A Hyperpolar Image of the Mandelbrot Set 139

Total Page:16

File Type:pdf, Size:1020Kb

A Hyperpolar Image of the Mandelbrot Set 139 A HYPERPOLAR IMAGE OF THE MANDELBROT SET 139 A Hyperpolar Image of the Mandelbrot Set Frank Glaser Mathematics Andy J. Robles Mathematics Non-random complicated motions can exhibit a very rapid growth of errors and, despite perfect determinism, they inhibit the pragmatic ability to render accurate long term predictions. Technically, such non-random motions are termed “chaotic.” The geometry of chaotic behavior is known as “fractal geometry.” The term “fractal” was coined by Benoit Mandelbrot to mean “fractional dimension.” Fractals are structures which are elaborated upon at smaller and smaller scales differently at each point of an object. In 1979 a computer experiment made it possible to create the diagram of a certain object called the Mandelbrot set. It is a “limit fractal” that contains many other fractals. As such it is of great importance in fractal geometry. In this article we aim to map the Mandelbrot set from the normal complex plane into the hyperpolar complex plane and present a computer generated hyperpolar image of this “limit fractal.” In 1918 Gaston Julia (1893-1978) published a 199-page masterpiece entitled Memoire sur l’iteration des fonctiones rationelles. Pure et Appl. 8. (1918) 47-245. This paper deals with the iterations of complex polynomials like z2 + c, z3 + c, ..., zn+c, where c is a parameter such that for any fixed value of c, a sequence of complex numbers is generated when we choose some value for z and then start an iteration process. For example, if we have the polynomial z2+ c for fixed c, iterating means that we choose some value for z and obtain z2+ c. Next we substitute this resulting complex number into the polynomial obtaining (z2+ c)2 + c. Proceeding in this manner, we generate the sequence 2 2 2 2 2 2 z 0 = z, z1 = z + c, z2 = (z + c) + c, z3 = z + c + c + c, ... z 0 = z which can be written as 2 , (n = 0, 1, 2, ...). zn + 1 = z n + c This sequence of complex numbers is represented by a point-set in the complex plane. These types of point-sets are very hard to visualize and if we try to construct one by computing members of the sequence without a computer, we would get involved in endless, tedious computations. Indeed, the first visualization of such a set, now called a Julia set, was only partially achieved in 1925 by Hubert Cremer who had organized a seminar at the University of Berlin under the auspices of Erhard Schmidt and Ludwig Bieberbach. The participants were mathematicians of great renown such as Richard D. Brauer, Heinrich Hopf and Kurt Reidemeister. In a paper entitled über die Iteration rationaler Funktionen, Jahresberichte der Deutschen Mathematischen Vereinigung 33 (1925), Cremer produced a fractal consisting of thirteen triangles of different sizes and described a technique for generating more (Figure 1). 140 GLASER, ROBLES Fall 1998 Figure 1 First drawing by Cremer in 1925 visualizing a Julia set. First Visualization Due to the difficulty involved in visualizing Julia sets, the work of Julia was essentially forgotten until computer graphics became available at the end of the seventies, and Benoit Mandelbrot showed that Julia sets were a source of the some of the most beautiful fractals known today. (Peitgen, Jürgens & Saupe, 1992). Mandelbrot was born in Poland in 1924. His family emigrated to France in 1936 and his uncle, Szolem Mandelbrot, who was a professor of mathematics in Paris and the successor of Jacques Salomon Hadamard at the prestigious Collège de France, became responsible for his education. In 1945 Mandelbrot’s uncle recommended Julia’s paper to him as a master- piece and a source of good problems. However, Mandelbrot could not relate to Julia’s style and kind of mathematics and chose his own way which, nevertheless, brought him back to Julia’s work around 1977. It was in 1979 that Mandelbrot generated by computer graphics his famous “limit fractal,” the Mandelbrot set, which as a by-product, gave an ordering or “road map” for Julia sets. The Dichotomy of Julia Sets z = z A sequence of complex numbers such as 0 , (n = 0, 1, 2, ...) that defines 2 zn +1 = zn + c point-sets in the complex plane exhibits a basic dichotomy: either it becomes unbounded or it remains bounded. The collection of all points which lead to the first kind of behavior is called the escape set for the parameter c, while the collection of all points which lead to the second kind of behavior is called the prisoner set of c. Both sets cover some part of the complex plane and complement each other. The boundary of the prisoner set is simultaneously the boundary of the escape set, and that is the Julia set for c. Let us consider the example in which c= 0. Then we have the sequence z = z 0 , (n = 0, 1, 2, ...) 2 zn +1= z n A HYPERPOLAR IMAGE OF THE MANDELBROT SET 141 and we can construct choosing z0 = 0.8, z0 = 1.0, and z0 = 1.5, three sequences. The initial point z0 = 0.8, inside the unit circle, leads to a sequence which remains bounded forever. The point z0 = 1.0 leads to a sequence which remains forever on the unit circle. The point z0 = 1.5, which is outside the unit circle, leads to a sequence which escapes to infinity. This simple example shows an important dynamic dichotomy: the complex plane of initial values is subdivided into two subsets. The first subset collects points for which the iteration escapes; hence, it is called the escape set Ec of the parameter c. The iteration for all other initial values remains in a bounded region forever, and the resulting points are collected in a set called the prisoner set Pc of the parameter c. The parameter c = 0, P0 and E0 is the unit circle which is called the Julia set of the iteration. For initial values in the Julia set {z| |z| = 1}, the iteration generates only points which again lie on the unit cicle; i.e., the Julia set is invariant under iteration. The interior of P0 can be interpreted as a basin of attraction, the attractor being the origin z = 0. The iteration also has a second attractor: the point at infinity whose basin of attraction is the escape set E. The boundary between the two basins of attraction is the Julia set. For the parameter c = 0, the Julia set is the unit circle which is not a fractal. This is a very special case; in general most Julia sets are fractals. A basic example of a Julia set that is a fractal occurs if we choose c = -0.5 + 0.5i and compute the “orbits,” i.e. point sets, generated for the choices of z0 = 0 + 0i, z0 = 0.50 - 0.25i, and z0 = -0.25 + 0.50i and construct a table for their iterations . We construct also a second table for the iterations of the choices z0 = 1 + 0i, z0 = 0.50 + 0.25i, and z0 = 0.00 + 0.88i. In the first table, the iterated points do not escape but eventually settle down to a certain point whose value is approximately -0.408 + 0.275i, but in the second table all three orbits escape to infinity. There are again two basins of attraction, but zero is no longer one of the attracting points. The fixed point can be computed directly from the equation z2 - z + (-0.5 + 0.5i) = 0 The result gives two solutions z1 = 1.408 - 0.275i z2 = -0.408 + -.275i The first point is a repeller (i.e., points nearby are pushed away by the iteration) and z1 is in the Julia set. The second solution z2 is an attracting fixed point and, hence, not part of the Julia set. Many figures have been constructed that show the results of extended experiments which test all points of the complex plane. The prisoner set is pictured in black, and its complement, the escape set, is white. The boundary of the black region is the Julia set and it is a typical fractal. We can magnify any region near the Julia set and always find details that look similar. (Peitgen, H. O., Jürgens, H. & Saupe, D., 1992). The great variety of forms of Julia sets can be illustrated by producing the computer images of some basic examples. Figures showing the Julia sets for z2 + 0.25 + 0.52i, z2 + 0.377 - 0.248i, and z2 - 0.7382 + 0.0827i respectively have been generated by computer and are found below (Crownover, 1995). A fractal of this kind is usually called “Fatou” dust in honor of the mathematician Fatou, a contemporary of Julia. (Lauwerier, 1991) A HYPERPOLAR IMAGE OF THE MANDELBROT SET 143 The Mandelbrot Set And Its Hyperpolar Image 2 The Mandelbrot Set M for the quadratic polynomial fc(z) = z is defined as the collection of all complex numbers c for which the orbit of the point 0 is bounded. If C is the complex plane ε and c C , then the Mandelbrot set can be written as: z0 = c = {c ε C | the iteration remains bounded} M 2 zn + 1 = zn + c This was the definition used by Mandelbrot in his 1979 experiments. The above definition ofM is very similar to that of the prisoner set Pc. However, while the Julia set is part of the plane of initial values, z0 whose orbits reside in the complex plane, the Mandelbrot set is in the plane of parameter values c. The Mandelbrot set lies inside a circle of radius 2 because if | c | > 2, then the iteration escapes to infinity.
Recommended publications
  • Fractal (Mandelbrot and Julia) Zero-Knowledge Proof of Identity
    Journal of Computer Science 4 (5): 408-414, 2008 ISSN 1549-3636 © 2008 Science Publications Fractal (Mandelbrot and Julia) Zero-Knowledge Proof of Identity Mohammad Ahmad Alia and Azman Bin Samsudin School of Computer Sciences, University Sains Malaysia, 11800 Penang, Malaysia Abstract: We proposed a new zero-knowledge proof of identity protocol based on Mandelbrot and Julia Fractal sets. The Fractal based zero-knowledge protocol was possible because of the intrinsic connection between the Mandelbrot and Julia Fractal sets. In the proposed protocol, the private key was used as an input parameter for Mandelbrot Fractal function to generate the corresponding public key. Julia Fractal function was then used to calculate the verified value based on the existing private key and the received public key. The proposed protocol was designed to be resistant against attacks. Fractal based zero-knowledge protocol was an attractive alternative to the traditional number theory zero-knowledge protocol. Key words: Zero-knowledge, cryptography, fractal, mandelbrot fractal set and julia fractal set INTRODUCTION Zero-knowledge proof of identity system is a cryptographic protocol between two parties. Whereby, the first party wants to prove that he/she has the identity (secret word) to the second party, without revealing anything about his/her secret to the second party. Following are the three main properties of zero- knowledge proof of identity[1]: Completeness: The honest prover convinces the honest verifier that the secret statement is true. Soundness: Cheating prover can’t convince the honest verifier that a statement is true (if the statement is really false). Fig. 1: Zero-knowledge cave Zero-knowledge: Cheating verifier can’t get anything Zero-knowledge cave: Zero-Knowledge Cave is a other than prover’s public data sent from the honest well-known scenario used to describe the idea of zero- prover.
    [Show full text]
  • Rendering Hypercomplex Fractals Anthony Atella [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements.
    [Show full text]
  • Generating Fractals Using Complex Functions
    Generating Fractals Using Complex Functions Avery Wengler and Eric Wasser What is a Fractal? ● Fractals are infinitely complex patterns that are self-similar across different scales. ● Created by repeating simple processes over and over in a feedback loop. ● Often represented on the complex plane as 2-dimensional images Where do we find fractals? Fractals in Nature Lungs Neurons from the Oak Tree human cortex Regardless of scale, these patterns are all formed by repeating a simple branching process. Geometric Fractals “A rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole.” Mandelbrot (1983) The Sierpinski Triangle Algebraic Fractals ● Fractals created by repeatedly calculating a simple equation over and over. ● Were discovered later because computers were needed to explore them ● Examples: ○ Mandelbrot Set ○ Julia Set ○ Burning Ship Fractal Mandelbrot Set ● Benoit Mandelbrot discovered this set in 1980, shortly after the invention of the personal computer 2 ● zn+1=zn + c ● That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets. Animation based on a static number of iterations per pixel. The Mandelbrot set is the complex numbers c for which the sequence ( c, c² + c, (c²+c)² + c, ((c²+c)²+c)² + c, (((c²+c)²+c)²+c)² + c, ...) does not approach infinity. Julia Set ● Closely related to the Mandelbrot fractal ● Complementary to the Fatou Set Featherino Fractal Newton’s method for the roots of a real valued function Burning Ship Fractal z2 Mandelbrot Render Generic Mandelbrot set.
    [Show full text]
  • Iterated Function Systems, Ruelle Operators, and Invariant Projective Measures
    MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1931–1970 S 0025-5718(06)01861-8 Article electronically published on May 31, 2006 ITERATED FUNCTION SYSTEMS, RUELLE OPERATORS, AND INVARIANT PROJECTIVE MEASURES DORIN ERVIN DUTKAY AND PALLE E. T. JORGENSEN Abstract. We introduce a Fourier-based harmonic analysis for a class of dis- crete dynamical systems which arise from Iterated Function Systems. Our starting point is the following pair of special features of these systems. (1) We assume that a measurable space X comes with a finite-to-one endomorphism r : X → X which is onto but not one-to-one. (2) In the case of affine Iterated Function Systems (IFSs) in Rd, this harmonic analysis arises naturally as a spectral duality defined from a given pair of finite subsets B,L in Rd of the same cardinality which generate complex Hadamard matrices. Our harmonic analysis for these iterated function systems (IFS) (X, µ)is based on a Markov process on certain paths. The probabilities are determined by a weight function W on X. From W we define a transition operator RW acting on functions on X, and a corresponding class H of continuous RW - harmonic functions. The properties of the functions in H are analyzed, and they determine the spectral theory of L2(µ).ForaffineIFSsweestablish orthogonal bases in L2(µ). These bases are generated by paths with infinite repetition of finite words. We use this in the last section to analyze tiles in Rd. 1. Introduction One of the reasons wavelets have found so many uses and applications is that they are especially attractive from the computational point of view.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Fractals and the Chaos Game
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2006 Fractals and the Chaos Game Stacie Lefler University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Lefler, Stacie, "Fractals and the Chaos Game" (2006). MAT Exam Expository Papers. 24. https://digitalcommons.unl.edu/mathmidexppap/24 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Fractals and the Chaos Game Expository Paper Stacie Lefler In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. David Fowler, Advisor July 2006 Lefler – MAT Expository Paper - 1 1 Fractals and the Chaos Game A. Fractal History The idea of fractals is relatively new, but their roots date back to 19 th century mathematics. A fractal is a mathematically generated pattern that is reproducible at any magnification or reduction and the reproduction looks just like the original, or at least has a similar structure. Georg Cantor (1845-1918) founded set theory and introduced the concept of infinite numbers with his discovery of cardinal numbers. He gave examples of subsets of the real line with unusual properties. These Cantor sets are now recognized as fractals, with the most famous being the Cantor Square .
    [Show full text]
  • Complex Numbers and Colors
    Complex Numbers and Colors For the sixth year, “Complex Beauties” provides you with a look into the wonderful world of complex functions and the life and work of mathematicians who contributed to our understanding of this field. As always, we intend to reach a diverse audience: While most explanations require some mathemati- cal background on the part of the reader, we hope non-mathematicians will find our “phase portraits” exciting and will catch a glimpse of the richness and beauty of complex functions. We would particularly like to thank our guest authors: Jonathan Borwein and Armin Straub wrote on random walks and corresponding moment functions and Jorn¨ Steuding contributed two articles, one on polygamma functions and the second on almost periodic functions. The suggestion to present a Belyi function and the possibility for the numerical calculations came from Donald Marshall; the November title page would not have been possible without Hrothgar’s numerical solution of the Bla- sius equation. The construction of the phase portraits is based on the interpretation of complex numbers z as points in the Gaussian plane. The horizontal coordinate x of the point representing z is called the real part of z (Re z) and the vertical coordinate y of the point representing z is called the imaginary part of z (Im z); we write z = x + iy. Alternatively, the point representing z can also be given by its distance from the origin (jzj, the modulus of z) and an angle (arg z, the argument of z). The phase portrait of a complex function f (appearing in the picture on the left) arises when all points z of the domain of f are colored according to the argument (or “phase”) of the value w = f (z).
    [Show full text]
  • Strictly Self-Similar Fractals Composed of Star-Polygons That Are Attractors of Iterated Function Systems
    Strictly self-similar fractals composed of star-polygons that are attractors of Iterated Function Systems. Vassil Tzanov February 6, 2015 Abstract In this paper are investigated strictly self-similar fractals that are composed of an infinite number of regular star-polygons, also known as Sierpinski n-gons, n-flakes or polyflakes. Construction scheme for Sierpinsky n-gon and n-flake is presented where the dimensions of the Sierpinsky -gon and the -flake are computed to be 1 and 2, respectively. These fractals are put1 in a general context1 and Iterated Function Systems are applied for the visualisation of the geometric iterations of the initial polygons, as well as the visualisation of sets of points that lie on the attractors of the IFS generated by random walks. Moreover, it is shown that well known fractals represent isolated cases of the presented generalisation. The IFS programming code is given, hence it can be used for further investigations. arXiv:1502.01384v1 [math.DS] 4 Feb 2015 1 1 Introduction - the Cantor set and regular star-polygonal attractors A classic example of a strictly self-similar fractal that can be constructed by Iterated Function System is the Cantor Set [1]. Let us have the interval E = [ 1; 1] and the contracting maps − k k 1 S1;S2 : R R, S1(x) = x=3 2=3, S2 = x=3 + 2=3, where x E. Also S : S(S − (E)) = k 0 ! − 2 S (E), S (E) = E, where S(E) = S1(E) S2(E). Thus if we iterate the map S infinitely many times this will result in the well known Cantor[ Set; see figure 1.
    [Show full text]
  • Sphere Tracing, Distance Fields, and Fractals Alexander Simes
    Sphere Tracing, Distance Fields, and Fractals Alexander Simes Advisor: Angus Forbes Secondary: Andrew Johnson Fall 2014 - 654108177 Figure 1: Sphere Traced images of Menger Cubes and Mandelboxes shaded by ambient occlusion approximation on the left and Blinn-Phong with shadows on the right Abstract Methods to realistically display complex surfaces which are not practical to visualize using traditional techniques are presented. Additionally an application is presented which is capable of utilizing some of these techniques in real time. Properties of these surfaces and their implications to a real time application are discussed. Table of Contents 1 Introduction 3 2 Minimal CPU Sphere Tracing Model 4 2.1 Camera Model 4 2.2 Marching with Distance Fields Introduction 5 2.3 Ambient Occlusion Approximation 6 3 Distance Fields 9 3.1 Signed Sphere 9 3.2 Unsigned Box 9 3.3 Distance Field Operations 10 4 Blinn-Phong Shadow Sphere Tracing Model 11 4.1 Scene Composition 11 4.2 Maximum Marching Iteration Limitation 12 4.3 Surface Normals 12 4.4 Blinn-Phong Shading 13 4.5 Hard Shadows 14 4.6 Translation to GPU 14 5 Menger Cube 15 5.1 Introduction 15 5.2 Iterative Definition 16 6 Mandelbox 18 6.1 Introduction 18 6.2 boxFold() 19 6.3 sphereFold() 19 6.4 Scale and Translate 20 6.5 Distance Function 20 6.6 Computational Efficiency 20 7 Conclusion 2 1 Introduction Sphere Tracing is a rendering technique for visualizing surfaces using geometric distance. Typically surfaces applicable to Sphere Tracing have no explicit geometry and are implicitly defined by a distance field.
    [Show full text]
  • A New Digital Signature Scheme Based on Mandelbrot and Julia Fractal Sets
    American Journal of Applied Sciences 4 (11): 848-856, 2007 ISSN 1546-9239 © 2007 Science Publications A New Digital Signature Scheme Based on Mandelbrot and Julia Fractal Sets Mohammad Ahmad Alia and Azman Bin Samsudin School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia Abstract: This paper describes a new cryptographic digital signature scheme based on Mandelbrot and Julia fractal sets. Having fractal based digital signature scheme is possible due to the strong connection between the Mandelbrot and Julia fractal sets. The link between the two fractal sets used for the conversion of the private key to the public key. Mandelbrot fractal function takes the chosen private key as the input parameter and generates the corresponding public-key. Julia fractal function then used to sign the message with receiver's public key and verify the received message based on the receiver's private key. The propose scheme was resistant against attacks, utilizes small key size and performs comparatively faster than the existing DSA, RSA digital signature scheme. Fractal digital signature scheme was an attractive alternative to the traditional number theory digital signature scheme. Keywords: Fractals Cryptography, Digital Signature Scheme, Mandelbrot Fractal Set, and Julia Fractal Set INTRODUCTION Cryptography is the science of information security. Cryptographic system in turn, is grouped according to the type of the key system: symmetric (secret-key) algorithms which utilizes the same key (see Fig. 1) for both encryption and decryption process, and asymmetric (public-key) algorithms which uses different, but mathematically connected, keys for encryption and decryption (see Fig. 2). In general, Fig. 1: Secret-key scheme.
    [Show full text]
  • How Math Makes Movies Like Doctor Strange So Otherworldly | Science News for Students
    3/13/2020 How math makes movies like Doctor Strange so otherworldly | Science News for Students MATH How math makes movies like Doctor Strange so otherworldly Patterns called fractals are inspiring filmmakers with ideas for mind-bending worlds Kaecilius, on the right, is a villain and sorcerer in Doctor Strange. He can twist and manipulate the fabric of reality. The film’s visual-effects artists used mathematical patterns, called fractals, illustrate Kaecilius’s abilities on the big screen. MARVEL STUDIOS By Stephen Ornes January 9, 2020 at 6:45 am For wild chase scenes, it’s hard to beat Doctor Strange. In this 2016 film, the fictional doctor-turned-sorcerer has to stop villains who want to destroy reality. To further complicate matters, the evildoers have unusual powers of their own. “The bad guys in the film have the power to reshape the world around them,” explains Alexis Wajsbrot. He’s a film director who lives in Paris, France. But for Doctor Strange, Wajsbrot instead served as the film’s visual-effects artist. Those bad guys make ordinary objects move and change forms. Bringing this to the big screen makes for chases that are spectacular to watch. City blocks and streets appear and disappear around the fighting foes. Adversaries clash in what’s called the “mirror dimension” — a place where the laws of nature don’t apply. Forget gravity: Skyscrapers twist and then split. Waves ripple across walls, knocking people sideways and up. At times, multiple copies of the entire city seem to appear at once, but at different sizes.
    [Show full text]
  • Ensembles Fractals, Mesure Et Dimension
    Ensembles fractals, mesure et dimension Jean-Pierre Demailly Institut Fourier, Universit´ede Grenoble I, France & Acad´emie des Sciences de Paris 19 novembre 2012 Conf´erence au Lyc´ee Champollion, Grenoble Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Les fractales sont partout : arbres ... fractale pouvant ˆetre obtenue comme un “syst`eme de Lindenmayer” Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Poumons ... Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Chou broccoli Romanesco ... Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Notion de dimension La dimension d’un espace (ensemble de points dans lequel on se place) est classiquement le nombre de coordonn´ees n´ecessaires pour rep´erer un point de cet espace. C’est donc a priori un nombre entier. On va introduire ici une notion plus g´en´erale, qui conduit `ades dimensions parfois non enti`eres. Objet de dimension 1 ×3 ×31 Par une homoth´etie de rapport 3, la mesure (longueur) est multipli´ee par 3 = 31, l’objet r´esultant contient 3 fois l’objet initial. La dimension d’un segment est 1. Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Dimension 2 ... Objet de dimension 2 ×3 ×32 Par une homoth´etie de rapport 3, la mesure (aire) de l’objet est multipli´ee par 9 = 32, l’objet r´esultant contient 9 fois l’objet initial. La dimension du carr´eest 2. Jean-Pierre Demailly, Lyc´ee Champollion - Grenoble Ensembles fractals, mesure et dimension Dimension d ≥ 3 ..
    [Show full text]