Thesis Reference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dark and Quiet Skies for Science and Society
On-line Workshop Dark and Quiet Skies for Science and Society Report and recommendations Cover picture: Jupiter and Saturn photographed over the “Tre Cime di Lavaredo” (The three peaks of La- varedo), a famous dolomitic group. The picture symbolically joins two UNESCO World Heritage items, the terrestrial Dolomites and the celestial starry sky. Courtesy of Giorgia Hofer, Photographer Dark and Quiet Skies for Science and Society «Zwei Dinge erfüllen das Gemüt mit immer neuer und zuneh- mender Bewunderung und Ehrfurcht, je öfter und anhaltender sich das Nachdenken damit beschäftigt: Der bestirnte Himmel über mir, und das moralische Gesetz in mir.» I. Kant - Kritik der praktischen Vernunft «Two things fill the mind with ever new and increasing admira- tion and awe, the more often and longer the reflection occupies itself with it: the starry sky above me, and the moral law within me.» I. Kant - Critique of Practical Reason Dark and Quiet Skies for Science and Society Table of Contents About the Authors .....................................................................................................7 1. Introduction ........................................................................................................12 2. Executive summary .............................................................................................14 2.1. General executive summary ............................................................................... 14 2.2. Dark Sky Oases executive summary .................................................................. -
Collocato In
Collocato in: http://digilander.libero.it/occultazioni/ I/149A Fifth Fundamental Catalogue (FK5) Part I (Fricke+, 1988) ================================================================================ Fifth Fundamental Catalogue (FK5) Part I Fricke W., Schwan H., Lederle T. (in collaboration with Bastian U., Bien R., Burkhardt G., du Mont B., Hering R., Jaehrling R., Jahreiss H., Roeser S., Schwerdtfeger H.M., Walter H.G.) <Veroeff. Astron. Rechen-Institut Heidelb. No. 32 (1988)> =1988VeARI..32....1F ================================================================================ ADC_Keywords: Proper motions ; Positional data Abstract: The Basic Fifth Fundamental Catalogue (FK5) Part I provides improved mean positions and proper motions for the 1535 classical fundamental stars that had been included in the FK3 and FK4 catalogs. The machine version of the catalog contains the positions and proper motions of the Basic FK5 stars for the epochs and equinoxes J2000.0 and B1950.0, the mean epochs of individual observed right ascensions and declinations used to determine the final positions, the mean errors of the final positions and proper motions for the reported epochs, and ancillary data such as magnitudes, spectral types, parallaxes, radial velocities, and cross identifications to other catalog designations. Introduction: The Basic FK5 is the successor to the FK4 (Fricke & Kopff 1963) and contains the 1535 classical fundamental stars used to define the latter system. It represents a revision of the FK4 and results from the determination of systematic and individual corrections to the mean positions and proper motions of the FK4, the elimination of the error in the FK4 equinox, and the introduction of the IAU (1976) system of astronomical constants. About 300 catalogs providing star positions obtained from throughout the world are included in the FK5. -
A Catalog of Rotational and Radial Velocities for Evolved Stars V
Astronomy & Astrophysics manuscript no. De˙Medeiros˙J˙R˙2013˙revised˙MS c ESO 2018 November 7, 2018 A catalog of rotational and radial velocities for evolved stars V. Southern stars ⋆,⋆⋆ J. R. De Medeiros1, S. Alves1, S. Udry2, J. Andersen3,4, B. Nordstr¨om3 and M. Mayor2 1 Departamento de F´ısica, Universidade Federal do Rio Grande do Norte, Campus Universit´ario, 59072-970 Natal, RN, Brasil e-mail: J. R. De Medeiros, [email protected] 2 Observatoire de Gen`eve, Universit`ede Gen`eve, Chemin des Maillettes 51, 1290 Sauverny, Switzerland 3 The Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 4 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain Received Date:?? Accepted Date:?? ABSTRACT Rotational and radial velocities have been measured for 1589 evolved stars of spectral types F, G, and K and luminosity classes IV, III, II, and Ib, based on observations carried out with the CORAVEL spectrometers. The precision in radial velocity is better than 0.30 1 1 1 km s− per observation, whereas rotational velocity uncertainties are typically 1.0 km s− for subgiants and giants and 2.0 km s− for class II giants and Ib supergiants. Key words. Stars: Evolution – Stars: Late-Type – Stars: Fundamental Parameters – Stars: Binaries spectroscopic – Techniques: Radial Velocities – Catalogs 1. Introduction reliable investigations of stellar rotational characteristics in dif- ferent regions of the H–R Diagram (Carlberg et al. 2011; Cort´es Over the past two decades, observations have been carried out at et al. 2009; Melo et al. -
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Galactic Evolution Through the Far-Ultraviolet Lens Permalink https://escholarship.org/uc/item/9068c6wj Author Crandall, Sara R Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ GALACTIC EVOLUTION THROUGH THE FAR-ULTRAVIOLET LENS A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY AND ASTROPHYSICS by Sara R. Crandall June 2021 The Dissertation of Sara R. Crandall is ap- proved: Graeme H. Smith, Chair Constance M Rockosi Ruth Murray-Clay Quentin Williams Interim Vice Provost and Dean of Graduate Studies Copyright © by Sara R. Crandall 2021 Table of Contents List of Figures vi List of Tables xiii Abstract xiv Acknowledgments xvii Dedication xx 1 Introduction1 1.1 Inferring Stellar Ages.............................2 1.1.1 The Stellar Age and Atmospheric Activity Relationship.....5 1.2 Chromospheric Activity Through the Far-Ultraviolet Lens........8 1.2.1 The Galaxy Evolution Explorer Satellite (GALEX ).......9 1.3 Interpreting the Milky Way's Evolution.................. 10 1.3.1 The Age-Velocity Relation...................... 11 1.3.2 The Gaia Space Telescope...................... 13 1.3.3 The Age-Metallicity Relation.................... 14 1.3.4 The Thin and Thick Disks...................... 15 1.4 Outline of This Work............................. 17 2 Estimating the Ages of FGK Dwarf Stars with GALEX FUV Magni- tudes 19 2.1 Introduction.................................. 19 2.2 The Age-Calibration Star Sample...................... 22 2.3 Age Calibration................................ 26 2.3.1 Initial Age-Calibration Fits.................... -
The Pulsating Yellow Supergiant V810 Centauri Strengthened by the Open Cluster Membership
A&A manuscript no. (will be inserted by hand later) ASTRONOMY Your thesaurus codes are: AND 06 (08.09.2 V810 Centauri; 08.19.3; 08.15.1; 08.05.3; 10.15.1 Stock 14; 03.20.4) ASTROPHYSICS The pulsating yellow supergiant V810 Centauri ⋆ ⋆⋆ F. Kienzle1, G. Burki1, M. Burnet1, and G. Meynet1 Observatoire de Genve, Ch. des Maillettes 51, CH-1290 Sauverny, Switzerland Received / Accepted Abstract. The F8Ia supergiant V810 Centauri is part of Key words: Stars: individual : V810 Centauri – Stars : a long-term high-precision photometric monitoring pro- supergiants – Stars : oscillations – Stars : evolution – Open gram on long period variables started twenty years ago. clusters : individual : Stock 14 – Techniques : photometry Time series analysis of this unique set of 500 data points, spanning almost fifteen years in the homogeneous Geneva photometric system, is presented. Cluster membership, 1. Introduction physical parameters and evolutionary status of the star are reinvestigated. Radial velocity data do not support V810 Centauri (=HD 101947 =HR 4511, hereafter the cluster membership to Stock 14. Ultraviolet and op- V810 Cen) is a yellow supergiant at low galactic latitude tical spectrophotometry is combined with optical and in- (l=295.18, b=-0.64) in the direction of Carina spiral arm. frared photometry to evaluate the physical parameters of The light variability was discovered by Fernie (1976) the yellow supergiant (Teff = 5970 K, Mbol = -8.5, R = as a result of cepheid-like supergiants photometric sur- 420 R⊙) and of its B0 III companion. From theoretical vey. Eichendorf & Reipurth (1979) found a low amplitude stellar evolutionary tracks, an initial mass of ∼25 M⊙ is variation (0.12 mag in V ) with a “period” of 125 days estimated for V810 Cen, which is actually at the end of (but only two successive minima were observed). -
University of California Santa Cruz Galactic Evolution
UNIVERSITY OF CALIFORNIA SANTA CRUZ GALACTIC EVOLUTION THROUGH THE FAR-ULTRAVIOLET LENS A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY AND ASTROPHYSICS by Sara R. Crandall June 2021 The Dissertation of Sara R. Crandall is ap- proved: Graeme H. Smith, Chair Constance M Rockosi Ruth Murray-Clay Quentin Williams Interim Vice Provost and Dean of Graduate Studies Copyright © by Sara R. Crandall 2021 Table of Contents List of Figures vi List of Tables xiii Abstract xiv Acknowledgments xvii Dedication xx 1 Introduction1 1.1 Inferring Stellar Ages.............................2 1.1.1 The Stellar Age and Atmospheric Activity Relationship.....5 1.2 Chromospheric Activity Through the Far-Ultraviolet Lens........8 1.2.1 The Galaxy Evolution Explorer Satellite (GALEX ).......9 1.3 Interpreting the Milky Way's Evolution.................. 10 1.3.1 The Age-Velocity Relation...................... 11 1.3.2 The Gaia Space Telescope...................... 13 1.3.3 The Age-Metallicity Relation.................... 14 1.3.4 The Thin and Thick Disks...................... 15 1.4 Outline of This Work............................. 17 2 Estimating the Ages of FGK Dwarf Stars with GALEX FUV Magni- tudes 19 2.1 Introduction.................................. 19 2.2 The Age-Calibration Star Sample...................... 22 2.3 Age Calibration................................ 26 2.3.1 Initial Age-Calibration Fits..................... 30 2.3.2 Refined Age-Calibration Fits.................... 32 2.3.3 Associated Errors........................... 39 2.4 A Consistency Check: The Open Cluster NGC 752............ 46 2.5 Activity Levels of Thin and Thick disk Stars............... 48 2.6 Potential Applications of FUV -Determined Ages............