About Lacon's Foundations of Geometry in 1881: an Unknown Attempt Before Hilbert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Definitions and Nondefinability in Geometry 475 2
Definitions and Nondefinability in Geometry1 James T. Smith Abstract. Around 1900 some noted mathematicians published works developing geometry from its very beginning. They wanted to supplant approaches, based on Euclid’s, which han- dled some basic concepts awkwardly and imprecisely. They would introduce precision re- quired for generalization and application to new, delicate problems in higher mathematics. Their work was controversial: they departed from tradition, criticized standards of rigor, and addressed fundamental questions in philosophy. This paper follows the problem, Which geo- metric concepts are most elementary? It describes a false start, some successful solutions, and an argument that one of those is optimal. It’s about axioms, definitions, and definability, and emphasizes contributions of Mario Pieri (1860–1913) and Alfred Tarski (1901–1983). By fol- lowing this thread of ideas and personalities to the present, the author hopes to kindle interest in a fascinating research area and an exciting era in the history of mathematics. 1. INTRODUCTION. Around 1900 several noted mathematicians published major works on a subject familiar to us from school: developing geometry from the very beginning. They wanted to supplant the established approaches, which were based on Euclid’s, but which handled awkwardly and imprecisely some concepts that Euclid did not treat fully. They would present geometry with the precision required for general- ization and applications to new, delicate problems in higher mathematics—precision beyond the norm for most elementary classes. Work in this area was controversial: these mathematicians departed from tradition, criticized previous standards of rigor, and addressed fundamental questions in logic and philosophy of mathematics.2 After establishing background, this paper tells a story about research into the ques- tion, Which geometric concepts are most elementary? It describes a false start, some successful solutions, and a demonstration that one of those is in a sense optimal. -
Lecture Notes C Sarah Rasmussen, 2019
Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Introduction to knots and embeddings 13 Lecture 3: Link diagrams and Alexander polynomial skein relations 17 Lecture 4: Handle decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Morse functions from handle decompositions 24 Lecture 6: Handle-bodies and Heegaard diagrams 28 Lecture 7: Fundamental group presentations from Heegaard diagrams 36 Lecture 8: Alexander polynomials from fundamental groups 39 Lecture 9: Fox calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston classification for mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn surgery 64 Lecture 15: 3-manifolds from Dehn surgery 68 Lecture 16: Seifert fibered spaces 72 Lecture 17: Hyperbolic manifolds 76 Lecture 18: Embedded surface representatives 80 Lecture 19: Incompressible and essential surfaces 83 Lecture 20: Connected sum 86 Lecture 21: JSJ decomposition and geometrization 89 Lecture 22: Turaev torsion and knot decompositions 92 Lecture 23: Foliations 96 Lecture 24. Taut Foliations 98 Errata: Catalogue of errors/changes/addenda 102 References 106 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . ◦ ν(X) { the interior of ν(X). This notation is somewhat redundant, but emphasises openness. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Philosophia Scientić, 17-1
Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 17-1 | 2013 The Epistemological Thought of Otto Hölder Paola Cantù et Oliver Schlaudt (dir.) Édition électronique URL : http://journals.openedition.org/philosophiascientiae/811 DOI : 10.4000/philosophiascientiae.811 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 1 mars 2013 ISBN : 978-2-84174-620-0 ISSN : 1281-2463 Référence électronique Paola Cantù et Oliver Schlaudt (dir.), Philosophia Scientiæ, 17-1 | 2013, « The Epistemological Thought of Otto Hölder » [En ligne], mis en ligne le 01 mars 2013, consulté le 04 décembre 2020. URL : http:// journals.openedition.org/philosophiascientiae/811 ; DOI : https://doi.org/10.4000/ philosophiascientiae.811 Ce document a été généré automatiquement le 4 décembre 2020. Tous droits réservés 1 SOMMAIRE General Introduction Paola Cantù et Oliver Schlaudt Intuition and Reasoning in Geometry Inaugural Academic Lecture held on July 22, 1899. With supplements and notes Otto Hölder Otto Hölder’s 1892 “Review of Robert Graßmann’s 1891 Theory of Number”. Introductory Note Mircea Radu Review of Graßmann, Robert, Theory of Number or Arithmetic in Strict Scientific Presentation by Strict Use of Formulas (1891) Otto Hölder Between Kantianism and Empiricism: Otto Hölder’s Philosophy of Geometry Francesca Biagioli Hölder, Mach, and the Law of the Lever: A Case of Well-founded Non-controversy Oliver Schlaudt Otto Hölder’s Interpretation of David Hilbert’s Axiomatic Method Mircea Radu Geometry and Measurement in Otto Hölder’s Epistemology Paola Cantù Varia Hat Kurt Gödel Thomas von Aquins Kommentar zu Aristoteles’ De anima rezipiert? Eva-Maria Engelen Philosophia Scientiæ, 17-1 | 2013 2 General Introduction Paola Cantù and Oliver Schlaudt 1 The epistemology of Otto Hölder 1 This special issue is devoted to the philosophical ideas developed by Otto Hölder (1859-1937), a mathematician who made important contributions to analytic functions and group theory. -
Max Dehn: His Life, Work, and Influence
Mathematisches Forschungsinstitut Oberwolfach Report No. 59/2016 DOI: 10.4171/OWR/2016/59 Mini-Workshop: Max Dehn: his Life, Work, and Influence Organised by David Peifer, Asheville Volker Remmert, Wuppertal David E. Rowe, Mainz Marjorie Senechal, Northampton 18 December – 23 December 2016 Abstract. This mini-workshop is part of a long-term project that aims to produce a book documenting Max Dehn’s singular life and career. The meet- ing brought together scholars with various kinds of expertise, several of whom gave talks on topics for this book. During the week a number of new ideas were discussed and a plan developed for organizing the work. A proposal for the volume is now in preparation and will be submitted to one or more publishers during the summer of 2017. Mathematics Subject Classification (2010): 01A55, 01A60, 01A70. Introduction by the Organisers This mini-workshop on Max Dehn was a multi-disciplinary event that brought together mathematicians and cultural historians to plan a book documenting Max Dehn’s singular life and career. This long-term project requires the expertise and insights of a broad array of authors. The four organisers planned the mini- workshop during a one-week RIP meeting at MFO the year before. Max Dehn’s name is known to mathematicians today mostly as an adjective (Dehn surgery, Dehn invariants, etc). Beyond that he is also remembered as the first mathematician to solve one of Hilbert’s famous problems (the third) as well as for pioneering work in the new field of combinatorial topology. A number of Dehn’s contributions to foundations of geometry and topology were discussed at the meeting, partly drawing on drafts of chapters contributed by John Stillwell and Stefan M¨uller-Stach, who unfortunately were unable to attend. -
Arxiv:1803.02193V1 [Math.HO] 6 Mar 2018 AQE AR IT AZZK EE ENG IHI .KA G
KLEIN VS MEHRTENS: RESTORING THE REPUTATION OF A GREAT MODERN JACQUES BAIR, PIOTR BLASZCZYK, PETER HEINIG, MIKHAIL G. KATZ, JAN PETER SCHAFERMEYER,¨ AND DAVID SHERRY Abstract. Historian Herbert Mehrtens sought to portray the his- tory of turn-of-the-century mathematics as a struggle of modern vs countermodern, led respectively by David Hilbert and Felix Klein. Some of Mehrtens’ conclusions have been picked up by both histo- rians (Jeremy Gray) and mathematicians (Frank Quinn). We argue that Klein and Hilbert, both at G¨ottingen, were not adversaries but rather modernist allies in a bid to broaden the scope of mathematics beyond a narrow focus on arithmetized anal- ysis as practiced by the Berlin school. Klein’s G¨ottingen lecture and other texts shed light on Klein’s modernism. Hilbert’s views on intuition are closer to Klein’s views than Mehrtens is willing to allow. Klein and Hilbert were equally interested in the axiomatisation of physics. Among Klein’s credits is helping launch the career of Abraham Fraenkel, and advancing the careers of Sophus Lie, Emmy Noether, and Ernst Zermelo, all four surely of impeccable modernist credentials. Mehrtens’ unsourced claim that Hilbert was interested in pro- duction rather than meaning appears to stem from Mehrtens’ marx- ist leanings. Mehrtens’ claim that [the future SS-Brigadef¨uhrer] “Theodor Vahlen . cited Klein’s racist distinctions within math- ematics, and sharpened them into open antisemitism” fabricates a spurious continuity between the two figures mentioned and is thus an odious misrepresentation of Klein’s position. arXiv:1803.02193v1 [math.HO] 6 Mar 2018 Contents 1. -
Lectures on the Mapping Class Group of a Surface
LECTURES ON THE MAPPING CLASS GROUP OF A SURFACE THOMAS KWOK-KEUNG AU, FENG LUO, AND TIAN YANG Abstract. In these lectures, we give the proofs of two basic theorems on surface topology, namely, the work of Dehn and Lickorish on generating the mapping class group of a surface by Dehn-twists; and the work of Dehn and Nielsen on relating self-homeomorphisms of a surface and automorphisms of the fundamental group of the surface. Some of the basic materials on hyper- bolic geometry and large scale geometry are introduced. Contents Introduction 1 1. Mapping Class Group 2 2. Dehn-Lickorish Theorem 13 3. Hyperbolic Plane and Hyperbolic Surfaces 22 3.1. A Crash Introduction to the Hyperbolic Plane 22 3.2. Hyperbolic Geometry on Surfaces 29 4. Quasi-Isometry and Large Scale Geometry 36 5. Dehn-Nielsen Theorem 44 5.1. Injectivity of ª 45 5.2. Surjectivity of ª 46 References 52 2010 Mathematics Subject Classi¯cation. Primary: 57N05; Secondary: 57M60, 57S05. Key words and phrases. Mapping class group, Dehn-Lickorish, Dehn-Nielsen. i ii LECTURES ON MAPPING CLASS GROUPS 1 Introduction The purpose of this paper is to give a quick introduction to the mapping class group of a surface. We will prove two main theorems in the theory, namely, the theorem of Dehn-Lickorish that the mapping class group is generated by Dehn twists and the theorem of Dehn-Nielsen that the mapping class group is equal to the outer-automorphism group of the fundamental group. We will present a proof of Dehn-Nielsen realization theorem following the argument of B. -
Introduction to Circle Packing: the Theory of Discrete Analytic Functions
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 46, Number 3, July 2009, Pages 511–525 S 0273-0979(09)01245-2 Article electronically published on February 19, 2009 Introduction to circle packing: The theory of discrete analytic functions, by Kenneth Stephenson, Cambridge University Press, Cambridge, 2005, xii+356 pp., ISBN 13: 978-0-521-82356-2, £42 1. The context: A personal reminiscence Two important stories in the recent history of mathematics are those of the ge- ometrization of topology and the discretization of geometry. Having come of age during the unfolding of these stories as both observer and practitioner, this reviewer does not hold the detachment of the historian and, perhaps, can be forgiven the personal accounting that follows, along with its idiosyncratic telling. The first story begins at a time when the mathematical world is entrapped by abstraction. Bour- baki reigns, and generalization is the cry of the day. Coxeter is a curious doddering uncle, at best tolerated, at worst vilified as a practitioner of the unsophisticated mathematics of the nineteenth century. 1.1. The geometrization of topology. It is 1978 and I have just begun my graduate studies in mathematics. There is some excitement in the air over ideas of Bill Thurston that purport to offer a way to resolve the Poincar´e Conjecture by using nineteenth century mathematics—specifically, the noneuclidean geometry of Lobachevski and Bolyai—to classify all 3-manifolds. These ideas finally appear in a set of notes from Princeton a couple of years later, and the notes are both fas- cinating and infuriating—theorems are left unstated and often unproved, chapters are missing never to be seen, the particular dominates—but the notes are bulging with beautiful and exciting ideas, often with but sketches of intricate arguments to support the landscape that Thurston sees as he surveys the topology of 3-manifolds. -
Max Dehn, Kurt Godel, and the Trans-Siberian Escape Route
Max Dehn, Kurt Gödel, and the Trans-Siberian Escape Route John W. Dawson Jr. This article contains the text of an invited address prepared for a special session on the exodus of math- ematicians from Nazi-occupied territories, held in Vienna in mid-September 2001 as part of a joint meet- ing of the Deutsche Mathematiker-Vereinigung and the Österreichische Mathematische Gesellschaft. Aware- ness of how difficult it was for those caught up in the rise of Nazism to escape from the terrors they experienced was reinforced by the terrorist attacks of September 11, which prevented the author’s at- tendance at the conference. He is grateful to Professor Karl Sigmund of the University of Vienna for having read the paper in his absence and to Professor Michael Drmota for granting permission for its reprinting here. It originally appeared in the April 2002 issue of the Internationale Mathematische Nachrichten. he careers of Max Dehn and Kurt Gödel Hilbert’s famous list [16]; both published important followed very different trajectories. Yet papers on decision problems; and both, by force Dehn and Gödel were linked by one his- of circumstance, emigrated to America via the torical circumstance: They were the only trans-Siberian railway. Tmathematicians of stature to flee the The disparity between the situations of Dehn and scourge of Nazism via the trans-Siberian railway. Gödel prior to their emigration exemplifies the di- The stories of their escapes and the contrasts in versity of backgrounds among the mathematicians their situations before and after their emigration who fled Hitler. The circumstances of their escapes exemplify both the perils and the limited range of highlight the dislocations, difficulties, and dan- opportunities that confronted intellectual refugees gers such emigrés faced. -
Dehn's Dissection Theorem
Dehn’s Dissection Theorem Rich Schwartz February 1, 2009 1 The Result A polyhedron is a solid body whose boundary is a finite union of polygons, called faces. We require that any two faces are either disjoint, or share a common edge, or share a common vertex. Finally, we require that any edge common to two faces is not common to any other face. A dissection of a polyhedron P is a description of P as a finite union of smaller polyhedra, P = P1 ... Pn, (1) ∪ ∪ such that the smaller polyhedra have pairwise disjoint interiors. Note that there is not an additional assumption, say, that the smaller polyhedra meet face to face. Two polyhedra P and Q are scissors congruent if there are dissections P = P1 ... Pn and Q = Q1 ... Qn such that each Pk is isometric to Qk. Sometimes,∪ ∪ one requires that∪ all∪ the isometries are orientation-preserving, but in fact and two shapes that are scissors congruent via general isometries are also scissors congruent via orientation preserving isometries. (This little fact isn’t something that is important for our purposes.) One could make the same definition for polygons, and any two polygons of the same area are scissors congruent to each other. (J. Dupont says that W. Wallace first formally proved this in 1807.) Hilbert asked if every two polyhedra of the same volume are scissors congruent to each other. In 1901, Max Dehn proved the now-famous result that the cube and the regular tetra- hedron (of the same volume) are not scissors congruent. We’re going to give a proof of this result. -
Dorothea Rockburne and Max Dehn at Black Mountain College
COMMUNICATION Dorothea Rockburne and Max Dehn at Black Mountain College David Peifer Communicated by Thomas Garrity ABSTRACT. The artist Dorothea Rockburne was in- spired by the mathematician Max Dehn while a student at Black Mountain College. Dorothea Rockburne is a New York based artist whose paintings are inspired by her fascination with mathe- matics. Over her more than fifty years as a successful exhibiting artist, Rockburne has won many awards for her work, including the 1999 American Academy of Arts and Letters Jimmy Ernst Lifetime Achievement Award in Figure 1. Dorothea Rockburne is a distinguished Art and the 2009 National Academy Museum and School artist with a fascination for mathematics. Rockburne of Fine Arts Lifetime Achievement Award. A major retro- in 2014, photo by Zia O’Hara, (on left) and in her New spective, “Dorothea Rockburne: In My Mind’s Eye,” held in York studio in 2009 (on right). 2012 at the Parrish Art Museum, ex- hibited works spanning her career, an experimental liberal arts college including works from her Pascal with an emphasis on the arts (see series and paintings inspired by her the ability of sidebar). reading of Poincaré. A multi-gallery In 1945, the BMC faculty was exhibition at the Museum of Mod- mathematics to shed joined by the German refugee math- ern Art in 2014, Dorothea Rock- ematician Max Dehn. Dehn taught burne: Drawing Which Makes Itself, light on the underlying mathematics, philosophy, Greek, included some of her earliest works principles of nature and Latin. He and his wife lived on from her Set Theory series.