[ Team Lib ] BLAST (Basic Local Alignment Search Tool) Is a Set Of

Total Page:16

File Type:pdf, Size:1020Kb

[ Team Lib ] BLAST (Basic Local Alignment Search Tool) Is a Set Of [ Team LiB ] • Table of Contents • Index • Reviews • Examples • Reader Reviews • Errata BLAST By Joseph Bedell, Ian Korf, Mark Yandell Publisher: O'Reilly Pub Date: July 2003 ISBN: 0-596-00299-8 Pages: 360 BLAST (Basic Local Alignment Search Tool) is a set of similarity search programs that explore all of the available sequence databases for protein or DNA. BLAST is the only book completely devoted to this popular and important technology and offers biologists, computational biology students, and bioinformatics professionals a clear understanding of this program. This book shows you how to get specific answers with BLAST and how to use the software to interpret results. If you have an interest in sequence analysis this is a book you should own. [ Team LiB ] [ Team LiB ] • Table of Contents • Index • Reviews • Examples • Reader Reviews • Errata BLAST By Joseph Bedell, Ian Korf, Mark Yandell Publisher: O'Reilly Pub Date: July 2003 ISBN: 0-596-00299-8 Pages: 360 Copyright Forward Preface Audience for This Book Structure of This Book A Little Math, a Little Perl Conventions Used in This Book URLs Referenced in This Book Comments and Questions Acknowledgments Part I: Introduction Chapter 1. Hello BLAST Section 1.1. What Is BLAST? Section 1.2. Using NCBI-BLAST Section 1.3. Alternate Output Formats Section 1.4. Alternate Alignment Views Section 1.5. The Next Step Section 1.6. Further Reading Part II: Theory Chapter 2. Biological Sequences Section 2.1. The Central Dogma of Molecular Biology Section 2.2. Evolution Section 2.3. Genomes and Genes Section 2.4. Biological Sequences and Similarity Section 2.5. Further Reading Chapter 3. Sequence Alignment Section 3.1. Global Alignment: Needleman-Wunsch Section 3.2. Local Alignment: Smith-Waterman Section 3.3. Dynamic Programming Section 3.4. Algorithmic Complexity Section 3.5. Global Versus Local Section 3.6. Variations Section 3.7. Final Thoughts Section 3.8. Further Reading Chapter 4. Sequence Similarity Section 4.1. Introduction to Information Theory Section 4.2. Amino Acid Similarity Section 4.3. Scoring Matrices Section 4.4. Target Frequencies, lambda, and H Section 4.5. Sequence Similarity Section 4.6. Karlin-Altschul Statistics Section 4.7. Sum Statistics and Sum Scores Section 4.8. Further Reading Part III: Practice Chapter 5. BLAST Section 5.1. The Five BLAST Programs Section 5.2. The BLAST Algorithm Section 5.3. Further Reading Chapter 6. Anatomy of a BLAST Report Section 6.1. Basic Structure Section 6.2. Alignments Chapter 7. A BLAST Statistics Tutorial Section 7.1. Basic BLAST Statistics Section 7.2. Using Statistics to Understand BLAST Results Section 7.3. Where Did My Oligo Go? Chapter 8. 20 Tips to Improve Your BLAST Searches Section 8.1. Don't Use the Default Parameters Section 8.2. Treat BLAST Searches as Scientific Experiments Section 8.3. Perform Controls, Especially in the Twilight Zone Section 8.4. View BLAST Reports Graphically Section 8.5. Use the Karlin-Altschul Equation to Design Experiments Section 8.6. When Troubleshooting, Read the Footer First Section 8.7. Know When to Use Complexity Filters Section 8.8. Mask Repeats in Genomic DNA Section 8.9. Segment Large Genomic Sequences Section 8.10. Be Skeptical of Hypothetical Proteins Section 8.11. Expect Contaminants in EST Databases Section 8.12. Use Caution When Searching Raw Sequencing Reads Section 8.13. Look for Stop Codons and Frame-Shifts to find Pseudo-Genes Section 8.14. Consider Using Ungapped Alignment for BLASTX, TBLASTN, and TBLASTX Section 8.15. Look for Gaps in Coverage as a Sign of Missed Exons Section 8.16. Parse BLAST Reports with Bioperl Section 8.17. Perform Pilot Experiments Section 8.18. Examine Statistical Outliers Section 8.19. Use links and topcomboN to Make Sense of Alignment Groups Section 8.20. How to Lie with BLAST Statistics Chapter 9. BLAST Protocols Section 9.1. BLASTN Protocols Section 9.2. BLASTP Protocols Section 9.3. BLASTX Protocols Section 9.4. TBLASTN Protocols Section 9.5. TBLASTX Protocols Part IV: Industrial-Strength BLAST Chapter 10. Installation and Command-Line Tutorial Section 10.1. NCBI-BLAST Installation Section 10.2. WU-BLAST Installation Section 10.3. Command-Line Tutorial Section 10.4. Editing Scoring Matrices Chapter 11. BLAST Databases Section 11.1. FASTA Files Section 11.2. BLAST Databases Section 11.3. Sequence Databases Section 11.4. Sequence Database Management Strategies Chapter 12. Hardware and Software Optimizations Section 12.1. The Persistence of Memory Section 12.2. CPUs and Computer Architecture Section 12.3. Compute Clusters Section 12.4. Distributed Resource Management Section 12.5. Software Tricks Section 12.6. Optimized NCBI-BLAST Part V: BLAST Reference Chapter 13. NCBI-BLAST Reference Section 13.1. Usage Statements Section 13.2. Command-Line Syntax Section 13.3. blastall Parameters Section 13.4. formatdb Parameters Section 13.5. fastacmd Parameters Section 13.6. megablast Parameters Section 13.7. bl2seq Parameters Section 13.8. blastpgp Parameters (PSI-BLAST and PHI-BLAST) Section 13.9. blastclust Parameters Chapter 14. WU-BLAST Reference Section 14.1. Usage Statements Section 14.2. Command-Line Syntax Section 14.3. WU-BLAST Parameters Section 14.4. xdformat Parameters Section 14.5. xdget Parameters Part VI: Appendixes Appendix A. NCBI Display Formats Section A.1. Brief Descriptions Section A.2. Detailed Descriptions and Examples Appendix B. Nucleotide Scoring Schemes Appendix C. NCBI-BLAST Scoring Schemes Section C.1. NCBI-BLAST Matrices and Gap Costs Appendix D. blast-imager.pl Appendix E. blast2table.pl Glossary Numbers A-G H-U Colophon Index [ Team LiB ] [ Team LiB ] Copyright Copyright © 2003 O'Reilly & Associates, Inc. Printed in the United States of America. Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 [email protected] . Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. The association between the image of a coelacanth and the topic of BLAST is a trademark of O'Reilly & Associates, Inc. While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. [ Team LiB ] [ Team LiB ] Forward Reading a book such as this brings home how much BLAST-now in its teenage years-has grown, and provides an occasion for fond reflection. BLAST was born in the first months of 1989 at the National Center for Biotechnology Information (NCBI). The Center had been created at the National Institutes of Health in November 1988, by an act of the U.S. Congress, to foster the development of a field that then had no widely accepted name, but which has since come to be known as "Bioinformatics." In early 1989, David Lipman, my post-doctoral advisor, who at the time was perhaps best known as a codeveloper of the FASTA program, was appointed director of NCBI. On the first of March we moved into new offices at the National Library of Medicine.The NCBI was small, but had large ambitions, and already a number of friends. Several of these well-wishers made it a point to drop by for a visit. Gene Myers, a computer scientist then at Arizona, arrived during a week in which Science was hyping a special-purpose computer chip for sequence comparison. He and David, software partisans both, were unimpressed and over dinner resolved to do better. Their original idea was to find not subtle sequence similarities, but fairly obvious ones, and to do it in a flash. Gene pursued a rigorous approach at first, but David, with a fine Darwinian wisdom, was willing to settle for imperfection. If one were to gamble, what kind of match could one expect a strong alignment to contain? Detailed algorithmic and code development on BLAST by Webb Miller-later to be joined by Warren Gish-had hardly begun before Sam Karlin, a Stanford mathematician, came calling. I had approached him a few months earlier with a conjecture concerning the asymptotic behavior of optimal ungapped local sequence alignments. Since then, he had spun this conjecture into a beautiful theory. Now, for the first time, rigorous statistics were available for alignment scoring systems of more than academic interest, and the essential nature of amino acid substitution matrices also began to come into clear focus. This theory dovetailed perfectly with the work that had just started on BLAST: both informing the selection of its algorithmic parameters, and yielding units for the alignment scores produced. Although David chose BLAST's name as a bit of a pun on "FASTA" (it was only later that I realized "BLAST" to be an acronym), the new program was never intended to vie with the earlier one. Rather, the idea was to turn the "threshold parameter" way up, to find undoubted homologies before you take more than one sip of coffee. It surprised us all when BLAST started returning most weak similarities as well. Thus was born a sort of friendly competition with Bill Pearson's and David's earlier creation. From the start, BLAST had two major advantages to FASTA and one major disadvantage.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0211987 A1 Labat Et Al
    US 2003O21, 1987A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0211987 A1 Labat et al. (43) Pub. Date: Nov. 13, 2003 (54) METHODS AND MATERIALS RELATING TO Apr. 7, 2000 (US)........................................... O9545,714 STEM CELL GROWTH FACTOR-LIKE Apr. 11, 2000 (US)........................................... O9547358 POLYPEPTIDES AND POLYNUCLEOTDES Publication Classification (76) Inventors: Ivan Labat, Mountain View, CA (US); Y Tom Tang, San Jose, CA (US); Radoje T. Drmanac, Palo Alto, CA (51) Int. Cl." ....................... A61K 38/18; CO7K 14/475; (US); Chenghua Liu, San Jose, CA C12O 1/68; CO7H 21/04; (US); Juhi Lee, Fremont, CA (US); C12M 1/34; C12P 21/02; Nancy K Mize, Mountain View, CA C12N 5/08 (US); John Childs, Sunnyvale, CA (52) U.S. Cl. ......... 514/12; 435/69.1; 435/6; 435/320.1; (US); Cheng-Chi Chao, Cupertino, CA 435/366; 530/399; 536/23.5; (US) 435/287.2 Correspondence Address: MARSHALL, GERSTEIN & BORUN LLP (57) ABSTRACT 6300 SEARS TOWER 233 S. WACKER DRIVE The invention provides novel polynucleotides and polypep CHICAGO, IL 60606 (US) tides encoded by Such polynucleotides and mutants or variants thereof that correspond to a novel human Secreted (21) Appl. No.: 10/168,365 Stem cell growth factor-like polypeptide. These polynucle otides comprise nucleic acid Sequences isolated from cDNA (22) PCT Filed: Dec. 23, 2000 libraries prepared from human fetal liver Spleen, ovary, adult (86) PCT No.: PCT/US00/35260 brain, lung tumor, Spinal cord, cervix, ovary, endothelial cells, umbilical cord, lymphocyte, lung fibroblast, fetal (30) Foreign Application Priority Data brain, and testis.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Use Solid K-Mers In
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Use Solid K-mers In MinHash-Based Genome Distance Estimation A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by An Zheng Committee in charge: Professor Pavel Pevzner, Chair Professor Vikas Bansal Professor Melissa Gymrek 2017 Copyright An Zheng, 2017 All rights reserved. The thesis of An Zheng is approved, and it is acceptable in quality and form for publication on microfilm and electroni- cally: Chair University of California, San Diego 2017 iii TABLE OF CONTENTS Signature Page . iii Table of Contents . iv List of Figures . v List of Tables . vi Acknowledgements . vii Abstract of the Thesis . viii Chapter 1 Introduction and background . 1 1.1 Genome distance estimation . 1 1.2 Current methods . 2 1.3 MinHash . 3 1.4 Solid k-mer powered MinHash . 5 Chapter 2 Method . 7 2.1 General scheme . 7 2.2 Identification of overlapping read pairs . 8 2.2.1 Workflow . 8 2.2.2 Data . 9 2.2.3 Implementation . 9 2.3 Genome identification . 10 2.3.1 Workflow . 10 2.3.2 Data . 10 2.3.3 Implementation . 10 Chapter 3 Result . 15 3.1 Identification of overlapping read pairs . 15 3.1.1 Performance comparison between solid k-mer pow- ered MinHash and regular MinHash . 15 3.1.2 Selecting the solid k-mer threshold . 17 3.2 Genome identification . 19 Chapter 4 Discussion and future work . 21 Bibliography . 23 iv LIST OF FIGURES Figure 1.1: An example of how to use MinHash to compute the resemblance of two genome sequences.
    [Show full text]
  • Outlier Detection in BLAST Hits∗
    Outlier Detection in BLAST Hits∗ Nidhi Shah1, Stephen F. Altschul2, and Mihai Pop3 1 Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA [email protected] 2 Computational Biology Branch, NCBI, NLM, NIH, Bethesda, MD, USA [email protected] 3 Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA [email protected] Abstract An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences in a sample. Most widely used methods for taxonomy assignment compare a sequence in the sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign the taxonomic label. However, it is known that the best BLAST hit may not always correspond to the best taxonomic match. An alternative approach involves phylogenetic methods which take into account alignments and a model of evolution in order to more accurately define the taxonomic origin of sequences. The similarity-search based methods typically run faster than phylogenetic methods and work well when the organisms in the sample are well represented in the database. On the other hand, phylogenetic methods have the capability to identify new organisms in a sample but are computationally quite expensive. We propose a two-step approach for metagenomic taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference database (this is a filtering step) and then use a more complex phylogenetic method for the sequences that were unclassified in the previous step.
    [Show full text]
  • Developing Bioinformatics Computer Skills.Pdf
    Safari | Developing Bioinformatics Computer Skills Show TOC | Frames My Desktop | Account | Log Out | Subscription | Help Programming > Developing Bioinformatics Computer Skills See All Titles Developing Bioinformatics Computer Skills Cynthia Gibas Per Jambeck Publisher: O'Reilly First Edition April 2001 ISBN: 1-56592-664-1, 446 pages Buy Print Version Developing Bioinformatics Computer Skills will help biologists, researchers, and students develop a structured approach to biological data and the computer skills they'll need to analyze it. The book covers Copyright the Unix file system, building tools and databases for bioinformatics, Table of Contents computational approaches to biological problems, an introduction to Index Perl for bioinformatics, data mining, data visualization, and tips for Full Description tailoring data analysis software to individual research needs. About the Author Reviews Reader reviews Errata Delivered for Maurice ling Last updated on 10/30/2001 Swap Option Available: 7/15/2002 Developing Bioinformatics Computer Skills, © 2002 O'Reilly © 2002, O'Reilly & Associates, Inc. http://safari.oreilly.com/main.asp?bookname=bioskills [6/2/2002 8:49:35 AM] Safari | Developing Bioinformatics Computer Skills Show TOC | Frames My Desktop | Account | Log Out | Subscription | Help Programming > Developing Bioinformatics Computer Skills See All Titles Developing Bioinformatics Computer Skills Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved. Printed in the United States of America. Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safari.oreilly.com). For more information contact our corporate/institutional sales department: 800-998-9938 or [email protected].
    [Show full text]
  • The Scientist :: Blast, Aug. 29, 2005 09/18/2005 04:42 PM
    The Scientist :: Blast, Aug. 29, 2005 09/18/2005 04:42 PM Volume 19 | Issue 16 | Page 21 | Aug. 29, 2005 Previous | Issue Contents | Next FEATURE | SEVEN TECHNOLOGIES How 90,000 lines of code helped spark the bioinformatics explosion By Anne Harding You've just cloned and sequenced a gene, but you don't know what it does. Now Sponsored by: what do you do? In the absence of functional clues, it's hard to know where to start. One approach is to ask what other known sequences are similar to yours, thereby inferring function from homology. Each weekday, some 200,000 or so researchers do just that, asking a server at the National Center for Biotechnology Information (NCBI) in Bethesda, Md., to compare their particular sequence against GenBank, a DNA database that, at the end of 2004, held more than 40 million sequences totaling 44.5 billion nucleotides. The NCBI devotes 158 two-processor computers to those queries, 75% of which return within 22 seconds. The software these servers use, a sturdy 15-year-old program known as the Basic Local Alignment Search Tool, or BLAST, remains, for many, bioinformatics' "killer app." It wasn't the first DNA database search tool, but it was fast, and it provided metrics to assess the significance of the matches it found--all in 90,000 lines of C code. "The fact that every biologist has been using BLAST tells everything," says Jin Billy Li of the Washington University Genome Sequencing Center in St. Louis, who has used BLASTP (a protein homology tool) to identify flagellar genes in several species, including the human gene that causes Bardet-Biedl syndrome, a ciliation disorder.
    [Show full text]
  • Msc THESIS Genetic Sequence Alignment on a Supercomputing Platform
    Computer Engineering 2011 Mekelweg 4, 2628 CD Delft The Netherlands http://ce.et.tudelft.nl/ MSc THESIS Genetic sequence alignment on a supercomputing platform Erik Vermij Abstract Genetic sequence alignment is an important tool for researchers. It lets them see the differences and similarities between two genetic sequences. This is used in several fields, like homology research, auto immune disease research and protein shape estimation. There are various algorithms that can perform this task and several hard- ware platforms suitable to deliver the necessary computation power. CE-MS-2011-02 Given the large volume of the datasets used, throughput is nowadays the major bottleneck in sequence alignment. In this thesis we discuss some of the existing solutions for high throughput genetic sequence alignment and present a new one. Our solution implements the well known Smith-Waterman optimal local alignment algorithm on the HC-1 hybrid supercomputer from Convey Computer. This platform features four FPGAs which can be used to accelerate the problem in question. The FPGAs, and the CPU that controls them, live in the same virtual memory space and share one large memory. We developed a hardware description for the FPGAs and a software program for the CPU. Some focus points were: a sustainable peak performance, being able to align sequences of any length, FPGA area efficient computations and the cancellation of unnecessary workload. The result is a Smith-Waterman FPGA core that can run at 100% utilization for many alignments long. They are packed per six on a FPGA running on 150 MHz, which results in a full system performance of 460 GCUPS (billion elementary operations per second).
    [Show full text]
  • Computation Resources for Molecular Biology: a Special Issue
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Editorial provided by Elsevier - Publisher Connector Computation Resources for Molecular Biology: A Special Issue Increasingly, computational approaches are hav- ubiquitin-like folds in the protein databank (UbSRD). ing a central role across many areas of research The resource quantifies the structures of ubiquitins tackling the challenges of understanding the com- and SUMOs (small ubiquitin-like modifier proteins) plexity of biological systems. A resource such as and their different modes of protein–protein interac- BLAST (Basic Local Alignment Search Tool) [1], tions. The database allowed the authors to identify which was published in this journal in 1990, has that the ubiquitin tail is flexible and adopts a range of transformed sequence searching because of its conformations on binding. Users can browse the speed and power in detecting distant but biologically database by phylogeny, by structural properties and significant relationships. Since then, high-throughput by residue interactions. molecular biology technologies have led to a rapid The third database [4] in this Special Issue, expansion in available sequence, structural and authored by Keerthikumar et al., is ExoCarta that is -omics data for many systems being studied. a manually curated compendium of exosomal Computational biologists, statisticians and mathe- proteins, RNAs and lipids. The current version maticians have been motivated by this exponential details more than 41,000 protein, 7000 RNA and growth of data to develop enhanced novel compu- 1000 lipid molecules. Users can browse the data- tational tools. Challenges include the storage and base by organism, content type or gene.
    [Show full text]
  • Coding Sequences: a History of Sequence Comparison Algorithms As a Scientiªc Instrument
    Coding Sequences: A History of Sequence Comparison Algorithms as a Scientiªc Instrument Hallam Stevens Harvard University Sequence comparison algorithms are sophisticated pieces of software that com- pare and match identical or similar regions of DNA, RNA, or protein se- quence. This paper examines the origins and development of these algorithms from the 1960s to the 1990s. By treating this software as a kind of scien- tiªc instrument used to examine sets of biological objects, the paper shows how algorithms have been used as different sorts of tools and appropriated for dif- ferent sorts of uses according to the disciplinary context in which they were deployed. These particular uses have made sequences themselves into different kinds of objects. Introduction Historians of molecular biology have paid signiªcant attention to the role of scientiªc instruments and their relationship to the production of bio- logical knowledge. For instance, Lily Kay has examined the history of electrophoresis, Boelie Elzen has analyzed the development of the ultra- centrifuge as an enabling technology for molecular biology, and Nicolas Rasmussen has examined how molecular biology was transformed by the introduction of the electron microscope (Kay 1998, 1993; Elzen 1986; Rasmussen 1997).1 Collectively, these historians have demonstrated how instruments and other elements of the material culture of the labora- tory have played a decisive role in determining the kind and quantity of knowledge that is produced by biologists. During the 1960s, a versatile new kind of instrument began to be deployed in biology: the electronic computer (Ceruzzi 2001; Lenoir 1999). Despite the signiªcant role that 1. One could also point to Robert Kohler’s (1994) work on the fruit ºy, Jean-Paul Gaudillière (2001) on laboratory mice, and Hannah Landecker (2007) on the technologies of tissue culture.
    [Show full text]
  • STUDY of the RELATIONSHIP BETWEEN Mus Musculus PROTEIN SEQUENCES and THEIR BIOLOGICAL FUNCTIONS a Thesis Presented to the Gradua
    STUDY OF THE RELATIONSHIP BETWEEN Mus musculus PROTEIN SEQUENCES AND THEIR BIOLOGICAL FUNCTIONS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Pawan Seth May, 2007 STUDY OF THE RELATIONSHIP BETWEEN Mus musculus PROTEIN SEQUENCES AND THEIR BIOLOGICAL FUNCTIONS Pawan Seth Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Dean of the College Dr. Zhong-Hui Duan Dr. Ronald F. Levant _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Chien-Chung Chan Dr. George R. Newkome _______________________________ _______________________________ Committee Member Date Dr. Xuan-Hien Dang _______________________________ Committee Member Dr. Yingcai Xiao _______________________________ Department Chair Dr. Wolfgang Pelz ii ABSTRACT The central challenge in post-genomic era is the characterization of biological functions of newly discovered proteins. Sequence similarity based approaches infer protein functions based upon the homology between proteins. In this thesis, we present the similarity relationship between protein sequences and functions for mouse proteome in the context of gene ontology slim. The similarity between protein sequences is computed using a novel measure based upon the local BLAST alignment scores. The similarity between protein functions is characterized using the three gene ontology categories. In the study, the ontology categories are represented using a general tree structure. Three ontology trees are constructed using the definitions provided in gene ontology slim. The mouse protein sequences are then mapped onto the trees. We present the sequence similarity distributions at different levels of GO tree. The similarities of protein sequences across gene ontology levels and traversing branches are studied.
    [Show full text]
  • K-Mulus: a Database-Clustering Approach to Protein BLAST in the Cloud
    K-mulus: A Database-Clustering Approach to Protein BLAST in the Cloud Carl H. Albachy Sebastian G. Angely Christopher M. Hilly Mihai Pop Department of Computer Science University of Maryland, College Park College Park, MD 20741 fcalbach, sga001, cmhill, [email protected] ABSTRACT with the intention of efficiently searching for these similar- With the increased availability of next-generation sequenc- ities. The most widely used application is the Basic Local ing technologies, researchers are gathering more data than Alignment Search Tool, or BLAST[3]. they are able to process and analyze. One of the most widely performed analyses is identifying regions of similar- With the increased availability of next-generation sequenc- ity between DNA or protein sequences using the Basic Local ing technologies, researchers are gathering more data than Alignment Search Tool, or BLAST. Due to the large scale ever before. This large influx of data has become a ma- of sequencing data produced, parallel implementations of jor issue as researchers have a difficult time processing and BLAST are needed to process the data in a timely manner. analyzing it. For this reason, optimizing the performance In this paper we present K-mulus, an application that per- of BLAST and developing new alignment tools has been a forms distributed BLAST queries via Hadoop and MapRe- well researched topic over the past few years. Take the ex- duce and aims to generate speedups by clustering the database. ample of environmental sequencing projects, in which the Clustering the sequence database reduces the search space bio-diversity of various environments, including the human for a given query, and allows K-mulus to easily parallelize microbiome, is analyzed and characterized to generate on the remaining work.
    [Show full text]
  • In Its Most Basic Form a Sequence Alignment Is Simply Comparing Two Or More Sequences by Searching for Character Patterns and Other Similarities
    In its most basic form a sequence alignment is simply comparing two or more sequences by searching for character patterns and other similarities. Blasting some sequence is often the first step a researcher will take to characterize an unknown sequence or even a whole genome, but in 1970, when Needleman and Wunsch first introduced their algorithm for automated global alignment of sequences, there were still very few sequences to work with. Throughout the late seventies, determining nucleotide sequences was a torturous tedious process, but in 1977 there were two major technological breakthroughs, one pioneered by Maxam and Gilbert and the other by Sanger that opened the door for automated sequencing. These two developments represent the bedrock on which high through put sequencing is built. Alignment techniques can be broken into two components. The first is construction of a scoring matrix, and the second is the actual algorithms used to compute a score. The simplest scoring matrix is a unitary matrix. If the character matches a one is assigned, and if not the matrix element is zero. In this most fundamental case, the alignment would simply be the path through this matrix. The two most commonly used scoring matrices today are PAM and BLOSUM. PAM or percent accepted mutation rate different substitution rates of amino acids were calculated based on alignments of protein sequences that were at least eight-five percent identical (Heinkoff, 1992). Rates for PAMs correlating to different evolutionary distances were then extrapolated from these original calculations. BLOSUM takes a slightly different approach. Instead of relying on extrapolated data, the various BLOSUMs are calculated directly.
    [Show full text]
  • Thesis by Submitted in Partial Fulfillment of the Requirements For
    Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions Thesis by Enas Mohammad Odat, Master Degree in Computer Science Submitted in Partial Fulfillment of the Requirements for the degree of Masters of Computer Science King Abdullah University of Science and Technology Mathmatical and Computer Sciences and Engineering Division Computer System Thuwal, Makkah Province, Kingdom of Saudi Arabia May, 2011 2 The dissertation/thesis of Enas Mohammad Odat is approved by the examination committee Committee Chairperson: Committee Co-Chair: Committee Member: King Abdullah University of Science and Technology 2011 ABSTRACT Sequential Optimization of Global Sequence Alignments Relative to Different Cost Functions Enas Mohammad Odat The purpose of this dissertation is to present a methodology to model global sequence alignment problem as directed acyclic graph which helps to extract all pos- sible optimal alignments. Moreover, a mechanism to sequentially optimize sequence alignment problem relative to different cost functions is suggested. Sequence alignment is mostly important in computational biology. It is used to find evolutionary relationships between biological sequences. There are many algo- rithms that have been developed to solve this problem. The most famous algorithms are Needleman-Wunsch and Smith-Waterman that are based on dynamic program- ming. In dynamic programming, problem is divided into a set of overlapping sub- problems and then the solution of each subproblem is found. Finally, the solutions to these subproblems are combined into a final solution. In this thesis it has been proved that for two sequences of length m and n over a fixed alphabet, the suggested optimization procedure requires O(mn) arithmetic operations per cost function on a single processor machine.
    [Show full text]