WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Family: Passifloraceae Taxon: Passiflora foetida Synonym: Passiflora foetida var. arizonica Killip Common Name: running pop Passiflora foetida var. hibiscifolia (Lam.) Kill stinking granadilla Passiflora foetida var. hastata (Bertol.) Mast stinking passionflower Passiflora foetida var. hispida (DC. ex Planch wild water-lemon Passiflora hastata Bertol. love-in-a-mist Passiflora hibiscifolia Lam. ) Passiflora hispida DC. ex Triana & Planch. Questionaire : current 20090513 Assessor: Patti Clifford Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Patti Clifford WRA Score 26 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 y 406 Host for recognized pests and pathogens y=1, n=0 y 407 Causes allergies or is otherwise toxic to humans y=1, n=0 408 Creates a fire hazard in natural ecosystems y=1, n=0 n Print Date: 5/9/2011 Passiflora foetida (Passifloraceae) Page 1 of 6 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y 411 Climbing or smothering growth habit y=1, n=0 y 412 Forms dense thickets y=1, n=0 n 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 y 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 y areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 y 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 y 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 803 Well controlled by herbicides y=-1, n=1 n 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: H(HPWRA) WRA Score 26 Print Date: 5/9/2011 Passiflora foetida (Passifloraceae) Page 2 of 6 Supporting Data: 101 2011. WRA Specialist. Personal Communication. [Is the species highly domesticated? No] No evidence of domestication. 102 2011. WRA Specialist. Personal Communication. [Species naturalized where grown? N/A] 103 2011. WRA Specialist. Personal Communication. [Species have weedy races? N/A] 201 2011. USDA, ARS, National Genetic Resources [Species suited to tropical or subtropical climate(s)? 2 High] Native range: United Program. Germplasm Resources Information States - Texas, Arizona; Mexico - Chihuahua, Coahuila, Nuevo Leon, San Luis Network (GRIN) [Online Database Index]. Potosi, Sinaloa, Sonora, Tamaulipas, Zacatecas, Colima, Guanajuato, Guerrero, National Germplasm Resources Laboratory, Hidalgo, Jalisco, Mexico, Michoacan, Morelos, Nayarit, Oaxaca, Puebla, Beltsville, Maryland. http://www.ars-grin.gov/cgi- Queretaro, Veracruz; Belize; Costa Rica; El Salvador; Guatemala; Honduras; bin/npgs/html/index.pl Mexico - Chiapas, Tabasco, Yucatan; Nicaragua; Panama; Belize; Costa Rica; El Salvador; Guatemala; Honduras; Mexico - Chiapas, Tabasco, Yucatan; Nicaragua; Panama; Antigua and Barbuda; Bahamas; Cuba; Dominica; Grenada; Guadeloupe; Hispaniola; Jamaica; Martinique; Montserrat; Puerto Rico; St. Lucia; St. Vincent and Grenadines; Trinidad and Tobago; Bolivia; Colombia; Ecuador [incl. Galapagos]; Peru; Argentina; Chile; Paraguay; Uruguay. 202 2011. USDA, ARS, National Genetic Resources [Quality of climate match data? 2 High] Native range: United States - Texas, Program. Germplasm Resources Information Arizona; Mexico - Chihuahua, Coahuila, Nuevo Leon, San Luis Potosi, Sinaloa, Network (GRIN) [Online Database Index]. Sonora, Tamaulipas, Zacatecas, Colima, Guanajuato, Guerrero, Hidalgo, Jalisco, National Germplasm Resources Laboratory, Mexico, Michoacan, Morelos, Nayarit, Oaxaca, Puebla, Queretaro, Veracruz; Beltsville, Maryland. http://www.ars-grin.gov/cgi- Belize; Costa Rica; El Salvador; Guatemala; Honduras; Mexico - Chiapas, bin/npgs/html/index.pl Tabasco, Yucatan; Nicaragua; Panama; Belize; Costa Rica; El Salvador; Guatemala; Honduras; Mexico - Chiapas, Tabasco, Yucatan; Nicaragua; Panama; Antigua and Barbuda; Bahamas; Cuba; Dominica; Grenada; Guadeloupe; Hispaniola; Jamaica; Martinique; Montserrat; Puerto Rico; St. Lucia; St. Vincent and Grenadines; Trinidad and Tobago; Bolivia; Colombia; Ecuador [incl. Galapagos]; Peru; Argentina; Chile; Paraguay; Uruguay. 203 2004. Ulmer, T./MacDougal, J. M.. Passiflora: [Broad climate suitability? Yes] Passiflora foetida has a wide native range. Passionflowers of the World. Timber Press, Portland, OR 204 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. [Native or naturalized in regions with tropical or subtropical climate(s)? Yes] "In Manual of the flowering plants of Hawaii. Revised Hawaii naturalized and common in disturbed sites, especially on dry rock edition.. University of Hawai‘i Press and Bishop outcrops, a'a' lava, and in sandy soils, 0-500 m, on Ni'ihau, Kaua'I, O'ahu, Maui, Museum Press, Honolulu, HI. and Hawai'I" 204 2011. USDA, ARS, National Genetic Resources [Native or naturalized in regions with tropical or subtropical climate(s)? Yes] Program. Germplasm Resources Information Native range: United States - Texas, Arizona; Mexico - Chihuahua, Coahuila, Network (GRIN) [Online Database Index]. Nuevo Leon, San Luis Potosi, Sinaloa, Sonora, Tamaulipas, Zacatecas, Colima, National Germplasm Resources Laboratory, Guanajuato, Guerrero, Hidalgo, Jalisco, Mexico, Michoacan, Morelos, Nayarit, Beltsville, Maryland. http://www.ars-grin.gov/cgi- Oaxaca, Puebla, Queretaro, Veracruz; Belize; Costa Rica; El Salvador; bin/npgs/html/index.pl Guatemala; Honduras; Mexico - Chiapas, Tabasco, Yucatan; Nicaragua; Panama; Belize; Costa Rica; El Salvador; Guatemala; Honduras; Mexico - Chiapas, Tabasco, Yucatan; Nicaragua; Panama; Antigua and Barbuda; Bahamas; Cuba; Dominica; Grenada; Guadeloupe; Hispaniola; Jamaica; Martinique; Montserrat; Puerto Rico; St. Lucia; St. Vincent and Grenadines; Trinidad and Tobago; Bolivia; Colombia; Ecuador [incl. Galapagos]; Peru; Argentina; Chile; Paraguay; Uruguay. 205 2007. Land Protection Queensland Government. [Does the species have a history of repeated introductions outside its natural Fact sheet invasive plants and animals: stinking range? Yes] Introduced to Queensland. passion flower Passiflora foetida. The State of Queensland (Department of Primary Industries and Fisheries), http://www.dpi.qld.gov.au/documents/Biosecurity_ Env 205 2010. Pacific Ecosystems at Risk (PIER. [Does the species have a history of repeated introductions outside its natural Passiflora foetida. range? Yes] Pantropical weed. http://www.hear.org/pier/species/passiflora_foetid a.htm 301 1999. Wagner, W.L./Herbst, D.R./Sohmer, S.H.. [Naturalized beyond native range? Yes] "In Hawaii naturalized and common in Manual of the flowering plants of Hawaii. Revised disturbed sites, especially on dry rock outcrops, a'a' lava, and in sandy soils, 0- edition.. University of Hawai‘i Press and Bishop 500 m, on Ni'ihau, Kaua'I, O'ahu, Maui, and Hawai'I" Museum Press, Honolulu, HI. Print Date: 5/9/2011 Passiflora foetida (Passifloraceae) Page 3 of 6 302 2007. Land Protection Queensland Government. [Garden/amenity/disturbance weed? No] "Though less common in south-east Fact sheet invasive plants and animals: stinking Queensland than passion flower Passiflora foetida. The State of the other weedy passion fruit species (corky passion and white passion), stinking Queensland (Department of Primary Industries passion flower is an invasive environmental weed which can be found invading and Fisheries), forest edges, coastal vegetation, roadsides and disturbed areas." [scored as an http://www.dpi.qld.gov.au/documents/Biosecurity_ environmental weed 3.04] Env 303 1997. Holm, L.G.. World weeds: natural histories [Agricultural/forestry/horticultural weed? Yes] Passiflora foetida is the number one and distribution. John Wiley and Sons, Inc., New weed of maize in some regions of Malaysia and is a serious weed of rubber in York, NY Indonesia and Malaysia. It is a principal weed of coconut in New Guinea and elsewhere in the Pacific region, of maize in Thailand, of cotton in Peru and Thailand of dryland crops in Sarawak, of oil palm in Indonesia, of sugarcane in Australia and Thailand, and of taro in Samoa.
Recommended publications
  • Towards an Understanding of the Evolution of Violaceae from an Anatomical and Morphological Perspective Saul Ernesto Hoyos University of Missouri-St
    University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 8-7-2011 Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective Saul Ernesto Hoyos University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Hoyos, Saul Ernesto, "Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective" (2011). Theses. 50. http://irl.umsl.edu/thesis/50 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Saul E. Hoyos Gomez MSc. Ecology, Evolution and Systematics, University of Missouri-Saint Louis, 2011 Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science July 2011 Advisory Committee Peter Stevens, Ph.D. Chairperson Peter Jorgensen, Ph.D. Richard Keating, Ph.D. TOWARDS AN UNDERSTANDING OF THE BASAL EVOLUTION OF VIOLACEAE FROM AN ANATOMICAL AND MORPHOLOGICAL PERSPECTIVE Saul Hoyos Introduction The violet family, Violaceae, are predominantly tropical and contains 23 genera and upwards of 900 species (Feng 2005, Tukuoka 2008, Wahlert and Ballard 2010 in press). The family is monophyletic (Feng 2005, Tukuoka 2008, Wahlert & Ballard 2010 in press), even though phylogenetic relationships within Violaceae are still unclear (Feng 2005, Tukuoka 2008). The family embrace a great diversity of vegetative and floral morphologies. Members are herbs, lianas or trees, with flowers ranging from strongly spurred to unspurred.
    [Show full text]
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Article Download
    wjpls, 2020, Vol. 6, Issue 9, 114-132 Review Article ISSN 2454-2229 Arjun et al. World Journal of Pharmaceutical World Journaland Life of Pharmaceutical Sciences and Life Science WJPLS www.wjpls.org SJIF Impact Factor: 6.129 A REVIEW ARTICLE ON PLANT PASSIFLORA Arjun Saini* and Bhupendra Kumar Dev Bhoomi Institute of Pharmacy and Research Dehradun Uttrakhand Pin: 248007. Corresponding Author: Arjun Saini Dev Bhoomi Institute of Pharmacy and Research Dehradun Uttrakhand Pin: 248007. Article Received on 29/06/2020 Article Revised on 19/07/2020 Article Accepted on 09/08/2020 ABSTRACT Nature has been a wellspring of remedial administrators for an enormous number of year and a vital number of present day calm have been isolated from customary sources, numerous reliant on their use in ordinary medicine. Plants from the family Passiflora have been used in standard drug by various social orders. Flavonoids, glycosides, alkaloids, phenolic blends and eccentric constituents have been represented as the major phyto- constituents of the Passiflora spe-cies. This overview delineates the morphology, standard and tales uses, phyto- constituents and pharmacological reports of the prominent kinds of the sort Passiflora. Diverse virgin areas of investigation on the kinds of this sort have been highlighted to examine, detach and recognize the therapeutically huge phyto- constituents which could be utilized to help various diseases impacting the mankind. The objective of the current examination was to concentrate all Passiflora species. The sythesis of each specie presented particularities; this legitimizes the essentialness of studies concentrating on the phenolic bit of different Passiflora species. Flavones C- glycosides were recognized in all concentrates, and are found as the central constituents in P.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Adenia Barthelatii (Passifloraceae), a New Endemic Species of Mayotte and Its Phylogenetic Status Within the Genus Adenia
    Phytotaxa 99 (1): 40–48 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2013 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.99.1.3 Adenia barthelatii (Passifloraceae), a new endemic species of Mayotte and its phylogenetic status within the genus Adenia MARC PIGNAL1*, ROXANA YOCKTENG1, DAVID J. HEARN2 & JEAN-NOËL LABAT1,┼ 1 MNHN Paris, Département Systématique et Evolution, UMR 7205 MNHN/CNRS Origine Structure et Evolution de la Biodiversité, 16 rue Buffon, C.P. 39, 75231 Paris cedex 05, France; email: [email protected], [email protected] 2 Department of Biological Sciences, Towson University, 8000 York Road, Baltimore, MD 21252, USA; email: [email protected] * Corresponding author: [email protected] Abstract Morphological characters support the description of a new species of Passifloraceae from Mayotte Island: Adenia barthelatii M. Pignal, Yockteng, Hearn & Labat. Morphological and molecular data suggest that A. barthelatii belongs to the ‘warty-gland’ subclade of Clade V defined by Hearn elsewhere. Since the warty-gland clade is restricted to the Malagasy region we suggest a Malagasy origin of this Maorian species of Adenia. Key words: Passifloraceae, Adenia, Comoro Archipelago, Mayotte Résumé L'étude des caractères morphologiques permet la description d’une espèce nouvelle de Passifloraceae de l’île de Mayotte: Adenia barthelatii M. Pignal, Yockteng, Hearn & Labat. Les analyses morphologiques et moléculaires suggèrent que Adenia barthelatii appartient au clade V (« à glandes verruqueuses ») défini par Hearn auparavant. En raison du fait que le clade à glandes verruqueuses est restreint à la région malgache, Ces résultats laissent postuler une origine malgache de cette espèce mahoraise d’Adenia.
    [Show full text]
  • Piriqueta Crenata, a New Species of Turneraceae (Passifloraceae S.L.) from the Chapada Diamantina, Bahia, Brazil
    Phytotaxa 159 (2): 105–110 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.159.2.4 Piriqueta crenata, a new species of Turneraceae (Passifloraceae s.l.) from the Chapada Diamantina, Bahia, Brazil LAMARCK ROCHA1, MARIA MERCEDES ARBO2, ISYS MASCARENHAS SOUZA1 & ALESSANDRO RAPINI1 1Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, Novo Horizonte, 44036- 900 Feira de Santana, Bahia, Brazil. 2 Instituto de Botánica del Nordeste (UNNE-CONICET), CTES Herbarium, C. Postal 209, CEP–3400, Corrientes, Argentina. email: [email protected]; [email protected]; [email protected] Abstract In this study, we describe and illustrate Piriqueta crenata, a new species from the Chapada Diamantina region, Bahia, Brazil. It is similar to and was initially identified as P. f l a m m e a from which it can be distinguished by the cuneate leaf blade bases (vs. rounded), slightly discoloured leaves (vs. strongly discoloured), inflorescences of fewer flowers (1–3 vs. 3–6), olive-green calyx when dry (vs. blackened), and yellow corolla (vs. orange red). Piriqueta crenata is only known from a single small savanna nested in the semiarid Chapada Diamantina region, close to areas under anthropogenic influence. Therefore, we evaluate the species as Critically Endangered. Key words: floristics, Neotropics, savanna, taxonomy. Resumo (Piriqueta crenata, uma nova espécie de Turneraceae (Passifloraceae s.l.) da Chapada Diamantina, Bahia, Brasil) Neste estudo, descrevemos e ilustramos Piriqueta crenata, uma nova espécie da Chapada Diamantina, Bahia, Brasil.
    [Show full text]
  • Passion Fruit (Pasassiflora Edulis Sims): Passissifloraceae Dr
    Passion fruit (Pasassiflora edulis Sims): Passissifloraceae Dr. P. P. Joy, Associate Professor & Heaead, Pineapple Research Station (Kerala Agricultural University),), Vazhakulam-686 670, Muvattupuzha, Ernakulam, Kerala, Indiaia. Tel. & Fax: +914852260832, Email: [email protected], Web:b: www.kau.edu/prsvkm Common names Passion fruit is also known as gragranadilla, grenadilla, maracuja, granadiglia, passssiflorai azzurra, fiore della passione, passionaria, pasiflora,pas passiflore, fleur de la passion, passissiflore bleue, blaue passionsblume, pasifloro, passionionera, flor de la passió, passionsblomst, grenadiadilo, flôr di passion, mburukuja, maracujá, fior 'd paspassion and passionsblomma. General names for both, yellow and purple, in Spanish are granadildilla, parcha, parchita, parchita maracuya, orr CCeibey (Cuba); in Portuguese, maracuja peroba; in French, grenadille, or couzou. The purple foform may be called purple, red, or black granadilla,, or,o in Hawaii, lilikoi; in Jamaica, mountain sweeeet cup; in Thailand, linmangkon. The yellow form is widely known as yellow passion fruit; is callealled yellow lilikoi in Hawaii; golden passion fruit in AAustralia; parcha amarilla in Venezuela. In the 16th century, Spanish Chrihristian missionaries stumbled upon the Passionn FFlower and adopted it as a symbol of the death of Christ due to its unique morphological charaaracteristics. Spanish colonists associated the flowersrs with the suffering of Christ: the corona referfers to the crown of thorns, the three stigmas to the nailsna at the cross, … in other words: the commonon name refers to the passion of Christ. Thus, the Englnglish prefix "passion" derives from the passionn oof Christ suggested by the prominent four-branchedd sstyle that appears in the flowers. General Description Passion fruit is a woody, perennianial vine that bears a delicious fruit and occurs iinn ppurple- and yellow- fruited forms (Passiflora edulislis Sims f.
    [Show full text]
  • The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
    www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
    [Show full text]
  • 062 Passifloraceae
    GUIDE TO THE GENERA OF LIANAS AND CLIMBING PLANTS IN THE NEOTROPICS PASSIFLORACEAE By Christian Feuillet & P. Acevedo-Rodríguez (Feb 2020) A predominantly tropical family with few species reaching warm-temperate regions, of about 15-17 genera and 850 species of tendrilled lianas or vines, or sometimes shrubs, small trees, or annuals with a perennial rootstock or a fleshy caudex. Represented in the Neotropics by 4 genera and about 600 species, occupying diverse habitats, from savanna to flooded forests, but most abundant in tropical rain forests on terra firme. Most species occur at low to middle elevations, but some grow above the tree line on Andean slopes. Diagnostics: Distinguished by the flowers with Dilkea sp., photo by L. Marinho an extrastaminal corona and usually a gynophore, and by the common presence of petiolar nectaries. Sterile collections of Passifloraceae may be confused with members of Cucurbitaceae as both families may have simple, alternate leaves, axillary tendrils, and petiolar nectaries. However, Passifloraceae is differentiated by the presence of stipules, unbranched axillary tendrils (trifid in Dilkea) [vs. exstipulate and axillary-lateral tendrils (forming a 90º angle with the petiole) that are commonly branched in Cucurbitaceae]. Also, resembles Vitaceae but tendrils and inflorescence in this family are opposite to the leaves, not axillary. 1 General Characters 1. STEMS. Stems are woody or herbaceous depending on the species. Woody, mature stems are usually 1 to 2 cm in diameter, although in cultivated Passiflora they may reach 8 cm or more in diameter, and up to 25 m in length. Stems are cylindrical (figs. 1a & b), trigonous (fig.
    [Show full text]
  • Passifloraceae1
    Flora of South Australia 5th Edition | Edited by Jürgen Kellermann PASSIFLORACEAE1 C.J. Brodie2 Woody or herbaceous vines, climbing by axillary tendrils, sometimes herbs or shrubs or trees (not in Australia); leaves alternate, very rarely opposite, simple, lobed or rarely compound, with or without glands on petioles and stem; stipules minute or conspicuous, usually persistent, occasionally deciduous. Flowers in 1 to many flowered cymes, rarely racemes, actinomorphic, bisexual or functionally unisexual, sessile or pedicellate; sepals (3–) 5 (–8); petals alternate to the sepals, petals equal to sepals in number, free or connate at the base; corona absent or present with 1 or more rows of appendages, filaments or scales usually forming a bright and showy structure between the petals and stamens; stamens (4–) 5 (–many), usually alternate with the petals, filaments free or connate on the hypanthium or on androgynophore; anthers 2-locular, dehiscing longitudinally; ovary superior, (2–) 3 (–6) united carpels, unilocular, parietal placentation; styles free or usually basally connate. Fruit a berry or capsule; seeds often with a fleshy aril and bony testa. About 27 genera and 935 species (APGIII 2009, Stevens 2010) found throughout the tropics and subtropical regions with some species reaching temperate areas. In Australia there are 4 native species in 2 genera (Passiflora and Adenia Forssk.) with none native to S.A., but there are 3 potentially naturalised species of Passiflora in S.A. Malesherbiaceae and Turneraceae are long known close allies of the family and are now included in Passifloraceae (APGIII 2009). The androgynophore is a column composed of the ovary on a long stalk to which the stamens are attached.
    [Show full text]
  • Taxonomic Notes on Passiflora Edulis Var. Flavicarpa Deg
    International Journal of Agriculture System Vol. 8 Issue 2, December 2020 Nationally Accredited Journal Decree No. 48a/E/KPT/2017 P-ISSN: 2337-9782, E-ISSN: 2580-6815. DOI: 10.20956/ijas.v8i2.2475 Taxonomic Notes on Passiflora edulis var. flavicarpa Deg. Bidyut Phukon*, Chayanika Bordoloi Department of Botany, Royal School of Life Science, The Assam Royal Global University, Guwahati- 781035, Assam, India * Corresponding author’s e-mail: [email protected] How to Cite: Phukon, B., and Bordoloi, C. (2020). Taxonomic Notes on Passiflora edulis var. flavicarpa Deg. Int. J. Agr. Syst. 8(2): 85-96 ABSTRACT The taxonomic study of a plant is an important aspect of plant research, as it allows the most complete view of the natural habitat of any plant species. The main purpose of the present work is to provide a detail investigation of the Passiflora edulis var. flavicarpa Deg. carried out from the month of April, 2020, growing in the area of Nakachari, Jorhat District, Assam, India. A complete workout on the different parts of the plant belongs to the family Passifloraceae is done to understand the significance of these features in systematic. Paper also reflects the various phytochemical constituents present in the Passiflora fruit also commonly known as Passion fruit which is utilized in pharmacology and by other ways in different ethnic groups of North Eastern India as a vital source of medicinal treatment. The findings clearly express that Passiflora species exhibits all advanced morphological characteristics of present day Angiospermae land plants and also reported that tendrils perform the role of physical support.
    [Show full text]