Selection of Macrocybe Crassa Mushroom for Commercial Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Influence of Tree Species on Richness and Diversity of Epigeous Fungal
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication fungal ecology 4 (2011) 22e31 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand Marc BUE´Ea,*, Jean-Paul MAURICEb, Bernd ZELLERc, Sitraka ANDRIANARISOAc, Jacques RANGERc,Re´gis COURTECUISSEd, Benoıˆt MARC¸AISa, Franc¸ois LE TACONa aINRA Nancy, UMR INRA/UHP 1136 Interactions Arbres/Microorganismes, 54280 Champenoux, France bGroupe Mycologique Vosgien, 18 bis, place des Cordeliers, 88300 Neufchaˆteau, France cINRA Nancy, UR 1138 Bioge´ochimie des Ecosyste`mes Forestiers, 54280 Champenoux, France dUniversite´ de Lille, Faculte´ de Pharmacie, F59006 Lille, France article info abstract Article history: Epigeous saprotrophic and ectomycorrhizal (ECM) fungal sporocarps were assessed during Received 30 September 2009 7 yr in a French temperate experimental forest site with six 30-year-old mono-specific Revision received 10 May 2010 plantations (four coniferous and two hardwood plantations) and one 150-year-old native Accepted 21 July 2010 mixed deciduous forest. A total of 331 fungal species were identified. Half of the fungal Available online 6 October 2010 species were ECM, but this proportion varied slightly by forest composition. The replace- Corresponding editor: Anne Pringle ment of the native forest by mono-specific plantations, including native species such as beech and oak, considerably altered the diversity of epigeous ECM and saprotrophic fungi. Keywords: Among the six mono-specific stands, fungal diversity was the highest in Nordmann fir and Conifer plantation Norway spruce plantations and the lowest in Corsican pine and Douglas fir plantations. -
Checklist of the Species of the Genus Tricholoma (Agaricales, Agaricomycetes) in Estonia
Folia Cryptog. Estonica, Fasc. 47: 27–36 (2010) Checklist of the species of the genus Tricholoma (Agaricales, Agaricomycetes) in Estonia Kuulo Kalamees Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St. 51005, Tartu, Estonia. Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 181 Riia St., 51014 Tartu, Estonia E-mail: [email protected] Abstract: 42 species of genus Tricholoma (Agaricales, Agaricomycetes) have been recorded in Estonia. A checklist of these species with ecological, phenological and distribution data is presented. Kokkukvõte: Perekonna Tricholoma (Agaricales, Agaricomycetes) liigid Eestis Esitatakse kriitiline nimestik koos ökoloogiliste, fenoloogiliste ja levikuliste andmetega heiniku perekonna (Tricholoma) 42 liigi (Agaricales, Agaricomycetes) kohta Eestis. INTRODUCTION The present checklist contains 42 Tricholoma This checklist also provides data on the ecol- species recorded in Estonia. All the species in- ogy, phenology and occurrence of the species cluded (except T. gausapatum) correspond to the in Estonia (see also Kalamees, 1980a, 1980b, species conceptions established by Christensen 1982, 2000, 2001b, Kalamees & Liiv, 2005, and Heilmann-Clausen (2008) and have been 2008). The following data are presented on each proved by relevant exsiccates in the mycothecas taxon: (1) the Latin name with a reference to the TAAM of the Institute of Agricultural and Envi- initial source; (2) most important synonyms; (3) ronmental Sciences of the Estonian University reference to most important and representative of Life Sciences or TU of the Natural History pictures (iconography) in the mycological litera- Museum of the Tartu University. In this paper ture used in identifying Estonian species; (4) T. gausapatum is understand in accordance with data on the ecology, phenology and distribution; Huijsman, 1968 and Bon, 1991. -
Fundliste Der 34. Internationalenmykologischen Dreiländertagung in Litschau 2009. Irmgard Krisai-Greilhuber, Anton Hausknecht, Wolfgang Klofac
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Österreichische Zeitschrift für Pilzkunde Jahr/Year: 2011 Band/Volume: 20 Autor(en)/Author(s): Krisai-Greilhuber Irmgard, Hausknecht Anton, Klofac Wolfgang Artikel/Article: Fundliste der 34. InternationalenMykologischen Dreiländertagung in Litschau 2009. 73-102 ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 20 (2011) 73 Fundliste der 34. Internationalen Mykologischen Dreiländertagung in Litschau 2009 IRMGARD KRISAI-GREILHUBER ANTON HAUSKNECHT Fakultätszentrum für Biodiversität der Universität Wien Rennweg 14 A-1030 Wien, Österreich Emails: [email protected]; [email protected] WOLFGANG KLOFAC Mayerhöfen 28 A-3074 Michelbach, Österreich Email: [email protected] Angenommen am 20. 11. 2011 Key words: Agaricales, Aphyllophorales, Ascomycota, Myxomycetes. – Mycoflora of Lower Austria. Abstract: A list of almost all fungi collected and identified during the 34. Mykologische Dreiländer- tagung in Litschau, Lower Austria, 2009 is presented. Altogether, 754 fungal taxa were collected, viz. 500 Agaricales s. l., 180 Aphyllophorales s. l., 63 Ascomycota and 11 others. Comments on and de- scriptions of some interesting finds and a colour photograph of some rare species are given. Zusammenfassung: Eine Liste fast aller Pilze, die während der 34. Mykologischen Dreiländertagung in Litschau, Niederösterreich, 2009, gesammelt und bestimmt wurden, wird vorgestellt. Insgesamt wurden 754 Pilztaxa gesammelt, davon 500 Agaricales, Russulales und Boletales, 180 Aphyllophora- les s. l., 63 Ascomycota und 11 Sonstige. Kommentare und Beschreibungen zu einigen interessanten Funden und Farbfotos von einigen seltenen Arten werden gegeben. Die 34. Mykologische Dreiländertagung wurde gemeinsam vom Verein Erlebnis Waldviertel und der Österreichischen Mykologischen Gesellschaft organisiert und fand vom 13. -
Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23 -
Evolution of Complex Fruiting-Body Morphologies in Homobasidiomycetes
Received 18April 2002 Accepted 26 June 2002 Publishedonline 12September 2002 Evolutionof complexfruiting-bo dymorpholog ies inhomobasidi omycetes David S.Hibbett * and Manfred Binder BiologyDepartment, Clark University, 950Main Street,Worcester, MA 01610,USA The fruiting bodiesof homobasidiomycetes include some of the most complex formsthat have evolved in thefungi, such as gilled mushrooms,bracket fungi andpuffballs (‘pileate-erect’) forms.Homobasidio- mycetesalso includerelatively simple crust-like‘ resupinate’forms, however, which accountfor ca. 13– 15% ofthedescribed species in thegroup. Resupinatehomobasidiomycetes have beeninterpreted either asa paraphyletic grade ofplesiomorphic formsor apolyphyletic assemblage ofreducedforms. The former view suggeststhat morphological evolutionin homobasidiomyceteshas beenmarked byindependentelab- oration in many clades,whereas the latter view suggeststhat parallel simplication has beena common modeof evolution.To infer patternsof morphological evolution in homobasidiomycetes,we constructed phylogenetic treesfrom adatasetof 481 speciesand performed ancestral statereconstruction (ASR) using parsimony andmaximum likelihood (ML)methods. ASR with both parsimony andML implies that the ancestorof the homobasidiomycetes was resupinate, and that therehave beenmultiple gains andlosses ofcomplex formsin thehomobasidiomycetes. We also usedML toaddresswhether there is anasymmetry in therate oftransformations betweensimple andcomplex forms.Models of morphological evolution inferredwith MLindicate that therate -
October 2001 Newsletter of the Mycological Society of America
Supplement to Mycologia Vol. 52(5) October 2001 Newsletter of the Mycological Society of America -- In This Issue -- The Costa Rican National Fungal Inventory: A Large-Scale Collaborative Project Costa Rican Fungal Inventory ................. 1-4 Should Coprinus Type be Changed ............. 5 by Gregory M. Mueller and Milagro Mata The Colon in Scientific Authorities .............. 6 Questions or comments should be sent to Greg Mueller via Department of MSA Official Business Botany, THE FIELD MUSEUM, 1400 S. Lake Shore Drive, Chicago, IL, President’s Corner ................................ 7-8 60605 or Email: <[email protected]>. MSA Council Express Mail ...................... 8 UNGI WERE CHOSEN to be included as a core component of the From the Editor ....................................... 8 Costa Rican National Inventory because of their great ecologi MSA Job Openings ............................... 9 Fcal and economic importance. The National Inventory is being Annual Reports: Officers ................... 9-12 coordinated by the Costa Rican National Biodiversity Institute Annual Reports: Publications........... 12-14 (INBio) and is being supported by funds from The World Bank, the Annual Reports: Committees ........... 15-20 Norwegian Agency for International Development (NORAD), and the Annual Reports: Representatives..... 20-23 Dutch Government. The National Inventory encompasses rigorous Annual Reports: Assignments............... 24 surveys of fungi, plants, various insect groups, mollusks, and Forms nematodes. In addition to capturing diversity data, the National Inventory’s efforts are aimed at obtaining detailed information about Change of Address ............................... 6 species distributions throughout the country and identifying those Endowment & Contributions ............. 33 features of the species’ natural history that can contribute to protect- Gift Membership ............................... 35 ing them, using them, and managing them adequately. Society Membership ......................... -
Tricholoma (Fr.) Staude in the Aegean Region of Turkey
Turkish Journal of Botany Turk J Bot (2019) 43: 817-830 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1812-52 Tricholoma (Fr.) Staude in the Aegean region of Turkey İsmail ŞEN*, Hakan ALLI Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey Received: 24.12.2018 Accepted/Published Online: 30.07.2019 Final Version: 21.11.2019 Abstract: The Tricholoma biodiversity of the Aegean region of Turkey has been determined and reported in this study. As a consequence of field and laboratory studies, 31 Tricholoma species have been identified, and five of them (T. filamentosum, T. frondosae, T. quercetorum, T. rufenum, and T. sudum) have been reported for the first time from Turkey. The identification key of the determined taxa is given with this study. Key words: Tricholoma, biodiversity, identification key, Aegean region, Turkey 1. Introduction & Intini (this species, called “sedir mantarı”, is collected by Tricholoma (Fr.) Staude is one of the classic genera of local people for both its gastronomic and financial value) Agaricales, and more than 1200 members of this genus and T. virgatum var. fulvoumbonatum E. Sesli, Contu & were globally recorded in Index Fungorum to date (www. Vizzini (Intini et al., 2003; Vizzini et al., 2015). Additionally, indexfungorum.org, access date 23 April 2018), but many Heilmann-Clausen et al. (2017) described Tricholoma of them are placed in other genera such as Lepista (Fr.) ilkkae Mort. Chr., Heilm.-Claus., Ryman & N. Bergius as W.G. Sm., Melanoleuca Pat., and Lyophyllum P. Karst. a new species and they reported that this species grows in (Christensen and Heilmann-Clausen, 2013). -
Newsletter of Jun
V OMPHALINISSN 1925-1858 Vol. V, No 6 Newsletter of Jun. 21, 2014 OMPHALINA OMPHALINA, newsletter of Foray Newfoundland & Labrador, has no fi xed schedule of publication, and no promise to appear again. Its primary purpose is to serve as a conduit of information to registrants of the upcoming foray and secondarily as a communications tool with members. Issues of OMPHALINA are archived in: is an amateur, volunteer-run, community, Library and Archives Canada’s Electronic Collection <http://epe. not-for-profi t organization with a mission to lac-bac.gc.ca/100/201/300/omphalina/index.html>, and organize enjoyable and informative amateur Centre for Newfoundland Studies, Queen Elizabeth II Library mushroom forays in Newfoundland and (printed copy also archived) <http://collections.mun.ca/cdm4/ description.php?phpReturn=typeListing.php&id=162>. Labrador and disseminate the knowledge gained. The content is neither discussed nor approved by the Board of Directors. Therefore, opinions expressed do not represent the views of the Board, Webpage: www.nlmushrooms.ca the Corporation, the partners, the sponsors, or the members. Opinions are solely those of the authors and uncredited opinions solely those of the Editor. ADDRESS Foray Newfoundland & Labrador Please address comments, complaints, contributions to the self-appointed Editor, Andrus Voitk: 21 Pond Rd. Rocky Harbour NL seened AT gmail DOT com, A0K 4N0 CANADA … who eagerly invites contributions to OMPHALINA, dealing with any aspect even remotely related to mushrooms. E-mail: info AT nlmushrooms DOT ca Authors are guaranteed instant fame—fortune to follow. Authors retain copyright to all published material, and BOARD OF DIRECTORS CONSULTANTS submission indicates permission to publish, subject to the usual editorial decisions. -
Testing Spore Amyloidity in Agaricales Under Light Microscope: the Case Study of Tricholoma Alfredo Vizzini1*, Giovanni Consiglio2 and Ledo Setti3
Vizzini et al. IMA Fungus (2020) 11:24 https://doi.org/10.1186/s43008-020-00046-8 IMA Fungus RESEARCH Open Access Testing spore amyloidity in Agaricales under light microscope: the case study of Tricholoma Alfredo Vizzini1*, Giovanni Consiglio2 and Ledo Setti3 Abstract Although species of the genus Tricholoma are currently considered to produce inamyloid spores, a novel standardized method to test sporal amyloidity (which involves heating the sample in Melzer’s reagent) showed evidence that in the tested species of this genus, which belong in all 10 sections currently recognized from Europe, the spores are amyloid. In two species, T. josserandii and T. terreum, the spores are also partly dextrinoid. This result provides strong indication that a positive reaction of the spores in Melzer’s reagent could be a character shared by all genera in Tricholomataceae s. str. Keywords: Agaricomycetes, Basidiomycota, Iodine, Melzer’s reagent, nrITS sequences, Pre-heating, Taxonomy of Tricholomataceae Introduction of the starch–iodine interaction is extremely complex It has been known for about 150 years that some asco- and still remains imperfectly known (Bluhm and Zugen- mycete and basidiomycete sporomata may contain maier 1981; Immel and Lichtenthaler 2000; Shen et al. elements which stain grey to blue-black with iodine- 2013; Du et al. 2014; Okuda et al. 2020). containing solutions. Such a staining was termed amyl- An overview of the historical use of Melzer’s was pro- oid reaction, sometimes written as I+ or J+ (the term vided by Leonard (2006). Iodine was used in Mycology “amyloid” being derived from the Latin amyloideus, i.e. -
Selection of Macrocybe Crassa Mushroom for Commercial Production
Accepted Manuscript Selection of Macrocybe crassa mushroom for commercial production Tanapak Inyod, Suriya Sassanarakit, Achara Payapanon, Suttipun Keawsompong PII: S2452-316X(16)30028-X DOI: 10.1016/j.anres.2016.06.006 Reference: ANRES 30 To appear in: Agriculture and Natural Resources Received Date: 14 September 2015 Accepted Date: 14 March 2016 Please cite this article as: Inyod T, Sassanarakit S, Payapanon A, Keawsompong S, Selection of Macrocybe crassa mushroom for commercial production, Agriculture and Natural Resources (2016), doi: 10.1016/j.anres.2016.06.006. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 ACCEPTED MANUSCRIPT 1 Agriculture and Natural Resources. 2016. 50(3): xx −xx 2 Agr. Nat. Resour. 2016. 50(3): xx −xx 3 4 Selection of Macrocybe crassa mushroom for commercial production 5 6 Tanapak Inyod 1, 2, Suriya Sassanarakit 2, Achara Payapanon 3, Suttipun Keawsompong 1* 7 8 1Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, 9 Bangkok 10900, Thailand 10 2Thailand Institute of Scientific and Technological Research (TISTR), Technopolis, Klong 5, 11 Klong Luang, Pathumthani 12120, Thailand 12 3Department of Agriculture, 50 Phaholyothin Road, Chatuchak, Bangkok 10900, Thailand 13 MANUSCRIPT 14 Received 14/09/15 15 Accepted 14/03/16 16 17 Keywords: 18 Macrocybe crassa, 19 Nutritional value, 20 Productivity, 21 Quality, ACCEPTED 22 Substrate 23 24 * Corresponding author. -
Phd. Thesis Sana Jabeen.Pdf
ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8. -
2 the Numbers Behind Mushroom Biodiversity
15 2 The Numbers Behind Mushroom Biodiversity Anabela Martins Polytechnic Institute of Bragança, School of Agriculture (IPB-ESA), Portugal 2.1 Origin and Diversity of Fungi Fungi are difficult to preserve and fossilize and due to the poor preservation of most fungal structures, it has been difficult to interpret the fossil record of fungi. Hyphae, the vegetative bodies of fungi, bear few distinctive morphological characteristicss, and organisms as diverse as cyanobacteria, eukaryotic algal groups, and oomycetes can easily be mistaken for them (Taylor & Taylor 1993). Fossils provide minimum ages for divergences and genetic lineages can be much older than even the oldest fossil representative found. According to Berbee and Taylor (2010), molecular clocks (conversion of molecular changes into geological time) calibrated by fossils are the only available tools to estimate timing of evolutionary events in fossil‐poor groups, such as fungi. The arbuscular mycorrhizal symbiotic fungi from the division Glomeromycota, gen- erally accepted as the phylogenetic sister clade to the Ascomycota and Basidiomycota, have left the most ancient fossils in the Rhynie Chert of Aberdeenshire in the north of Scotland (400 million years old). The Glomeromycota and several other fungi have been found associated with the preserved tissues of early vascular plants (Taylor et al. 2004a). Fossil spores from these shallow marine sediments from the Ordovician that closely resemble Glomeromycota spores and finely branched hyphae arbuscules within plant cells were clearly preserved in cells of stems of a 400 Ma primitive land plant, Aglaophyton, from Rhynie chert 455–460 Ma in age (Redecker et al. 2000; Remy et al. 1994) and from roots from the Triassic (250–199 Ma) (Berbee & Taylor 2010; Stubblefield et al.