Delta, Gamma, theta, Vega, rho, Psi, option Greek of portfolio, absolute change, option elasticity, percentage change, option elasticity of portfolio. 5.2 Applications of Option Greeks: risk management via hedging, immunization, adverse market changes, delta-neutrality, delta-hedging, local, re-balance, from- time-to-time, holding profit, delta-hedging, first order, prudent, delta-gamma- hedging, gamma-neutrality, option value approximation, observed values change inevitably, Taylor series expansion, second order approximation, delta-gamma- theta approximation, delta approximation, delta-gamma approximation. Further Exercises: SOA Advanced Derivatives Samples Question 9. 1 5.1 Option Greeks 5.1.1 Consider a continuous-time setting t ≥ 0. Assume that the Black-Scholes framework holds as in 4.2.2{4.2.4. 5.1.2 The time-0 Black-Scholes European call and put option valuation formula in 4.2.9 and 4.2.10 can be generalized to those at time t: −δ(T −t) −r(T −t) C (t; S; δ; r; σ; K; T ) = Se N (d1) − Ke N (d2) P = Ft;T N (d1) − PVt;T (K) N (d2); −r(T −t) −δ(T −t) P (t; S; δ; r; σ; K; T ) = Ke N (−d2) − Se N (−d1) P = PVt;T (K) N (−d2) − Ft;T N (−d1) ; where d1 and d2 are given by S 1 2 ln K + r − δ + 2 σ (T − t) d1 = p ; σ T − t S 1 2 p ln K + r − δ − 2 σ (T − t) d2 = p = d1 − σ T − t: σ T − t 5.1.3 The option value V is a function of observed values, t and S, model inputs, δ, r, and σ, as well as option characteristics, K and T . -
Rice Bran Extract Supplement Improves Sleep Efficiency
www.nature.com/scientificreports OPEN Rice bran extract supplement improves sleep efciency and sleep onset in adults with sleep Received: 22 October 2018 Accepted: 7 August 2019 disturbance: A randomized, Published: xx xx xxxx double-blind, placebo-controlled, polysomnographic study Min Young Um1, Hyejin Yang1, Jin Kyu Han2, Jin Young Kim3, Seung Wan Kang3, Minseok Yoon1, Sangoh Kwon4 & Suengmok Cho5 We previously reported that rice bran extract supplement (RBS) administration to mice decreased sleep latency and induced non-rapid eye movement (NREM) sleep via inhibition of the histamine H1 receptor. Based on this, we performed the frst clinical trial to investigate whether RBS would be benefcial to subjects with disturbed sleep. We performed a randomized, double-blinded, placebo-controlled, 2-week study. Fifty subjects with sleep disturbance were enrolled and received either RBS (1,000 mg/day) or placebo. Polysomnography was performed, and Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale (ESS), and Fatigue Severity Scale were administered at the initiation and termination of the study. Compared with the placebo, RBS led to signifcant polysomnographic changes, including decreased sleep latency (adjusted, P = 0.047), increased total sleep time (P = 0.019), and improved sleep efciency (P = 0.010). Additionally, the amount of stage 2 sleep signifcantly increased in the RBS group. When adjusted for cafeine intake, wakefulness after sleep onset, total wake time, and delta activity tended to decrease in the RBS group. RBS administration decreased ESS scores. There were no reported serious adverse events in both groups. RBS improved sleep in adults with sleep disturbance. Trial registration: WHO ICTRP, KCT0001893. -
Music Genre Preference and Tempo Alter Alpha and Beta Waves in Human Non-Musicians
Page 1 of 11 Impulse: The Premier Undergraduate Neuroscience Journal 2013 Music genre preference and tempo alter alpha and beta waves in human non-musicians. Nicole Hurless1, Aldijana Mekic1, Sebastian Peña1, Ethan Humphries1, Hunter Gentry1, 1 David F. Nichols 1Roanoke College, Salem, Virginia 24153 This study examined the effects of music genre and tempo on brain activation patterns in 10 non- musicians. Two genres (rock and jazz) and three tempos (slowed, medium/normal, and quickened) were examined using EEG recording and analyzed through Fast Fourier Transform (FFT) analysis. When participants listened to their preferred genre, an increase in alpha wave amplitude was observed. Alpha waves were not significantly affected by tempo. Beta wave amplitude increased significantly as the tempo increased. Genre had no effect on beta waves. The findings of this study indicate that genre preference and artificially modified tempo do affect alpha and beta wave activation in non-musicians listening to preselected songs. Abbreviations: BPM – beats per minute; EEG – electroencephalography; FFT – Fast Fourier Transform; ERP – event related potential; N2 – negative peak 200 milliseconds after stimulus; P3 – positive peak 300 milliseconds after stimulus Keywords: brain waves; EEG; FFT. Introduction For many people across cultures, music The behavioral relationship between is a common form of entertainment. Dillman- music preference and other personal Carpentier and Potter (2007) suggested that characteristics, such as those studied by music is an integral form of human Rentfrow and Gosling (2003), is evident. communication used to relay emotion, group However, the neurological bases of preference identity, and even political information. need to be studied more extensively in order to Although the scientific study of music has be understood. -
Quantitative EEG (QEEG) Analysis of Emotional Interaction Between Abusers and Victims in Intimate Partner Violence: a Pilot Study
brain sciences Article Quantitative EEG (QEEG) Analysis of Emotional Interaction between Abusers and Victims in Intimate Partner Violence: A Pilot Study Hee-Wook Weon 1, Youn-Eon Byun 2 and Hyun-Ja Lim 3,* 1 Department of Brain & Cognitive Science, Seoul University of Buddhism, Seoul 08559, Korea; [email protected] 2 Department of Youth Science, Kyonggi University, Suwon 16227, Korea; [email protected] 3 Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada * Correspondence: [email protected] Abstract: Background: The perpetrators of intimate partner violence (IPV) and their victims have different emotional states. Abusers typically have problems associated with low self-esteem, low self-awareness, violence, anger, and communication, whereas victims experience mental distress and physical pain. The emotions surrounding IPV for both abuser and victim are key influences on their behavior and their relationship. Methods: The objective of this pilot study was to examine emotional and psychological interactions between IPV abusers and victims using quantified electroencephalo- gram (QEEG). Two abuser–victim case couples and one non-abusive control couple were recruited from the Mental Image Recovery Program for domestic violence victims in Seoul, South Korea, from Citation: Weon, H.-W.; Byun, Y.-E.; 7–30 June 2017. Data collection and analysis were conducted using BrainMaster and NeuroGuide. Lim, H.-J. Quantitative EEG (QEEG) The emotional pattern characteristics between abuser and victim were examined and compared to Analysis of Emotional Interaction those of the non-abusive couple. Results: Emotional states and reaction patterns were different for between Abusers and Victims in the non-abusive and IPV couples. -
The Evidence-Base for Neurofeedback As a Reimbursable Healthcare Service to Treat Attention Deficit/Hyperactivity Disorder
The Evidence-Base for Neurofeedback as a Reimbursable Healthcare Service to Treat Attention Deficit/Hyperactivity Disorder By H. Edmund Pigott, Ph.D.,a Lindsay De Biase, Ph.D.,b c d Eugenia Bodenhamer-Davis, Ph.D. & Richard E. Davis, M.S. a Ed Pigott, Ph.D. is a licensed psychologist and Director of Neurotherapy Services at Behavioral Health of the Palm Beaches. He is also in private practice at The Center for Brain Training in Jupiter, FL. b Lindsay De Biase, Ph.D. is a neuroscientist and post-doctoral fellow. C Eugenia Bodenhamer-Davis, Ph.D. is an Associate Professor and Director, Neurotherapy Program, University of North Texas and a Board member of the Biofeedback Certification International Alliance. D Richard E. Davis, M.S. is a Licensed Professional Counselor in private practice in Denton, TX, specializing in neurofeedback and Quantitative EEG. He is also a Past President of the International Society of Neurofeedback and Research. Acknowledgements: Preparation of this white paper was guided by extensive discussion and critical review from Henry Harbin with assistance from Thomas Bearden and Robert Thatcher along with the invaluable help from Alexei Berd in securing articles for review. The authors would like to thank the Board of the International Society of Neurofeedback and Research for their support of this project. 1 Table of Contents Executive Summary 3 An Overview of Neurofeedback Practice 6 The Inadequacy of Current ADHD Treatments 8 Neurofeedback: The Operant Conditioning of Trainees’ EEG 12 Neurofeedback: An Evidence-Based -
QUANTITATIVE BRAIN ELECTRICAL ACTIVITY in the INITIAL SCREENING of MILD TRAUMATIC BRAIN INJURIES AFTER BLAST By
Wayne State University Wayne State University Theses 1-1-2015 Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast Chengpeng Zhou Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Zhou, Chengpeng, "Quantitative Brain Electrical Activity In The nitI ial Screening Of Mild Traumatic Brain Injuries After Blast" (2015). Wayne State University Theses. Paper 442. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. QUANTITAITVE BRAIN ELECTRICAL ACTIVITY IN THE INITIAL SCREENING OF MILD TRAUMATIC BRAIN INJURIES AFTER BLAST by CHENGPENG ZHOU THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2015 MAJOR: BIOMEDICAL ENGINEERING Approved by: ____________________________________ Advisor Date © COPYRIGHT BY CHENGPENG ZHOU 2015 All Rights Reserved DEDICATION I dedicate my work to my family ii ACKNOWLEDGEMENTS First and foremost, I would like to thank God for giving me the strength to go through the Master journey in Biomedical Engineering. I would like to thank my mother, Mrs. Jurong Chen, for her love and constant support. I can finish my work today, because she was always ready to give everything! Thank you for your selfless love; you give me strength to continue my work and study. I would like to thank Dr. Chaoyang Chen, my mentor and my advisor, for giving me the chance to work in his lab. -
13Th Valley John M. Del Vecchio Fiction 25.00 ABC of Architecture
13th Valley John M. Del Vecchio Fiction 25.00 ABC of Architecture James F. O’Gorman Non-fiction 38.65 ACROSS THE SEA OF GREGORY BENFORD SF 9.95 SUNS Affluent Society John Kenneth Galbraith 13.99 African Exodus: The Origins Christopher Stringer and Non-fiction 6.49 of Modern Humanity Robin McKie AGAINST INFINITY GREGORY BENFORD SF 25.00 Age of Anxiety: A Baroque W. H. Auden Eclogue Alabanza: New and Selected Martin Espada Poetry 24.95 Poems, 1982-2002 Alexandria Quartet Lawrence Durell ALIEN LIGHT NANCY KRESS SF Alva & Irva: The Twins Who Edward Carey Fiction Saved a City And Quiet Flows the Don Mikhail Sholokhov Fiction AND ETERNITY PIERS ANTHONY SF ANDROMEDA STRAIN MICHAEL CRICHTON SF Annotated Mona Lisa: A Carol Strickland and Non-fiction Crash Course in Art History John Boswell From Prehistoric to Post- Modern ANTHONOLOGY PIERS ANTHONY SF Appointment in Samarra John O’Hara ARSLAN M. J. ENGH SF Art of Living: The Classic Epictetus and Sharon Lebell Non-fiction Manual on Virtue, Happiness, and Effectiveness Art Attack: A Short Cultural Marc Aronson Non-fiction History of the Avant-Garde AT WINTER’S END ROBERT SILVERBERG SF Austerlitz W.G. Sebald Auto biography of Miss Jane Ernest Gaines Fiction Pittman Backlash: The Undeclared Susan Faludi Non-fiction War Against American Women Bad Publicity Jeffrey Frank Bad Land Jonathan Raban Badenheim 1939 Aharon Appelfeld Fiction Ball Four: My Life and Hard Jim Bouton Time Throwing the Knuckleball in the Big Leagues Barefoot to Balanchine: How Mary Kerner Non-fiction to Watch Dance Battle with the Slum Jacob Riis Bear William Faulkner Fiction Beauty Robin McKinley Fiction BEGGARS IN SPAIN NANCY KRESS SF BEHOLD THE MAN MICHAEL MOORCOCK SF Being Dead Jim Crace Bend in the River V. -
The Electroencephalogram (EEG)
iWorx Physiology Lab Experiment Experiment HP-1 The Electroencephalogram (EEG) Note: The lab presented here is intended for evaluation purposes only. iWorx users should refer to the User Area on www.iworx.com for the most current versions of labs and LabScribe2 Software. iWorx Systems, Inc. www.iworx.com iWorx Systems, Inc. 62 Littleworth Road, Dover, New Hampshire 03820 (T) 800-234-1757 / 603-742-2492 (F) 603-742-2455 LabScribe2 is a trademark of iWorx Systems, Inc. ©2013 iWorx Systems, Inc. Experiment HP-1: The Electroencephalogram (EEG) Background The living brain produces a continuous output of small electrical signals, often referred to as brain waves. The recording of these signals, called an electroencephalogram (EEG), is the summation of all the postsynaptic potentials (EPSPs and IPSPs) of the neurons in the cerebral cortex. The amplitudes of these signals are so small that they are measured in microvolts which are millionths of a volt or thousandths of a millivolt. Though they are small, the signals can be accurately detected and recorded. The electrodes that pick up these signals are attached to the surface of the scalp. The signals are then amplified many thousands of times. The amplified signals are then recorded with an electroencephalograph, which is a device for recording brain waves. The iWorx data recording unit will function as both an amplifier and an electroencephalograph for the experiments in this chapter. EEG Parameters The electroencephalograph is a continuous recording of waves of varying frequency and amplitude. The number of wave cycles or peaks that occurs in a EEG pattern in a set period of time is its frequency. -
Greek Houses
2 Greek houses Σ Δ Σ Σ Ζ ΚΑ Υ Α 33rd Street Θ Τ ΛΧΑ Δ ΝΜ ΤΕΦ ΑΦ Ξ Α Fresh Τ Grocer Radian Hill ΚΑΘ ΖΨ Walnut Street Walnut Street 34th Street ΣΦΕ Du Bois GSE Street 37th 39th Street Annenberg Van Pelt Α Rotunda ΠΚΦ ∆ Movie Huntsman Π Hillel ΑΧΡ theater Rodin ΔΦ SP2 Woodland Walk Locust Walk ΑΤΩ ΣΧ Locust Walk ΔΨ ΦΓΔ 3609-11 36th Street Fisher Class of 1920 Commons ΚΣ Φ Fine 38th Street 40th Street Δ Harnwell Steinberg- Arts McNeil Θ Deitrich ΨΥ College Hall Cohen Harrison ΖΒΤ Houston Irvine Van Pelt Σ Α Β Wistar Williams Α Χ Θ Allegro 41st Street 41st Spruce Street Ε Ω Π Spruce Street Δ Φ The Quad Δ Κ Stouffer ΔΚΕ Δ Ψ Σ Χ ΠΠ Κ Ω Κ Λ HUP N ΑΦ Vet school Pine Street Chapter Letters Address Page Chapter Letters Address Page Chapter Letters Address Page Alpha Chi Omega* ΑΧΩ 3906 Spruce St. 9 Kappa Alpha Society ΚΑ 124 S. 39th St. 15 Sigma Alpha Mu ΣΑΜ 3817 Walnut St. 17 Alpha Chi Rho ΑΧΡ 219 S. 36th St. 7 Kappa Alpha Theta* ΚΑΘ 130 S. 39th St. 15 Sigma Chi ΣΧ 3809 Locust Walk 3 Alpha Delta Pi* ADP 4032 Walnut St. 14 Kappa Sigma ΚΣ 3706 Locust Walk 4 Sigma Delta Tau* ΣΔΤ 3831-33 Walnut St. 16 Alpha Phi* ΑΦ 4045 Walnut St. 14 Lambda Chi Alpha ΛΧΑ 128 S. 39th St. 15 Sigma Kappa* ΣΚ 3928 Spruce St. 11 Alpha Tau Omega ΑΤΩ 225 S. 39th St. -
Gamma Theta Upsilon - Zeta Chi Chapter
Geography Honor Society Gamma Theta Upsilon - Zeta Chi Chapter Gamma Theta Upsilon (GTU) is an international honor society in geography. Gamma Theta Upsilon was founded in 1928 and became a national organization in 1931. Members of GTU have met academic requirements and share a background and interest in geography. GTU chapter activities support geography knowledge and awareness. Eligibility for Regular Membership Initiates must: have completed a minimum of 3 geography courses, have a GPA of at least 3.3 (on a 4.0 scale) in geography courses, have completed at least 3 semesters or 5 quarters of full-time college course work. Note: Regular members do not have to be currently enrolled, nor must they be geography majors Why should you join GTU? GTU membership is earned through superior scholarship; it is an honor, and a professional distinction Members receive a handsome certificate, suitable for framing No further membership dues are paid to the national organization after the initiation fee Many members choose to remain active in GTU after graduation, by joining Omega Omega, the Alumni Chapter of GTU. The Purposes of GTU are to: Further professional interests in Geography by affording a common organization for those interested in the field Strengthen student and professional training through academic experiences in addition to those of the classroom and laboratory Advance the status of Geography as a cultural and practical discipline for study and investigation Encourage student research of high quality, and to promote an outlet for publication Create and administer funds for furthering graduate study and/or research in the field of Geography. -
The Brain That Changes Itself
The Brain That Changes Itself Stories of Personal Triumph from the Frontiers of Brain Science NORMAN DOIDGE, M.D. For Eugene L. Goldberg, M.D., because you said you might like to read it Contents 1 A Woman Perpetually Falling . Rescued by the Man Who Discovered the Plasticity of Our Senses 2 Building Herself a Better Brain A Woman Labeled "Retarded" Discovers How to Heal Herself 3 Redesigning the Brain A Scientist Changes Brains to Sharpen Perception and Memory, Increase Speed of Thought, and Heal Learning Problems 4 Acquiring Tastes and Loves What Neuroplasticity Teaches Us About Sexual Attraction and Love 5 Midnight Resurrections Stroke Victims Learn to Move and Speak Again 6 Brain Lock Unlocked Using Plasticity to Stop Worries, OPsessions, Compulsions, and Bad Habits 7 Pain The Dark Side of Plasticity 8 Imagination How Thinking Makes It So 9 Turning Our Ghosts into Ancestors Psychoanalysis as a Neuroplastic Therapy 10 Rejuvenation The Discovery of the Neuronal Stem Cell and Lessons for Preserving Our Brains 11 More than the Sum of Her Parts A Woman Shows Us How Radically Plastic the Brain Can Be Appendix 1 The Culturally Modified Brain Appendix 2 Plasticity and the Idea of Progress Note to the Reader All the names of people who have undergone neuroplastic transformations are real, except in the few places indicated, and in the cases of children and their families. The Notes and References section at the end of the book includes comments on both the chapters and the appendices. Preface This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations.