Venus, Ceres, Earth: Geodynamic Modeling Group Al- Location Request

Total Page:16

File Type:pdf, Size:1020Kb

Venus, Ceres, Earth: Geodynamic Modeling Group Al- Location Request Venus, Ceres, Earth: Geodynamic Modeling Group Al- location Request I am requesting 1.5M units split evenly between Blueridge, Newriver, and Cascades for the next year to work on the research associated with the project Venus, Ceres, Earth: Geodynamic Modeling Group. (I realize the units are different across the different platforms but evenly splitting seems reasonable.) If you want to get more fine grained, then the hours are based on the machines we have been using. To keep from stepping on each other, we've all been focusing on different machines. Grant has been using newriver for the Venus work, so 200,000 on newriver. Josh has been using blueridge for Mars to 384,000 hours on blueridge. I have been using cascades for the Ceres work, so 138,240 hours on cascades for Ceres. Shangxin uses whichever machine has the lowest total for his north american work, so split the 576,000 core hours across the three systems. This is slightly smaller than what we have requested in previous years, reflecting the fact that some of our projects are nearing completion and we anticipate spending more time writing papers and proposals in the coming year than computing. The justification is given below. I have updated the grants (nothing new) and publications page (three new publications). Results from Previous Year We publised papers on Venus and Ceres this past year with a number of other papers nearing submission and/or being written. Shangxin Liu has submitted one paper (needs extensive revisions, more to do with writing and organization than modeling) and is about to submit a second paper on his algorithm development for calculating the gravitational potential from an arbirtatry mesh, which we need because of the development of adaptive mesh refinement. The second paper should be submitted to Geophysical Journal International in a couple of weeks. In addtion, Grant Euen defended his MS. thesis, Studying 3D Spherical Shell Convection using ASPECT, on December 6th, 2017. We are working to convert that thesis into a manuscript, which we hope to submit this fall to the journal Geoscientific Model Development. Ceres I am actively using new river to model the tectonic and thermal evolution of the icy dwarf planet Ceres. This is ongoing work that I have described for several years (indeed two papers have been published in the past year) and I am working on another manuscript now, so the number of calculations is winding down. 2 Planned Usage Ceres I anticipate 10 model runs will be needed in the next year for Ceres with 96 cores. Each run will take on the order of 144 hours. This set of runs will consume 10x96x144 = 138,240 core hours. Eastern North America Shangxin has been spent a lot of time with the spherical finite element code ASPECT, to understand the flow pattern, topography, and gravity of Eastern North America. This has finally paid off in a manuscript, Global modeling of mantle flow constrained by geoid and plate motions, which we submitted to Geochemistry, Geophysics, Geosystems this spring. This work used seismic tomography much like a medical CAT scan to estimate the internal density variations within the Earth and these internal density variations drive creeping flow in the solid Earth that drives observed plate motions and causes long-wavelength gravity anomalies. Shangxing wrote a module to calculate the gravitational potential from these model (something that can be compared with observations from Earth). He spent consider- able time this past year benchmarking his new code against published results and that paper is nearly ready to submit to Geophysical Journal International, titled A benchmark study of incompressible Stokes flow in a 3-D spherical shell using ASPECT. For the coming year Shangxin is working on modeling seismic data with a technique that runs on a laptop and revising the two papers he has submitted. He has an ambitious final project for his thesis to model mantle flow beneath Eastern North America at very high resolution to compare with the available seismic data. This will require the adaptive meshing algorithms in ASPECT and it could require extensive resources, perhaps beyond ARC and will require us to seek resources at XCEDE. I anticipate that he will be testing this problem using ARC resources in the fall and spring and I estimate we will need on the order of 20 model runs with up to 400 cores running for 48-72 hours. Therefore we request 72x400x20 = 576,000 core hours for this project. Mars Josh is continuing to work on melting on Mars. This work is timely with the anticipated arrival of the Mars InSight spacecraft this December. He has submitted several highly- competitive proposals that reviewed well but not well enough to fund. Josh will present his first reasults at AGU in the fall and I anticipate his computing usage will ramp up as he finishes the testing and algorithm phase of his work and moves into the research phase. I anticipate his Mars problems will require 96 cores with 100 hours per run. (Mars is smaller than Earth and Venus and does not require the same resolution that Shangxin and Grant 3 need for Earth and Venus) I anticipate he will need 30-40 runs over the course of the next year. Therefor we request 40x96x100 = 384,000 core hours for this project. Venus After finishing up his MS work on ASPECT modeling, Grant is moving into a Ph.D. project looking at impacts and how they might have affected the lithosphere of Venus through time. As we start this work, I anticipate this year will be testing and code developing with work starting in a 2D geometry. The following year, if this is successful in debugging and initial testing, he will need significantly more resources. I estimate Grant will require 200,000 core hours for the coming year for this project. ASPECT Benchmarking What started as a small project ended up becoming a masters thesis. Grant finally has exccellent agreement between ASPECT and previously published results. We are working on converting the thesis into a paper. I anticipate this will require a few additional model runs to fill in graphs that he did not have time to complete. I anticipate 10 runs of 48 hours each on 200 cores, therefore I request 96,000 core hours for this project. Total Requested The total of the numbers above comes to just under 1,400,000 core hours. Rounding up for visualization, analysis and anticipated mistakes, I ask for 1,500,000 core hours for the coming year. Code Details and Scaling The following information about the code and scaling has been submitted in previous years so I have not included it. We are working on Aspect scaling. Given that Aspect is built on Trilinois and deal.II both of which are documented to scale well, we are confident that Aspect scales well. The primary references for Aspect are given below. M. Kronbichler and T. Heister and W. Bangerth, High Accuracy Mantle Convection Simu- lation through Modern Numerical Methods, Geophysics Journal International, 191, 12{29, 2012. doi: 10.1111/j.1365-246X.2012.05609.x T. Hester, J. Dannberg, R. Gassm´'oller, and W. Bangerth, High accuracy mantle convection simulation through modern numerical methods II: realistic models and problems, Geophysics Journal International, 210, 833-851, 2017. doi: 10.1093/gji/ggx195 4 Another resource is the thesis by Grant Euen, Studying 3D Spherical Shell Convection using ASPECT which can be found in the VT repository. https://vtechworks.lib.vt.edu/handle/10919/81621 and the source is here: https://geodynamics.org/cig/software/aspect/.
Recommended publications
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • Download Student Activities Objects from the Area Around Its Orbit, Called Its Orbital Zone; at Amnh.Org/Worlds-Beyond-Earth-Educators
    INSIDE Essential Questions Synopsis Missions Come Prepared Checklist Correlation to Standards Connections to Other Halls Glossary ONLINE Student Activities Additional Resources amnh.org/worlds-beyond-earth-educators EssentialEssential Questions Questions What is the solar system? In the 20th century, humans began leaving Earth. NASA’s Our solar system consists of our star—the Sun—and all the Apollo space program was the first to land humans on billions of objects that orbit it. These objects, which are bound another world, carrying 12 human astronauts to the Moon’s to the Sun by gravity, include the eight planets—Mercury, surface. Since then we’ve sent our proxies—robots—on Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune; missions near and far across our solar system. Flyby several dwarf planets, including Ceres and Pluto; hundreds missions allow limited glimpses; orbiters survey surfaces; of moons orbiting the planets and other bodies, including landers get a close-up understanding of their landing Jupiter’s four major moons and Saturn’s seven, and, of course, location; and rovers, like human explorers, set off across the Earth’s own moon, the Moon; thousands of comets; millions surface to see what they can find and analyze. of asteroids; and billions of icy objects beyond Neptune. The solar system is shaped like a gigantic disk with the Sun at The results of these explorations are often surprising. With its center. Everywhere we look throughout the universe we the Moon as our only reference, we expected other worlds see similar disk-shaped systems bound together by gravity. to be cold, dry, dead places, but exploration has revealed Examples include faraway galaxies, planetary systems astonishing variety in our solar system.
    [Show full text]
  • Year of the Dwarves: Ceres and Pluto Take the Stage
    Year of the Dwarves: Ceres and Pluto Take the Stage — Paul Schenk, Lunar and Planetary Institute The year 2015 is shaping up to be one of the most interesting in the short history of space exploration. Fresh on the heels of Rosetta’s spectacular and revolutionary ongoing visit to a comet, and after a wait of more than half a century, we finally reach the first of the so-called dwarf planets, the last class of solar system bodies left unexplored. This year the Dawn and New Horizons missions will both reach their primary targets, Ceres and Pluto. Indeed, Dawn is on its final approach to Ceres as this is being written. Both Ceres and Pluto are very planetary in nature. Each is the major representative of its planetary zone. LCeres holds about one-third of the total mass in the asteroid belt, and may be actively venting water vapor into space. Pluto is likely the largest Kuiper belt object (KBO), and even has a significant atmosphere and a family of at least five moons. What will we see at Ceres and Pluto? Scientists and interested laypeople have been speculating quite a lot as we approach these two bodies. In some sense, it is an opportunity to test how well we really understand planetary bodies. Both Ceres P and Pluto (and its large moon Charon) are believed to be rich in water ice. Pluto is known to have other ices on its surface, include methane, nitrogen, and carbon monoxide. We are fortunate that we have already extensively mapped comparably- Our best Earth-based views of Ceres (left) and Pluto (right), sized ice-rich bodies, which serve as both from Hubble Space Telescope images.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]
  • Ceres: a Prime Target for Robotic Sample Return and Future Human Exploration
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 3062.pdf CERES: A PRIME TARGET FOR ROBOTIC SAMPLE RETURN AND FUTURE HUMAN EXPLORATION. K. R. Fisher1 and L. D. Graham1, 1Astromaterials Research and Exploration Science (ARES) Division, NASA Johnson Space Center 2101 E NASA Pkwy, Houston Texas, 77058. [email protected] and [email protected] Introduction: NASA’s Dawn spacecraft was re- ing the systems previously developed for the OSIRIS- cently deactivated in November after spending three REx spacecraft. years orbiting Ceres gathering data through its remote A major component that could be re-used is the sensing instrument suite. The Dawn mission served as a OSIRIS-REx sampling system. OSIRIS-REx will uti- crucial step in furthering our understanding of small lize the Touch-and-Go Sample Acquisition Mechanism bodies within the Solar System and provided a wealth (TAGSAM) to acquire up to hundreds of grams of sur- of new information about Vesta and Ceres during the face material. TAGSAM includes a large collector eleven year mission. head mounted to the end of an 11 foot robotic arm. The The conclusion of Dawn should not be the conclu- collector head has multiple gas nozzles which will dis- sion of exploration at Ceres. A logical follow-on mis- pense a burst of nitrogen gas to stir up loose regolith on sion would be to return samples from the surface to the surface under the collector head [5]. A portion of provide ground truth for the orbiter data. Ceres sample this regolith will be captured in the TAGSAM collec- return is highly feasible and would benefit directly tors and stored for return [5].
    [Show full text]
  • Ceres Is the Largest Object in the Asteroid Belt, Which Lies Mainly
    Dactyl, the moon of Ida, is shown below in a close-up and at its true size relative to Ida. Dactyl was the Ceres and the Asteroid Belt first asteroid moon to be discovered. Ceres is the largest object in the The best photos of Ceres (below left) and Vesta (below right) as As of 2008, only the asteroid belt, which lies mainly of 2008, from the Hubble Space Telescope (courtesy NASA/ESA) handful of asteroids between Mars and Jupiter. shown here have had Ida and Dactyl, from NASA’s Galileo Asteroids are made of various their pictures taken combinations of rocks, metals and by spacecraft flying carbon compounds that have past them. If you’re Steins, Ceres is much smaller than the Moon, which is shown below reading this panel from ESA’s Rosetta Eros, from NEAR never been captured by any after 2011, you’ve planet’s gravity. Asteroids have on the same scale as Ceres and Vesta above. Nonetheless, Shoemaker Ceres is sometimes referred to as a dwarf planet, hopefully seen better (NASA/JHUAPL) not changed much for billions of along with Pluto and a growing list of other objects. photos of Vesta, the years, making them important third-largest object in records of the formation of the the asteroid belt, solar system. The solar system taken by the Mathilde, from contains millions of asteroids Dawn spacecraft. And if you’re reading NEAR Shoemaker ranging down to the size of large (NASA/JHUAPL) this panel after 2015, boulders, as well as smaller hopefully there are objects called meteoroids.
    [Show full text]
  • Planet Definition
    Marin Erceg dipl.oec. CEO ORCA TEHNOLOGIJE http://www.orca-technologies.com Zagreb, 2006. Editor : mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Text review : dr.sc. Zlatko Renduli ć dipl.ing. mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Danijel Vukovi ć dipl.ing. zrakoplovstva Translation review : Dana Vukovi ć, prof. engl. i hrv. jez. i knjiž. Graphic and html design : mr.sc. Tino Jelavi ć dipl.ing. Publisher : JET MANGA Ltd. for space transport and services http://www.yuairwar.com/erceg.asp ISBN : 953-99838-5-1 2 Contents Introduction Defining the problem Size factor Eccentricity issue Planemos and fusors Clear explanation of our Solar system Planet definition Free floating planets Conclusion References Curriculum Vitae 3 Introduction For several thousand years humans were aware of planets. While sitting by the fire, humans were observing the sky and the stars even since prehistory. They noticed that several sparks out of thousands of stars were oddly behaving, moving around the sky across irregular paths. They were named planets. Definition of the planet at that time was simple and it could have been expressed by following sentence: Sparkling dot in the sky whose relative position to the other stars is continuously changing following unpredictable paths. During millenniums and especially upon telescope discovery, human understanding of celestial bodies became deeper and deeper. This also meant that people understood better the space and our Solar system and in this period we have accepted the following definition of the planet: Round objects orbiting Sun. Following Ceres and Asteroid Belt discoveries this definition was not suitable any longer, and as a result it was modified.
    [Show full text]
  • On the Irrelevance of Being a PLUTO! Size Scale of Stars and Planets
    On the irrelevance of being a PLUTO! Mayank Vahia DAA, TIFR Irrelevance of being Pluto 1 Size Scale of Stars and Planets Irrelevance of being Pluto 2 1 1 AU 700 Dsun Irrelevance of being Pluto 3 16 Dsun Irrelevance of being Pluto 4 2 Solar System 109 DEarth Irrelevance of being Pluto 5 11 DEarth Venus Irrelevance of being Pluto 6 3 Irrelevance of being Pluto 7 Solar System visible to unaided eye Irrelevance of being Pluto 8 4 Solar System at the beginning of 20 th Century Irrelevance of being Pluto 9 Solar System of my text book (30 years ago) Irrelevance of being Pluto 10 5 Asteroid Belt (Discovered in 1977) Irrelevance of being Pluto 11 The ‘Planet’ Pluto • Pluto is a 14 th magnitude object. • It is NOT visible to naked eye (neither are Uranus and Neptune). • It was discovered by American astronomer Clyde Tombaugh in 1930. Irrelevance of being Pluto 12 6 Prediction of Pluto • Percival Lowell and William H. Pickering are credited with the theoretical work on Pluto’s orbit done in 1909 based on data of Neptune’s orbital changes. • Venkatesh Ketakar had predicted it in May 1911 issue of Bulletin of the Astronomical Society of France. • He modelled his computations after those of Pierre-Simon Laplace who had analysed the motions of the satellites of Jupiter. • His location was within 1 o of its correct location. • He had predicted ts orbital period was 242.28 (248) years and a distance of 38.95 (39.53) A.U. • He had also predicted another planet at 59.573 A.U.
    [Show full text]
  • LESSON PLAN Teacher: Date: Prior to “Give Me Space!” Performance
    LESSON PLAN Teacher: Date: Prior to “Give Me Space!” performance Grade Level/Subject: 4th/Math & Science Co-Teaching Model Utilized: Central Focus: To only serve as a predecessor classroom activity accompaniment for students meant to experience the performance of “GIVE ME SPACE!” During the performance, all students will intentionally hear musical compositions written for each of the 5 – IAU established dwarf planets and acknowledge as fourth graders their previously conducted study where constructing 3-D volumetric scaled models indicate their relative sizes to one another, positioning locations in- and outside of our solar system, while also learning of their reasons of qualification as dwarf status and then additional physical properties. Standards: Math 4.NF.B.3. Understand a fraction a/b with a>1 as a sum of fractions 1/b. 4.NF.B.4. Apply and extend previous understandings of multiplication as repeated addition to multiply a whole number by a fraction. 4.NF.B.5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. 4.MD.A.1. Measure and estimate to determine relative sizes of measurement units within a single system of measurement involving length, liquid volume, and mass/weight of objected using customary and metric units. 4.MD.B.4 Make a line plot to display a data set of measurements in fractions of a unit. Use operations on fractions for this grade to solve problems involving information presented in line plots. Science 4.ETS2:1) Use appropriate tools and measurements to build a model.
    [Show full text]
  • Ceres and Pluto: Dwarf Planets As a New Way of Thinking About an Old Solar System
    Ceres and Pluto: Dwarf Planets as a New Way of Thinking about an Old Solar System TEACHER GUIDE BACKGROUND The decision by the International Astronomical Union (IAU) in 2006 to define the terms “planet” and “dwarf planet” has caught the attention of the public and students from grade school to graduate school. The IAU’s decision has not changed the structure of the solar system; it has merely presented a different way of classifying the bodies that make it up. Planets are the Greek word for “wanderers” that were known as lights that moved in the sky. This middle school activity, developed for NASA’s Dawn mission, utilizes a researched-based instructional strategy called direct vocabulary instruction to help students understand the new definitions of planet and dwarf planet. Many of us have grown up with an understanding that our solar system is comprised of remnants from its early formation 4.5 billion years ago, primarily: bodies such as the Sun, planets, asteroids and comets; gas and dust, as well as a large volume of space. Many school children have learned the names and locations of the planets relative to the Sun using a mnemonic such as My Very Exceptional Mother Just Sat Upon Nine Porcupines (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto). The last of these bodies to be discovered, Pluto, has recently been reclassified as a dwarf planet. Pluto’s reduced status has even resulted in a new term as we enter 2007: someone or something has been “Plutoed” if that person or thing has been downsized in its prominence.
    [Show full text]
  • The Solar System
    CHAPTER 21 LESSON 4 The Solar System Dwarf Planets and Other Objects Key Concepts • What is a dwarf planet? What do you think? Read the two statements below and decide • What are the characteristics whether you agree or disagree with them. Place an A in the Before column of comets and asteroids? if you agree with the statement or a D if you disagree. After you’ve read this lesson, reread the statements to see if you have changed your mind. • How does an impact crater form? Before Statement After 7. Asteroids and comets are mainly rock and ice. 8. A meteoroid is a meteor that strikes Earth. Define Words Skim the Dwarf Planets lesson and underline words The International Astronomical Union (IAU) defines a that you do not know. Then dwarf planet as an object that orbits a star. When a dwarf read the lesson to see if you planet formed, there was enough mass and gravity for it to can define those words. If form a sphere. A dwarf planet has objects similar in mass you cannot, look up the word orbiting nearby or crossing its orbital path. Astronomers and write its definition in the margin to use as you study. classify Pluto, Ceres, Eris, Makemake, and Haumea (how MAY ah) as dwarf planets. Pluto was once considered to be a planet, but now it has the status of a dwarf planet. Visual Check 1. Interpret Which dwarf All dwarf planets are smaller than Earth’s moon. The figure planet orbits closest to Earth? below locates Ceres, Pluto, and Eris.
    [Show full text]