Categorical Structures on Bundle Gerbes and Higher Geometric Prequantisation

Total Page:16

File Type:pdf, Size:1020Kb

Categorical Structures on Bundle Gerbes and Higher Geometric Prequantisation Categorical Structures on Bundle Gerbes and Higher Geometric Prequantisation Severin Bunk Submitted for the degree of Doctor of Philosophy Department of Mathematics arXiv:1709.06174v1 [math-ph] 18 Sep 2017 School of Mathematics and Computer Sciences September 2017 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. Abstract We present a construction of a 2-Hilbert space of sections of a bundle gerbe, a suitable candidate for a prequantum 2-Hilbert space in higher geometric quantisation. We start by briefly recalling the construction of the 2-category of bundle gerbes, with minor alter- ations that allow us to endow morphisms with additive structures. The morphisms in the resulting 2-categories are investigated in detail. We introduce a direct sum on morphism categories of bundle gerbes and show that these categories are cartesian monoidal and abelian. Endomorphisms of the trivial bundle gerbe, or higher functions, carry the struc- ture of a rig-category, a categorified ring, and we show that generic morphism categories of bundle gerbes form module categories over this rig-category. We continue by presenting a categorification of the hermitean bundle metric on a hermitean line bundle. This is achieved by introducing a functorial dual that extends the dual of vector bundles to morphisms of bundle gerbes, and constructing a two-variable adjunction for the aforementioned rig-module category structure on morphism categories. Its right internal hom is the module action, composed by taking the dual of the acting higher functions, while the left internal hom is interpreted as a bundle gerbe metric. Sections of bundle gerbes are defined as morphisms from the trivial bundle gerbe to the bundle gerbe under consideration. We show that the resulting categories of sections carry a rig-module structure over the category of finite-dimensional Hilbert spaces with its canonical direct sum and tensor product. A suitable definition of 2-Hilbert spaces is given, modifying previous definitions by the use of two-variable adjunctions. We prove that the category of sections of a bundle gerbe, with its additive and module structures, fits into this framework, thus obtaining a 2-Hilbert space of sections. In particular, this can be constructed for prequantum bundle gerbes in problems of higher geometric quantisation. We define a dimensional reduction functor and show that the categorical structures introduced on the 2-category of bundle gerbes naturally reduce to their counterparts on hermitean line bundles with connections. In several places in this thesis, we provide examples, making 2-Hilbert spaces of sections and dimensional reduction very explicit. i ii To my parents. iv Acknowledgements First and foremost, I would like to thank Richard Szabo for his supervision during the course of my PhD programme. I am grateful for all the time, support and advice he has given me over the last three years, for always taking my ideas and concerns seriously, for our often long discussions, and for always being frank with me. I would like to thank Christian S¨amannfor being my second supervisor, but even more for his input into this project and being approachable, caring and supportive throughout my PhD. I am grateful to Alexander Schenkel for countless discussions, his interest in my progress and career, and for giving me the opportunity to speak in Nottingham and at his MFO Mini-Workshop. During the second half of my PhD I have had the pleasure of collaborating with Konrad Waldorf. I would like to thank him in this place for inviting me to Greifswald, for the insightful discussions we have had, and for his support outside of our collaboration. Moreover, I would like to thank Michael Murray and Danny Stevenson for several interesting discussions on bundle gerbes and their modules, Branislav Jurˇcoand Jos´e Figueroa-O'Farrill for being my examiners, and Des Johnston for agreeing to watch over my viva. I would like to thank David Jordan for running his TQFT seminar, Gwendolyn Barnes for running a category theory reading group, and Tim Weelinck, Matt Booth, Lukas M¨uller and Jenny August for their enthusiasm and their contributions to the homotopy theory and higher categories reading group. Finally, I gratefully acknowledge support granted by Heriot-Watt University through a James-Watt Scholarship. v vi ACADEMIC REGISTRY Research Thesis Submission Name: School: Version: (i.e. First, Degree Sought: Resubmission, Final) Declaration In accordance with the appropriate regulations I hereby submit my thesis and I declare that: 1) the thesis embodies the results of my own work and has been composed by myself 2) where appropriate, I have made acknowledgement of the work of others and have made reference to work carried out in collaboration with other persons 3) the thesis is the correct version of the thesis for submission and is the same version as any electronic versions submitted*. 4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian may require 5) I understand that as a student of the University I am required to abide by the Regulations of the University and to conform to its discipline. 6) I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. Turnitin. * Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted. Signature of Date: Candidate: Submission Submitted By (name in capitals): Signature of Individual Submitting: Date Submitted: For Completion in the Student Service Centre (SSC) Received in the SSC by (name in capitals): Method of Submission (Handed in to SSC; posted through internal/external mail): E-thesis Submitted (mandatory for final theses) Signature: Date: Please note this form should be bound into the submitted thesis. Academic Registry/Version (1) August 2016 viii Contents 1 Introduction 1 1.1. Quantisation and categorification 1 1.2. A glance at bundle gerbes and higher quantisation 3 1.3. Outline and main results 6 2 Bundle gerbes 11 2.1. Preliminaries on coverings and sheaves of categories 11 2.2. The 2-category of bundle gerbes 16 2.3. Deligne cohomology and higher categories 26 3 Categorical structures on morphisms of bundle gerbes 35 3.1. Additive structures on morphisms 35 3.2. Pairings of morphisms { closed structures 44 3.3. Examples 50 4 2-Hilbert spaces from bundle gerbes 57 4.1. Higher geometric quantisation 57 4.2. Higher geometric structures 61 4.3. 2-Hilbert spaces 65 4.4. The 2-Hilbert space of a bundle gerbe 69 4.5. Example: Bundle gerbes on R3 73 4.6. Example: A decomposable bundle gerbe 76 4.7. Remarks on the torsion constraint 81 5 Transgression and dimensional reduction 85 5.1. Diffeological spaces and bundles 85 ix 5.2. The transgression functor 87 5.3. Transgression of categorical structures 95 5.4. Unparameterised loops, orientation, and Reality 99 5.5. Dimensional reduction 102 6 Conclusions 109 A Special morphisms of bundle gerbes 113 A.1. Remarks on monoidal structures and strictness 113 A.2. Morphisms of bundle gerbes and descent 114 A.3. Mutual surjective submersions 118 B Proofs 123 B.1. Proof of Theorem 3.14 123 B.2. Proof of Theorem 3.49 127 References 131 x Notation • We use the term `2-category' to refer to what is sometimes called a weak 2-category, or bicategory, i.e. we allow for non-trivial associators and unitors. If we explicitly refer to 2-categories where these are trivial, we will use the term `strict 2-category'. • For a category C and objects a; b 2 C, we denote the collection of morphisms from a to b in C by C(a; b). Similarly, if C is a 2-category and a; b 2 C are objects, the category of morphisms from a to b in C is denoted C(a; b). For two 1-morphisms φ, : a ! b in C, the collection of 2-morphisms from φ to is C(φ, ). • In a 2-category C, we denote the horizontal composition of 2-morphisms by ◦1, while the vertical composition is denoted ◦2. • For an n-category C, we denote its underlying n-groupoid by C∼, i.e. C∼ is the n- category obtained from C by discarding all non-invertible k-morphisms for k = 1; : : : ; n, while π0C denotes the collection of objects of C modulo the equivalence relation a ∼ b if there exists a zig-zag of morphisms between a and b. • Mfd is the category of smooth manifolds and smooth maps. We we define manifolds to be second countable and Hausdorff. • DfgSp is the category of diffeological spaces and diffeological maps. • HVBdl is the relative sheaf of categories (see Section 2.1) of smooth hermitean vec- tor bundles, with smooth fibrewise linear maps as morphisms, with respect to the Grothendieck topology given by smooth surjective submersions on Mfd (cf. [75]). Here, we include non-invertible morphisms of vector bundles. HLBdl is the full sub-sheaf of categories of hermitean line bundles on Mfd. • For a morphism 2 HVBdl(M)(E; F ), we write ∗ : F ! E for its adjoint, defined ∗ by hE( (f); e) = hF (f; (e)) via the hermitean metrics hE and hF on E and F , respectively, with e 2 E and f 2 F . The transpose of is denoted t : F ∗ ! E∗ and given by t(φ)(e) = φ( (e)) for e 2 E and φ 2 F ∗.
Recommended publications
  • Stable Higgs Bundles on Ruled Surfaces 3
    STABLE HIGGS BUNDLES ON RULED SURFACES SNEHAJIT MISRA Abstract. Let π : X = PC(E) −→ C be a ruled surface over an algebraically closed field k of characteristic 0, with a fixed polarization L on X. In this paper, we show that pullback of a (semi)stable Higgs bundle on C under π is a L-(semi)stable Higgs bundle. Conversely, if (V,θ) ∗ is a L-(semi)stable Higgs bundle on X with c1(V ) = π (d) for some divisor d of degree d on C and c2(V ) = 0, then there exists a (semi)stable Higgs bundle (W, ψ) of degree d on C whose pullback under π is isomorphic to (V,θ). As a consequence, we get an isomorphism between the corresponding moduli spaces of (semi)stable Higgs bundles. We also show the existence of non-trivial stable Higgs bundle on X whenever g(C) ≥ 2 and the base field is C. 1. Introduction A Higgs bundle on an algebraic variety X is a pair (V, θ) consisting of a vector bundle V 1 over X together with a Higgs field θ : V −→ V ⊗ ΩX such that θ ∧ θ = 0. Higgs bundle comes with a natural stability condition (see Definition 2.3 for stability), which allows one to study the moduli spaces of stable Higgs bundles on X. Higgs bundles on Riemann surfaces were first introduced by Nigel Hitchin in 1987 and subsequently, Simpson extended this notion on higher dimensional varieties. Since then, these objects have been studied by many authors, but very little is known about stability of Higgs bundles on ruled surfaces.
    [Show full text]
  • Schematic Homotopy Types and Non-Abelian Hodge Theory
    Compositio Math. 144 (2008) 582–632 doi:10.1112/S0010437X07003351 Schematic homotopy types and non-abelian Hodge theory L. Katzarkov, T. Pantev and B. To¨en Abstract We use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor X → (X ⊗ C)sch, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on (X ⊗ C)sch. This Hodge decomposition is encoded in an action of the discrete group C×δ on the object (X ⊗ C)sch and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro- algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold. Contents Introduction 583 1 Review of the schematization functor 589 1.1 Affine stacks and schematic homotopy types ................. 589 1.2 Equivariant stacks ............................... 594 1.3 Equivariant co-simplicial algebras and equivariant affine stacks ...... 595 1.4 An explicit model for (X ⊗ C)sch ....................... 597 2 The Hodge decomposition 598 2.1 Review of the non-abelian Hodge correspondence .............
    [Show full text]
  • Twenty-Five Years of Two-Dimensional Rational Conformal Field Theory
    ZMP-HH/09-21 Hamburger Beitr¨age zur Mathematik Nr. 349 October 2009 TWENTY-FIVE YEARS OF TWO-DIMENSIONAL RATIONAL CONFORMAL FIELD THEORY J¨urgen Fuchs a, Ingo Runkel b and Christoph Schweigert b a Teoretisk fysik, Karlstads Universitet Universitetsgatan 21, S–65188 Karlstad b Organisationseinheit Mathematik, Universit¨at Hamburg Bereich Algebra und Zahlentheorie Bundesstraße 55, D–20146 Hamburg A review for the 50th anniversary of the Journal of Mathematical Physics. 1 Introduction In this article we try to give a condensed panoramic view of the development of two-dimen- sional rational conformal field theory in the last twenty-five years. Given its limited length, our contribution can be, at best, a collection of pointers to the literature. Needless to say, the arXiv:0910.3145v2 [hep-th] 15 Jan 2010 exposition is highly biased, by the taste and the limited knowledge of the authors. We present in advance our apologies to everyone whose work has been inappropriately represented or even omitted. The study of conformal field theories in two dimensions has its origin in several distinct areas of physics: • In the attempt to describe the strong interactions in elementary particle physics in the frame- work of dual models. • Under the label string theory, these models were reinterpreted as a perturbation series containing a gravitational sector. Conformal field theories appear as theories defined on the world sheet that is swept out by the string [56]. • In statistical mechanics, conformal field theory plays a fundamental role in the theory of two- dimensional critical systems [189, 92] by describing fixed points of the renormalization group.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Arxiv:1401.2824V1 [Math.AT]
    ZMP-HH/14-2 Hamburger Beitr¨age zur Mathematik Nr. 499 January 2014 A Serre-Swan theorem for gerbe modules on ´etale Lie groupoids Christoph Schweigert a, Christopher Tropp b, Alessandro Valentino a a Fachbereich Mathematik, Universit¨at Hamburg Bereich Algebra und Zahlentheorie Bundesstraße 55, D – 20 146 Hamburg b Mathematisches Institut, WWU M¨unster Einsteinstr. 62, D – 48149 M¨unster Abstract Given a bundle gerbe on a compact smooth manifold or, more generally, on a compact ´etale Lie groupoid M, we show that the corresponding category of gerbe modules, if it is non-trivial, is equivalent to the category of finitely generated projective modules over an Azumaya algebra on M. This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles. 1 Introduction The celebrated Serre-Swan theorem relates the category of vector bundles over a compact smooth manifold M to the category of finite rank projective modules over the algebra of smooth functions C∞(M, C) of M (see [GBV, Mor] for the Serre-Swan theorem in the smooth category). It relates geometric and algebraic notions and is, in particular, the starting point for the definition of vector bundles in non-commutative geometry. arXiv:1401.2824v1 [math.AT] 13 Jan 2014 A bundle gerbe on M can be seen as a geometric realization of its Dixmier-Douady class, which is a class in H3(M; Z). To such a geometric realization, a twisted K-theory group can be associated. Gerbe modules have been introduced to obtain a geometric description of twisted K-theory [BCMMS].
    [Show full text]
  • Dirac Operators for Matrix Algebras Converging to Coadjoint Orbits
    DIRAC OPERATORS FOR MATRIX ALGEBRAS CONVERGING TO COADJOINT ORBITS MARC A. RIEFFEL Abstract. In the high-energy physics literature one finds statements such as “matrix algebras converge to the sphere”. Earlier I provided a general precise setting for understanding such statements, in which the matrix algebras are viewed as quantum metric spaces, and convergence is with respect to a quantum Gromov-Hausdorff-type distance. But physicists want even more to treat structures on spheres (and other spaces), such as vector bundles, Yang-Mills functionals, Dirac operators, etc., and they want to approximate these by corresponding structures on matrix algebras. In the present paper we provide a somewhat unified construction of Dirac operators on coadjoint orbits and on the matrix algebras that converge to them. This enables us to prove our main theorem, whose content is that, for the quantum metric-space structures determined by the Dirac operators that we construct, the matrix algebras do indeed converge to the coadjoint orbits, for a quite strong version of quantum Gromov-Hausdorff distance. Contents Introduction 2 1. Ergodic actions and Dirac operators 5 2. Invariance under the group actions 9 3. Charge Conjugation 11 4. Casimir operators 12 5. First facts about spinors 14 6. The C*-metrics 16 7. More about spinors 20 8. Dirac operators for matrix algebras 21 arXiv:2108.01136v1 [math.OA] 2 Aug 2021 9. The fuzzy sphere 23 10. Homogeneous spaces and the Dirac operator for G 29 11. Dirac operators for homogeneous spaces 30 12. Complex structure on coadjoint orbits 36 13. Yet more about spinors 40 14.
    [Show full text]
  • Fluxes, Bundle Gerbes and 2-Hilbert Spaces
    Lett Math Phys DOI 10.1007/s11005-017-0971-x Fluxes, bundle gerbes and 2-Hilbert spaces Severin Bunk1 · Richard J. Szabo2 Received: 12 January 2017 / Revised: 13 April 2017 / Accepted: 8 May 2017 © The Author(s) 2017. This article is an open access publication Abstract We elaborate on the construction of a prequantum 2-Hilbert space from a bundle gerbe over a 2-plectic manifold, providing the first steps in a programme of higher geometric quantisation of closed strings in flux compactifications and of M5- branes in C-fields. We review in detail the construction of the 2-category of bundle gerbes and introduce the higher geometrical structures necessary to turn their cate- gories of sections into 2-Hilbert spaces. We work out several explicit examples of 2-Hilbert spaces in the context of closed strings and M5-branes on flat space. We also work out the prequantum 2-Hilbert space associated with an M-theory lift of closed strings described by an asymmetric cyclic orbifold of the SU(2) WZW model, pro- viding an example of sections of a torsion gerbe on a curved background. We describe the dimensional reduction of M-theory to string theory in these settings as a map from 2-isomorphism classes of sections of bundle gerbes to sections of corresponding line bundles, which is compatible with the respective monoidal structures and module actions. Keywords Bundle gerbes · Higher geometric quantisation · Fluxes in string and M-theory · Higher geometric structures Mathematics Subject Classification 81S10 · 53Z05 · 18F99 B Severin Bunk [email protected] Richard J.
    [Show full text]
  • Arxiv:2109.00850V1 [Math.AG] 2 Sep 2021 § Ncaatrsi Eo(E 1].Antrlqeto Shwt Gener to How Is Question Natural a and Bundles [17])
    TAME PARAHORIC NONABELIAN HODGE CORRESPONDENCE IN POSITIVE CHARACTERISTIC OVER ALGEBRAIC CURVES MAO LI AND HAO SUN Abstract. Let G be a reductive group, and let X be an algebraic curve over an algebraically closed field k with positive characteristic. We prove a version of nonabelian Hodge correspondence for G- local systems over X and G-Higgs bundles over the Frobenius twist X′ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence. 1. Introduction 1.1. Background. Let X be a smooth projective scheme over C. In [18], Simpson constructed a homeomorphism between the moduli space of semistable Higgs bundles on X and the moduli space of representations of fundamental groups of X. This correspondence between local systems and Higgs bundles is analytic in nature, it does not preserve the algebraic structure. On the other hand, the work of [14] and [7] shows that the connection between Higgs bundles and local systems is much closer in prime characteristics. The main results of [7] shows that for a smooth projective curve X over an algebraically closed field k of positive characteristic, the stack of local systems on X is a twisted version of the stack of Higgs bundles on X′, the Frobenius twist of X. This result is a crucial ingredient in the proof of the geometric Langlands conjecture in positive characteristic on curves [8]. The Simpson correspondence also works for local systems and Higgs bundles with first order poles in characteristic zero (see [17]). A natural question is how to generalize the correspondence to G-Higgs bundles and G-local systems for reductive groups G (with first order poles).
    [Show full text]
  • A Construction of String 2-Group Modelsusing a Transgression
    A Construction of String 2-Group Models using a Transgression-Regression Technique Konrad Waldorf Fakult¨at f¨ur Mathematik Universit¨at Regensburg Universit¨atsstraße 31 D–93053 Regensburg [email protected] Dedicated to Steven Rosenberg on the occasion of his 60th birthday Abstract In this note we present a new construction of the string group that ends optionally in two different contexts: strict diffeological 2-groups or finite-dimensional Lie 2-groups. It is canonical in the sense that no choices are involved; all the data is written down and can be looked up (at least somewhere). The basis of our construction is the basic gerbe of Gaw¸edzki-Reis and Meinrenken. The main new insight is that under a transgression- regression procedure, the basic gerbe picks up a multiplicative structure coming from the Mickelsson product over the loop group. The conclusion of the construction is a relation between multiplicative gerbes and 2-group extensions for which we use recent work of Schommer-Pries. MSC 2010: Primary 22E67; secondary 53C08, 81T30, 58H05 arXiv:1201.5052v2 [math.DG] 4 May 2012 1 Introduction The string group String(n) is a topological group defined up to homotopy equivalence as the 3-connected cover of Spin(n), for n =3 or n> 4. Concrete models for String(n) have been provided by Stolz [Sto96] and Stolz-Teichner [ST04]. In order to understand, e.g. the differential geometry of String(n), the so-called “string geometry”, it is necessary to have models in better categories than topological groups. Its 3-connectedness implies that String(n) is a K(Z, 2)-fibration over Spin(n), so that it cannot be a (finite-dimensional) Lie group.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • Constructions with Bundle Gerbes
    Constructions with Bundle Gerbes Stuart Johnson Thesis submitted for the degree of Doctor of Philosophy in the School of Pure Mathematics University of Adelaide arXiv:math/0312175v1 [math.DG] 9 Dec 2003 13 December 2002 Abstract This thesis develops the theory of bundle gerbes and examines a number of useful constructions in this theory. These allow us to gain a greater insight into the struc- ture of bundle gerbes and related objects. Furthermore they naturally lead to some interesting applications in physics. i ii Statement of Originality This thesis contains no material which has been accepted for the award of any other degree or diploma at any other university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying. Stuart Johnson Adelaide, 13 December, 2002 iii iv Acknowledgement Firstly I would like to thank my supervisor Michael Murray. He has been extremely helpful, insightful and encouraging at all times and it has been a great pleasure to work with him. I would also like to thank Alan Carey for valuable assistance in the early stages of my work on this thesis and for his continuing support. Thanks are also due to Danny Stevenson for many interesting and helpful conversations and to Ann Ross for always being of assistance with administrative matters. I would also like to acknowledge the support of a University of Adelaide postgraduate scholarship.
    [Show full text]
  • Group Invariant Solutions Without Transversality 2 in Detail, a General Method for Characterizing the Group Invariant Sections of a Given Bundle
    GROUP INVARIANT SOLUTIONS WITHOUT TRANSVERSALITY Ian M. Anderson Mark E. Fels Charles G. Torre Department of Mathematics Department of Mathematics Department of Physics Utah State University Utah State University Utah State University Logan, Utah 84322 Logan, Utah 84322 Logan, Utah 84322 Abstract. We present a generalization of Lie’s method for finding the group invariant solutions to a system of partial differential equations. Our generalization relaxes the standard transversality assumption and encompasses the common situation where the reduced differential equations for the group invariant solutions involve both fewer dependent and independent variables. The theoretical basis for our method is provided by a general existence theorem for the invariant sections, both local and global, of a bundle on which a finite dimensional Lie group acts. A simple and natural extension of our characterization of invariant sections leads to an intrinsic characterization of the reduced equations for the group invariant solutions for a system of differential equations. The char- acterization of both the invariant sections and the reduced equations are summarized schematically by the kinematic and dynamic reduction diagrams and are illustrated by a number of examples from fluid mechanics, harmonic maps, and general relativity. This work also provides the theoretical foundations for a further detailed study of the reduced equations for group invariant solutions. Keywords. Lie symmetry reduction, group invariant solutions, kinematic reduction diagram, dy- namic reduction diagram. arXiv:math-ph/9910015v2 13 Apr 2000 February , Research supported by NSF grants DMS–9403788 and PHY–9732636 1. Introduction. Lie’s method of symmetry reduction for finding the group invariant solutions to partial differential equations is widely recognized as one of the most general and effective methods for obtaining exact solutions of non-linear partial differential equations.
    [Show full text]