Prog. Theor. Exp. Phys. 2013, 063B03 (13 pages) DOI: 10.1093/ptep/ptt041 Eigenvalues of the Breit equation Yoshio Yamaguchi1,† and Hikoya Kasari2,∗ 1Nishina Center, RIKEN, 350-0198 2-1 Hirosawa, Wako, Saitama, Japan 2Department of Physics, School of Science, Tokai University 259-1292 4-1-1 Kitakaname, Hiratsuka, Kanagawa, Japan ∗E-mail:
[email protected] Received January 9, 2013; Accepted April 12, 2013; Published June 1, 2013 ............................................................................... Eigenvalues of the Breit equation Downloaded from e2 (α p + β m)αα δββ + δαα (−α p + β M)ββ − δαα δββ αβ = Eαβ , 1 1 2 2 r in which only the static Coulomb potential is considered, have been found. Here a detailed 1 discussion of the simple cases, S0, m = M, and m = M, is given, deriving the exact energy eigenvalues. An α2 expansion is used to find radial wave functions. The leading term is given by http://ptep.oxfordjournals.org/ the classical Coulomb wave function. The technique used here can be applied to other cases. ............................................................................... Subject Index B87 1. Introduction and the Breit equation at CERN LIBRARY on June 21, 2013 1.1. Introduction The Breit equation [1–3] has traditionally [4] been considered to be singular, and no attempt has ever been made to solve it. Instead, the Pauli approximation or a generalized Foldy–Wouthuysen trans- formation has been applied to derive the effective Hamiltonian Heff, consisting of the Schrödinger Hamiltonian 1 1 1 e2 H =− + p2 − 0 2 m M r and many other relativistic correction terms [4–6]. The perturbation method was then used to evaluate the eigenvalues (binding energies) in a power series with α as high as possible (or as high as necessary for experimental verification of quantum electrodynamics).