Outline for Pecora Paper on Geovisualization of Time Series Data

Total Page:16

File Type:pdf, Size:1020Kb

Outline for Pecora Paper on Geovisualization of Time Series Data VOXEL-BASED ANALYSIS AND VISUALIZATION OF RAINFALL DATA Shalini Venkataraman Staff Researcher, Scientific Visualization Center for Computation and Technology Louisiana State University [email protected] Kwabena O. Asante, PhD Environmental Scientist SAIC USGS EROS 47914 252nd Street Sioux Falls, SD 57198 [email protected] ABSTRACT The remote sensing of hydrologic variables such as rainfall, soil moisture and streamflow is becoming increasingly more important as we strive to improve our understanding of the earth’s climate. Because these variables change more rapidly than other land cover characteristics, a high frequency of image acquisition is required. This in turn results in a large volume of data that must be compared to detect changes and trends in moisture flux. Traditional remote sensing tools are not well suited to this analysis because of the large number of scenes involved. In this paper, we explore the use of 3D geovisualization techniques to analyze a large time series of satellite imagery. We take advantage of the 3 dimensional voxel data structure to transform the image collection in a space-time cube. We employ 3D voxel-based visualization methods also known as volume visualization to perform feature analysis, change detection and segmentation of this large spatio-temporal dataset. We demonstrate that the use of the space- time cube offers even those hydrometeorologists that prefer to look at 2D maps and graphs with improved access to the time series data through software tools for dynamic graphing and slicing. In a practical application, we use the space-time cube to present the evolution of the annual rainfall cycle over Africa as a single visual image. INTRODUCTION Hydrometeorologists involved in the study of hydrologic variables such as rainfall, soil moisture and streamflow have traditionally relied on point measurements to characterize these parameters. Two-dimensional graphs have remained the main tools for characterizing the temporal variations of these parameters, while surface fitting techniques such as kriging, spline and inverse distance weight interpolation have been relied on to produce spatially uniform representations of the parameters. Under the operational geostationary weather satellite systems GOES and Meteosat, hydrometeorological events are monitored on a near real time basis. The primary objective of these operational meteorological systems is the provision of timely information to support early warning and emergency operations. Accuracy and internal consistency are often sacrificed in favor of timeliness of data delivery. As a result, little attention has been paid to temporal patterns in the datasets. The Tropical Rainfall Measurement Mission (TRMM) marked the first research mission dedicated to the remote sensing of moisture fluxes. The Gravity Recovery and Climate Experiment (GRACE), the Global Precipitation Measurement (GPM) mission, the soil moisture mission (HYDROS) and the proposed Water Elevation Recovery (WaTER) mission are all expected to produce internally consistent time series datasets from which the characterization of temporal patterns will assume greater importance. Existing analytical tools used within the hydrologic sciences are not well suited to handling such time series analysis. The use of Geographic Information System (GIS) and remote sensing software for analyzing spatially distributed datasets is just beginning to become routine within the field, and most hydrologists still rely on spreadsheets for time series analysis. GIS software has evolved out of the work of the geographic science community and is therefore well equipped for spatial analysis tasks but not temporal analysis. Time series analysis of land cover change occurring over periods of several years remains the main thrust in this field. Moisture fluxes, Pecora 16 “Global Priorities in Land Remote Sensing” October 23 – 27, 2005 * Sioux Falls, South Dakota on the other hand evolve at time scales on the order of several minutes to days, resulting in a huge volume of data with rapidly changing signatures which pose a major challenge to existing GIS and remote sensing software. By contrast, the field of scientific visualization has always dealt with large datasets mostly occurring in two fields: imaging and computational science. 3D imaging devices continue to increase the resolution of their sampled volumes with the current generation approaching a giga-voxel. Similarly, computational science such as fluid dynamics continues to increase the mesh resolution for large scale simulations thereby increasing the size of data to be visualized. This has led to the development of efficient algorithms to read, analyze and visualize very large datasets in real-time. Specifically, a class of techniques known as volume visualization has been proven very effective to understand 3D data as is without resorting to intermediate polygonal representation. Within the earth sciences, 3D visualization tools have long been employed in the geological science to visualize subsurface phenomena such as reservoir formations and aquifers. These technologies have recently been adopted by the meteorological community for studying the vertical profile of atmospheric parameters such as temperature and atmospheric moisture. However, there has been very little work in the application of volume visualization techniques for spatio-temporal analysis of time-varying maps. In this paper, we present a novel application of volume visualization algorithms to analyze time-varying satellite precipitation maps. We “stack” the time varying 2D images to produce a 3D volume known as space-time cube. This data cube is then rendered to a 2D image using a volume rendering technique known as raycasting. This technique allows us to display spatial dynamics as well as changes occurring over time, simultaneously, and to perform data analysis functions on the entire data cube. We present a background study of current methods in spatio- temporal analysis and representation. Subsequently, we describe the volume rendering algorithm used to load and display data in the space-time cube. This is followed a presentation of various tools available for manipulating and analyzing the space-time cube. We conclude with a sample application visualizing the annual rainfall cycle over Africa. BACKGROUND WORK Time series of hydrometeorological events can be viewed from two perspectives. Events can be viewed as they evolve through a fixed frame of reference, referred to as the Eularian view of motion. It is the most commonly used to monitor the progress of an event as it moves through a fixed Cartesian space or to study the passage of events over a fixed location. Examples of events viewed from the Eularian perspective include the distribution of rainfall events at a rain gauge or a trace of the track of a cyclone on a geographic map. Conversely, the Lagrangian view of motion studies the evolution of the event through a frame of reference that moves with the event. The use of a dynamic frame of reference shifts the focus away from tracking the location of the event to tracking the relative position and condition of particles within the moving event. In hydrometeorology, the Lagrangian view of motion is most commonly used to study the condition of rainfall and wind fields around a cyclone or dispersion of chemical plumes in a fluid. By combining a time series of spatially distributed grids in a space-time cube, we enable the user to track the evolution of events in time both in terms of the physical location of the event and the relative condition of particles within the moving event. The space-time cube can consequently be viewed as combining the Eularian and Lagrangian perspective of an event into a single picture. Within hydrometeorology, the most common approach for combining time and space is the Hovmuller diagram. The diagram is a plot showing the variations in intensity of a parameter with changing latitude (or longitude) on one axis and time on the other. It is most commonly used to study climate phenomena that move north and south during the course of a year. Combining time and space in this manner provides the some insight into events that move orthogonally along the Cartesian axes. However, Hovmuller diagrams are of limited utility for events that move at oblique angles to the lines of latitude and longitude, and they do not provide much information of the shape of the event along its path of motion. Modern Geographic Information Systems (GIS) provide rich facilities to interact and visualize data on maps in two or even three dimensions. In GIS, the temporal data is commonly visualized by means of animations, which represent changes in the data. For example, the scientific visualization studio at the NASA Goddard Space Flight Center uses image animations to display TRMM rainfall maps that are generated several times a day. By using animations, the evolution of time series data produced at a high temporal frequency can be conveyed efficiently. However, detailed data analysis is hardly possible when using animations, and users are required to rely on their memory of the previous scenes of the animation to construct a mental image of the evolution of the event. What is required is a medium that enables all slices of the animation to be frozen in a three dimensional space. Pecora 16 “Global Priorities in Land Remote Sensing” October 23 – 27, 2005 * Sioux Falls, South Dakota According to Hedley (1999), Hagerstrand first introduced the space-time cube during the late 1960’s. In its basic appearance, the cube has on its base a representation of the geography (along the x- and y-axis), while the cube’s height represents time (z-axis). However, when the concept was introduced the options to create the graphics were limited to manual methods and the user could only experience one view created by the draftperson. Today, software and graphics have been developed where it is possible to view, manipulate and query this data in real-time. Kraak (2003) explains this approach from a geovisualization perspective specifically in analysis of multi-variate and multi-resolution discrete event data such as path of buses in time using GPS.
Recommended publications
  • Visual Highlighting Methods for Geovisualization
    VISUAL HIGHLIGHTING METHODS FOR GEOVISUALIZATION Anthony C. Robinson GeoVISTA Center, Department of Geography 302 Walker Building The Pennsylvania State University University Park, PA 16802, USA [email protected] ABSTRACT A key advantage of interactive geovisualization tools is that users are able to quickly view data observations across multiple views. This is usually supported with a transient visual effect applied around the edges of an object during a mouse selection or rollover. This effect, commonly called highlighting, has not received much attention in geovisualization research. Today, most geovisualization tools rely on simple color-based highlighting. This paper proposes additional visual highlighting methods that could be used in geovisualizations. It also presents a typology of interactive highlighting behaviors that specify multiple ways in which highlighting techniques can be blended together or modified based on data values to enhance visual recognition in multiple coordinated view applications. INTRODUCTION The key analytical affordances of geovisualization tools include dynamic interactive behaviors and coordinated multiple views of geospatial data. Much attention in geovisualization research is devoted to developing new types of views, integrating new types of data, and designing customized systems for specific analytical tasks and domains (MacEachren and Kraak, 2001). This paper focuses on refining and extending the interactively-driven visual indication, known as highlighting, that allows users to make connections between data objects in multiple views in a geovisualization. As data and the number of views we use to explore those data become increasingly complicated (Andrienko et al., 2007), it is timely to consider new highlighting methods to ensure that visual discovery is efficient and effective.
    [Show full text]
  • Connected 2D and 3D Visualizations for the Interactive Exploration of Spatial Information
    CONNECTED 2D AND 3D VISUALIZATIONS FOR THE INTERACTIVE EXPLORATION OF SPATIAL INFORMATION S. Bleisch *, S. Nebiker FHNW, University of Applied Sciences Northwestern Switzerland, Institute of Geomatics Engineering, CH-4132 Muttenz, Switzerland - (susanne.bleisch, stephan.nebiker)@fhnw.ch KEY WORDS: Geovisualization, Three-dimensional representation, Interactive, Spatial Data Exploration, Virtual globe, Development ABSTRACT: This paper describes the concepts and the successful prototypal implementation of interactively connected 2D information visualizations and data displays in 3D virtual environments for the interactive exploration of spatial data and information. Virtual globes or earth viewers such as Google Earth have become very popular over the last few years. They are used for looking at holiday destinations but more importantly also for scientific visualizations. From a geovisualization point of view we might regard 3D data or information displays as yet another representation type that adds to the multitude of information visualization methods. Combining 3D views of data sets with traditional 2D displays offers the advantage of being able to use 3D if and when this type of representation is considered useful or effective for finding new insights into a data set. The traditional and newer displays of mainly 2D information visualization may be enhanced and new insights into the data may be generated by displays of the data in a 3D virtual environment. On the other hand, data in 3D displays might be better understood by simultaneously reading and querying connected 2D representations.The paper presents a prototypal implementation of the interactively connected visualizations of spatial information in 2D views and 3D virtual environments using the brushing technique.
    [Show full text]
  • (Geo-)Visualization
    Geographic Data Science - Lecture III (Geo-)Visualization Dani Arribas-Bel Today Visualization What and why History Examples Geovisualization What "A map for everyone" Dangers of geovisualization Visualization "Data graphics visually display measured quantities by means of the combined use of points, lines, a coordinate system, numbers, symbols, words, shading, and color." The Visual Display of Quantitative Information. Edward R. Tufte. [Source] [Source] A bit of history Maps A bit of history Maps --> Data Maps (XVIIth.C.) A bit of history Maps --> Data Maps (XVIIth.C.) --> Time series (1786) A bit of history Maps --> Data Maps (XVIIth.C.) --> Time series (1786) --> Scatter plots A bit of history Maps --> Data Maps (XVIIth.C.) --> Time series (1786) --> Scatter plots Surprisingly recent: 1750-1800 approx. (much later than many other advances in math and stats!) William Playfair's "linear arithmetic": encode/replace numbers in tables into visual representations. Other relevant names throughout history: Lambert, Minard, Marey. Visualization The Visual Display of Quantitative Information. Edward R. Tufte. By encoding information visually, they allow to present large amounts of numbers in a meaninful way. If well made, visualizations provide leads into the processes underlying the graphic. Learning by seeing time... Time series [Source] XVIIIth. Cent. - Pytometrie by J. H Lambert Bar chart [Source] Playfair's bar chart in The Commercial and Political Atlas (1786) Abstract line plot [Source] Lambert - Evaporation rate against temperature, 1769 Minard - Napoleon army map (XIXth. Cent.) [Source] "It may well be the best statistical graphic ever drawn" (E. R. Tufte) Geovisualization Tufte (1983) "The most extensive data maps [...] place millions of bits of information on a single page before our eyes.
    [Show full text]
  • Geovisualization: Integration and Visualization of Multiple Datasets Using Mapbox Cecilia Cadenas California Polytechnic State University, San Luis Obispo
    Geovisualization: Integration and Visualization of Multiple Datasets Using Mapbox Cecilia Cadenas California Polytechnic State University, San Luis Obispo Abstract—The use of geovisualizations to different from information visualization dealing analyze multiple datasets can ease the with abstract data spaces. [3] research and investigation to find B. Mapbox & TileMill correlations between these datasets. However, making these visualizations with The creation of these visualizations can be multiple datasets can be challenging due to challenging due to the complexity and the lack of standardization within file formats differences between the geographical data types, and the software needed to render the and how easily they can be accessed and used. visualizations. In order to help with the creation of these visualizations, many cartographers and software This project investigates the making of engineers have created many different tools that these visualizations, maps in this case, using can make the creation of these visualizations an open source platforms like Mapbox. Using easier and accessible to anyone with a computer. Python scripts for the data parsing, For the creation of the maps in this project, CartoCSS for the designing of the maps, one of these tools was used. After some research JavaScript to make the maps interactive, and and testing different tools and platforms, HTML to combine all the layers together a Mapbox was selected as the best option for the set of maps were created. These maps customization level needed for the maps wanted. contained data regarding tons of wine grape Mapbox is an online platform that makes the data crushed and yearly heat accumulation viewing of these maps simple across multiple during the growing season that demonstrate platforms since it requires no extra software to how combining multiple data sets can lead to be downloaded.
    [Show full text]
  • What Is Geovisualization? to the Growing Field of Geovisualization
    This issue of GeoMatters is devoted What is Geovisualization? to the growing field of geovisualization. Brian McGregor uses geovisualiztion to by Joni Storie produce animated maps showing settle- ment patterns of Hutterite colonies. Dr. Marc Vachon’s students use it to produce From a cartography perspective, dynamic presentation options to com- videos about urban visualization (City geovisualization represents a change in municate knowledge. For example, at- Hall and Assiniboine Park), while Dr. how knowledge is formed and repre- lases require extra planning compared Chris Storie shows geovisualiztion for sented. Traditional cartography is usu- to individual maps, structurally they retail mapping in Winnipeg. Also in this issue Honours students describe their ally seen a visualization (a.k.a. map) could include hundreds of maps, and thesis projects for the upcoming collo- that is presented after the conclusion all the maps relate to each other. Dr. quium next March, Adrienne Ducharme is reached to emphasize or compliment Danny Blair and Dr. Ian Mauro, in the tells us about her graduate research at the research conclusions. Geovisual- Department of Geography, provide an ELA, we have a report about Cultivate ization changes this format by incor- excellent example of this integration UWinnipeg and our alumni profile fea- porating spatial data into the analysis with the Prairie Climate Atlas (http:// tures Michelle Méthot (Smith). (O’Sullivan and Unwin, 2010). Spatial www.climateatlas.ca/). The combina- Please feel free to pass this newsletter data, statistics and analysis are used to tion of maps with multimedia provides to anyone with an interest in geography. answer questions which contribute to for better understanding as well as en- Individuals can also see GeoMatters at the Geography website, or keep up with the conclusion that is reached within riched and informative experiences of us on Facebook (Department of Geog- the research.
    [Show full text]
  • Visual Bandwidth Selection for Kernel Density Maps
    Photogrammetrie • Fernerkundung • Geoinformation 5/2009, S. 445–454 Visual Bandwidth Selection for Kernel Density Maps Jukka M. krisp, stefan peters,Christian e. Murphy & hongChao fan, München Keywords: Kernel Density, Visualization, Visual Analytics, Geostatistics, Kernel Bandwidth, Cartography Summary: Within this paper we investigate the Zusammenfassung: Visuelle Radius Festlegung challenge to find an appropriate bandwidth in ker- für Kernel Dichte Abschätzungen. In dieser Arbeit nel density estimation. Kernel density estimation untersuchen wir die Möglichkeiten, um einen ange- methods can be used in visualizing and analyzing messenen Radius in der Kernel-Dichte Schätzung spatial data, with the objective of understanding zu erhalten. Kernel-Dichte Schätzung Methoden and potentially predicting event patterns. Our aim können in der Visualisierung und Analyse räumli- is to provide a computational tool to visually select cher Daten zum Verständnis und zur Vorhersage the bandwidth parameter and to visually investi- von räumlichen Mustern dienen. Unser Ziel ist es, gate the effect of different parameters within the ein Computer-Werkzeug zur visuellen Parameter kernel density calculations. With this tool the user Bestimmung zu entwickeln. Die Radien verschie- is able to visually find the most appropriate band- deneR Kernel werden visuell geprüft und können width foR the particular dataset and scale. The slid- experimentell untersucht werden. Mit diesem er-tool includes a graphical user interface and can Werkzeug kann der Anwender den am besten ge- read point datasets. A specific number of kernel eigneten Radius für den jeweiligen Datensatz be- density maps are generated by using a range of stimmen. Das Schieberegler-Werkzeug beinhaltet bandwidths. In the graphical interface these kernel eine grafische Benutzeroberfläche und kann Punkt- density maps can be drawn near real-time while the datensätze einladen.
    [Show full text]
  • Recent Publications 1984 — 2017 Issues 1 — 100
    RECENT PUBLICATIONS 1984 — 2017 ISSUES 1 — 100 Recent Publications is a compendium of books and articles on cartography and cartographic subjects that is included in almost every issue of The Portolan. It was compiled by the dedi- cated work of Eric Wolf from 1984-2007 and Joel Kovarsky from 2007-2017. The worldwide cartographic community thanks them greatly. Recent Publications is a resource for anyone interested in the subject matter. Given the dates of original publication, some of the materi- als cited may or may not be currently available. The information provided in this document starts with Portolan issue number 100 and pro- gresses to issue number 1 (in backwards order of publication, i.e. most recent first). To search for a name or a topic or a specific issue, type Ctrl-F for a Windows based device (Command-F for an Apple based device) which will open a small window. Then type in your search query. For a specific issue, type in the symbol # before the number, and for issues 1— 9, insert a zero before the digit. For a specific year, instead of typing in that year, type in a Portolan issue in that year (a more efficient approach). The next page provides a listing of the Portolan issues and their dates of publication. PORTOLAN ISSUE NUMBERS AND PUBLICATIONS DATES Issue # Publication Date Issue # Publication Date 100 Winter 2017 050 Spring 2001 099 Fall 2017 049 Winter 2000-2001 098 Spring 2017 048 Fall 2000 097 Winter 2016 047 Srping 2000 096 Fall 2016 046 Winter 1999-2000 095 Spring 2016 045 Fall 1999 094 Winter 2015 044 Spring
    [Show full text]
  • Middlesex University Research Repository
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Middlesex University Research Repository Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Shepherd, Ifan D. H. (2008) Travails in the third dimension: a critical evaluation of three-dimensional geographical visualization. In: Geographic visualization: concepts, tools and applications. Dodge, Martin and McDerby, Mary and Turner, Martin, eds. John Wiley & Sons, Chichester, pp. 199-222. ISBN 9780470515112 http://dx.doi.org/10.1002/9780470987643 Submitted Version Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/6588/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non- commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work’s full bibliographic details. This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s). If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated.
    [Show full text]
  • Laura Vaughan
    Mapping From a rare map of yellow fever in eighteenth-century New York, to Charles Booth’s famous maps of poverty in nineteenth-century London, an Italian racial Laura Vaughan zoning map of early twentieth-century Asmara, to a map of wealth disparities in the banlieues of twenty-first-century Paris, Mapping Society traces the evolution of social cartography over the past two centuries. In this richly illustrated book, Laura Vaughan examines maps of ethnic or religious difference, poverty, and health Mapping inequalities, demonstrating how they not only serve as historical records of social enquiry, but also constitute inscriptions of social patterns that have been etched deeply on the surface of cities. Society The book covers themes such as the use of visual rhetoric to change public Society opinion, the evolution of sociology as an academic practice, changing attitudes to The Spatial Dimensions physical disorder, and the complexity of segregation as an urban phenomenon. While the focus is on historical maps, the narrative carries the discussion of the of Social Cartography spatial dimensions of social cartography forward to the present day, showing how disciplines such as public health, crime science, and urban planning, chart spatial data in their current practice. Containing examples of space syntax analysis alongside full-colour maps and photographs, this volume will appeal to all those interested in the long-term forces that shape how people live in cities. Laura Vaughan is Professor of Urban Form and Society at the Bartlett School of Architecture, UCL. In addition to her research into social cartography, she has Vaughan Laura written on many other critical aspects of urbanism today, including her previous book for UCL Press, Suburban Urbanities: Suburbs and the Life of the High Street.
    [Show full text]
  • Vizlegends.Pdf
    City Research Online City, University of London Institutional Repository Citation: Clarke, J., Dykes, J., Hemsley-Flint, F., Medyckyj-Scott, D., Sietinsone, L., Slingsby, A., Urwin, T. and Wood, J. (2010). vizLegends : Re-Imagining Map Legends with Visualization. Paper presented at the GIS Research UK 18th Annual Conference (GISRUK 2010), 14 - 16 Apr 2010, University College London, London, UK. This is the unspecified version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/415/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] vizLegends : Re-Imagining Map Legends with Visualization 2 1* 2 2 Jackie Clark , Jason Dykes , Fiona Hemsley-Flint , David Medyckyj-Scott , Lasma Sietinsone2, Aidan Slingsby1, Tim Urwin2, Jo Wood1 * corresponding author 1giCentre, Dept. of Information Science, City University London, EC1V 0HB Tel. +44 (0)20 7040 8906 jad7 | a.slingsby | jwo @soi.city.ac.uk 2EDINA National Data Centre, University of Edinburgh, 160 Causewayside, Edinburgh, EH9 1PR Tel.
    [Show full text]
  • How Good Is Openstreetmap Information
    Haklay, M., 2008, Please note that this is an early version of this article, and that the definitive, peer- reviewed and edited version of this article is published in Environment and Planning B: Planning and Design. Please refer to the publication website for the definitive version. How good is Volunteered Geographical Information? A comparative study of OpenStreetMap and Ordnance Survey datasets Abstract Within the framework of Web Mapping 2.0 applications, the most striking example of a geographical application is the OpenStreetMap project. OpenStreetMap aims to create a free digital map of the world and is implemented through the engagement of participants in a mode similar to software development in Open Source projects. The information is collected by many participants, collated on a central database and distributed in multiple digital formats through the World Wide Web (Web). This type of information was termed ‘Volunteered Geographical Information’ (VGI) by Mike Goodchild (2007). However, to date there has been no systematic analysis of the quality of VGI. This paper aims to fill this gap by analysing OpenStreetMap information. The examination starts with the characteristics of OpenStreetMap contributors, followed by analysis of its quality through a comparison with Ordnance Survey datasets. The analysis focuses on London and England, since OpenStreetMap started in London in August 2004 and therefore the study of these geographies provides the best understanding of the achievements and difficulties of VGI. The analysis shows that OpenStreetMap information can be fairly accurate: on average within about 6 metres of the position recorded by the Ordnance Survey, and with approximately 80% overlap of motorway objects between the two datasets.
    [Show full text]
  • Exploratory Three Dimensional Cartographic Visualisation of Geolocated Datasets
    Exploratory Three Dimensional Cartographic Visualisation of Geolocated Datasets A Thesis Submitted to the Victoria University of Wellington in Fulfillment of the Requirements for the Degree of Master of Design Innovation Alexandre Bannwarth _ this thesis was completed as an online portfolio available at axbwh.thesis.surge.sh Victoria University of Wellington 2018 Figure 1. ​Thann Topographic Street Map. Abstract While digital technologies have vastly facilitated the generation and consumption of cartographic visualisations, the majority still conform to traditional two-dimensional map making guidelines. Consequently, design principles for three-dimensional cartographic models are still in their infancy and require further exploratory research to establish a comprehensive design framework. The free availability of high resolution global digital elevation models (GDEM), such as the ASTER GDEM (NASA LP DAAC, METI, 2011), makes it possible to develop accurate three-dimensional landscape visualisations and offer more intuitive and immersive representation of spatial information. Combined with the prevalence of geolocated content in both online data-repository and social-media platforms, there exists a wealth of material to be mined, interpreted and juxtaposed in exploratory cartographic visualisations. This thesis aims to establish a flexible and iterative procedural workflow to acquire, interpret and visualise 3D geolocated datasets, without compromising aesthetic control. Synergic with the procedural approach required for data collection and analysis, a procedural approach is used in the design of the visual output. This workflow aims to maximise automation and allow for the interpretation of a range of different data sources. The creative output of this process explores emergent cartographic principles for optimal three-dimensional spatial visualisation and investigate data presentation techniques beyond traditional two-dimensional geo-visualisation guidelines.
    [Show full text]