Linkedtv Document (D2.1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xincluding Plain-Text Fragments for Symmetry and Profit Piotr Bański, University of Warsaw, [email protected]
XIncluding plain-text fragments for symmetry and profit Piotr Bański, University of Warsaw, [email protected] <xi:include href=”resource.xml” parse=”text|xml” Summary xpointer=”fragment_identifier” /> XML for the annotation of images, audio or video is by necessity of the stand-off kind: the annotations are virtually anchored to the parse=“xml” parse=“text” binary stream (typically by x,y coordinates or time offsets). Work on language resource annotation has extended this approach to plain text, where annotations are anchored by character offsets. This is referred to as extreme stand-off markup. No generic XML tools or standards support it, but... they could, fairly easily. inclusion of inclusion of inclusion of inclusion of Rationale the entire the entire a fragment a fragment ISO Language Annotation Framework (e.g. Ide & Romary, 2007) re- XML text of an XML of a text commends that data be kept as read-only plain text, with one or mo- resource resource resource resource re layers of XML annotation identifying individual spans of charac- ters and adding metadata to them (identifying e.g. segments of va- rious levels of granularity, parts of speech, syntactic or discourse @xpointer present functions, etc.) no @xpointer However, the only way to handle this (as evidenced by the American National Corpus), is to use in-house tools working on correspon- dence semantics for hyperlinks (see Bański, 2010, for terminology What makes it impossible right now? and more remarks). 1. XInclude Ban: XInclude Rec, 3.1: “The xpointer attribute must not be present when parse="text".” But character streams can do better! Because text is what XML is built out of and what it contains, instead of correspondence 2. -
Advene As a Tailorable Hypervideo Authoring Tool: a Case Study
Advene as a Tailorable Hypervideo Authoring Tool: a Case Study Olivier Aubert Yannick Prié Daniel Schmitt Université de Lyon, CNRS Université de Lyon, CNRS Université de Strasbourg, Université Lyon 1, LIRIS, Université Lyon 1, LIRIS, LISEC EA-2310, France UMR5205, France UMR5205, France [email protected] [email protected] [email protected] ABSTRACT Many video annotation tools are often strongly tied to a Audiovisual documents provide a great primary material specific application domain. This allows them to offer a cus- for analysis in multiple domains, such as sociology or in- tomized experience, with dedicated tools and interfaces, at teraction studies. Video annotation tools offer new ways of the expense of some difficulty to be used outside of intended analysing these documents, beyond the conventional tran- uses. For instance, a tool like ELAN [8] does not allow over- scription. However, these tools are often dedicated to spe- lapping annotations, which may make sense in the linguis- cific domains, putting constraints on the data model or in- tic context but may not be convenient for other practices. terfaces that may not be convenient for alternative uses. Moreover, most specialized tools being aimed at analysis, Moreover, most tools serve as exploratory and analysis in- they do not particularly insist on the final phase of the pro- struments only, not proposing export formats suitable for cess: publishing documents. Tools like Anvil [4] or Elan [8] publication. propose multiple predefined structured export formats but We describe in this paper a usage of the Advene software, do not allow users to define their own visualizations. -
W3C Working Draft: Scalable Vector
next contents properties index Scalable Vector Graphics (SVG) 1.0 Specification W3C Working Draft 03 March 2000 This version: http://www.w3.org/TR/2000/03/WD-SVG-20000303 (Available as: PDF, zip archive of HTML) Previous public version: http://www.w3.org/TR/1999/WD-SVG-19991203/ Latest public version: http://www.w3.org/TR/SVG/ Editor: Jon Ferraiolo <[email protected]> Authors: See author list Copyright ©1998, 1999, 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Abstract This specification defines the features and syntax for Scalable Vector Graphics (SVG), a language for describing two-dimensional vector and mixed vector/raster graphics in XML. Status of this document This document is a public review draft version of the SVG specification. This working draft attempts to address review comments that were received during the initial Last Call period, which started 12 August 1999, and also incorporates other modifications resulting from continuing collaboration with other working groups and continuing work within the SVG working group. With the publication of this draft, the SVG specification enters a second "Last Call". The second Last Call period will end on 31 March, 2000. The SVG specification is going through a second Last Call review process to provide the public and other working groups an opportunity to review the changes to the specification since the initial Last Call period. A complete list of all changes since the initial Last Call version of the specification is available in Appendix L: Change History. Last call comments should be sent to [email protected]. -
Understanding JSON Schema Release 2020-12
Understanding JSON Schema Release 2020-12 Michael Droettboom, et al Space Telescope Science Institute Sep 14, 2021 Contents 1 Conventions used in this book3 1.1 Language-specific notes.........................................3 1.2 Draft-specific notes............................................4 1.3 Examples.................................................4 2 What is a schema? 7 3 The basics 11 3.1 Hello, World!............................................... 11 3.2 The type keyword............................................ 12 3.3 Declaring a JSON Schema........................................ 13 3.4 Declaring a unique identifier....................................... 13 4 JSON Schema Reference 15 4.1 Type-specific keywords......................................... 15 4.2 string................................................... 17 4.2.1 Length.............................................. 19 4.2.2 Regular Expressions...................................... 19 4.2.3 Format.............................................. 20 4.3 Regular Expressions........................................... 22 4.3.1 Example............................................. 23 4.4 Numeric types.............................................. 23 4.4.1 integer.............................................. 24 4.4.2 number............................................. 25 4.4.3 Multiples............................................ 26 4.4.4 Range.............................................. 26 4.5 object................................................... 29 4.5.1 Properties........................................... -
Curtains Up! Lights, Camera, Action! Documenting the Creation Of
Curtains Up! Lights, Camera, Action! Documenting the Creation of Theater and Opera Productions with Linked Data and Web Technologies Thomas Steiner, Rémi Ronfard, Pierre-Antoine Champin, Benoît Encelle, Yannick Prié To cite this version: Thomas Steiner, Rémi Ronfard, Pierre-Antoine Champin, Benoît Encelle, Yannick Prié. Curtains Up! Lights, Camera, Action! Documenting the Creation of Theater and Opera Productions with Linked Data and Web Technologies. International Conference on Web Engineering ICWE 2015, International Society for the Web Engineering, Jun 2015, Amsterdam, Netherlands. pp.10. hal-01159826 HAL Id: hal-01159826 https://hal.inria.fr/hal-01159826 Submitted on 22 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Curtains Up! Lights, Camera, Action! Documenting the Creation of Theater and Opera Productions with Linked Data and Web Technologies Thomas Steiner1?, R´emiRonfard2 Pierre-Antoine Champin1, Beno^ıtEncelle1, and Yannick Pri´e3 1CNRS, Universit´ede Lyon, LIRIS { UMR5205, Universit´eLyon 1, France ftsteiner, [email protected], [email protected] 2 Inria Grenoble Rh^one-Alpes / LJK Laboratoire J. Kuntzmann - IMAGINE, France [email protected] 3CNRS, Universit´ede Nantes, LINA { UMR 6241, France [email protected] Abstract. -
Hypervideo and Annotations on the Web
Hypervideo and Annotations on the Web Madjid Sadallah Olivier Aubert Yannick Prie´ DTISI - CERIST LIRIS - Universite´ Lyon 1 LIRIS - Universite´ Lyon 1 Alger, Algerie´ UMR 5205 CNRS UMR 5205 CNRS Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Effective video-based Web information system de- the hypermedia system. Hypervideo addresses this issue by ployment is still challenging, while the recent widespread of a specialization of hypermedia centered on interactive video. multimedia further raises the demand for new online audiovisual We define hypervideo as being an interactive video-centric document edition and presentation alternatives. Hypervideo, a specialization of hypermedia focusing on video, can be used on the hypermedia document built upon an audiovisual content - a set Web to provide a basis for video-centric documents and to allow of video objects -. Several kinds of related data are presented more elaborated practices of online video. In this paper, we pro- within the document in a time synchronized way to augment pose an annotation-driven model to conceptualize hypervideos, the audiovisual part around which the presentation is organized promoting a clear separation between video content/metadata in space and time. and their various potential presentations. Using the proposed model, features of hypervideo are grafted to wider video- The articulation of video content with navigation facilities based Web documents in a Web standards-compliant manner. introduces new ways for developing interfaces, rendering the The annotation-driven hypervideo model and its implementation content and interacting with the document. By supplying offer a general framework to experiment with new interaction spatio-temporal behaviors to links, hypervideos allow address- modalities for video-based knowledge communication on the Web. -
Reusable Hypertext Structures for Distance and JIT Learning
Reusable Hypertext Structures for Distance and JIT Learning Anne Morgan Spalter Rosemary Michelle Simpson Department of Computer Science Department of Computer Science Brown University Brown University Providence, RI, USA Providence, RI, USA Tel: 1-401-863-7615 Tel: 1-401-863-7651 E-mail: [email protected] E-mail: [email protected] ABSTRACT System) developed with Ted Nelson in the 1960s[15], Software components for distance and just-in-time (JIT) FRESS (File Retrieval and Editing System), developed in the learning are an increasingly common method of encouraging 1970s and the first hypertext system used to teach a liberal reuse and facilitating the development process[56], but no arts course[21], and IRIS Intermedia in the 1980s[35][73], a analogous efforts have been made so far for designing hyper- UNIX-based networked hypertext system with advanced fea- text components that can be reused in educationalofferings. 1 tures used for teaching undergraduate and graduate courses We argue that such structures will be of tangible benefit to the online learning community, serving to offload a substan- These efforts led to the notion of an electronic book with tialburden from programmers and designers of software, as interactive illustrations, a new form of textbook that took well as allowing educators without any programming experi- advantage of the power of hypertext and the power of 2D and ence to customize available online resources. 3D interactive computer graphics. This model, however, proved difficult to apply for all but the most determined and We present our motivation for hypertext structure compo- privileged educators. Few teachers have the time, inclination, nents (HTSC) and then propose a set of pedagogicalstruc- ability, and support necessary to write a textbook or develop tures and their building blocks that reflect the categories of interactive software, using either hypertextualor linearfor- lecture, laboratory, creative project, playground, and mats (although when they do, the results can be extraordi- game[36]. -
Iso/Iec 21000-17:2006(E)
This is a preview - click here to buy the full publication INTERNATIONAL ISO/IEC STANDARD 21000-17 First edition 2006-09-15 Information technology — Multimedia framework (MPEG-21) — Part 17: Fragment Identification of MPEG Resources Technologies de l'information — Cadre multimédia (MPEG-21) — Partie 17: Identification de fragments de ressources MPEG Reference number ISO/IEC 21000-17:2006(E) © ISO/IEC 2006 ISO/IEC 21000-17:2006(E) This is a preview - click here to buy the full publication PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. © ISO/IEC 2006 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. -
(12) United States Patent (10) Patent No.: US 8,527,640 B2 Reisman (45) Date of Patent: Sep
USOO8527640B2 (12) United States Patent (10) Patent No.: US 8,527,640 B2 Reisman (45) Date of Patent: Sep. 3, 2013 (54) METHOD AND APPARATUS FOR BROWSING 5,396,546 A 3, 1995 Remillard USING MULTIPLE COORONATED DEVICE 5,404,393 A 4/1995 Remillard SETS 5,410,326 A 4/1995 Goldstein 5,440,624 A * 8/1995 Schoof, II ................ 379,202.01 5,479.268 A 12/1995 Young et al. (75) Inventor: Richard Reisman, New York, NY (US) 5,648,824 A 7/1997 Dunn et al. 5,689,353 A 11/1997 Darbee et al. (73) Assignee: Teleshuttle Tech2, LLC, New York, NY 5,699,526 A 12/1997 Siefert (US) 5,721,906 A 2, 1998 Siefert 5,761,606 A 6, 1998 Wolzein (*) Notice: Subject to any disclaimer, the term of this 32:3: A g E. al patent is extended or adjusted under 35 5,778.256 A 7, 1998 Darbee U.S.C. 154(b) by 183 days. (Continued) (21) Appl. No.: 12/552,992 FOREIGN PATENT DOCUMENTS EP 106.1490 A2 12/2000 (22) Filed: Sep. 2, 2009 GB 234.8587. A 10, 2000 (65) Prior Publication Data (Continued) US 2009/0319672 A1 Dec. 24, 2009 OTHER PUBLICATIONS Prototypes, field tryouts proceed for enhancedTV. By Steve Behrens, Related U.S. Application Data http://www.current.org/dtv/dtv013e.html, printed Jun. 30, 2004 (63) Continuation of application No. 10/434,042, filed on (document states Jul. 17, 2000). May 8, 2003, now Pat. No. 7,899,915. (Continued) (51) Int. Cl. -
Open Hypervideo As Archive Interface
! ! ! ! ! ! !"#$%&'"#()*+#,% ! -.%/(01*)#%2$3#(4-0#"#$%&'()*+!,%&+-+! % % % % % % % % % % % % % % % % % 5,.01-%567#(8%5-$9-('%:;<:% 2$3#(4-0#%=#.*7$% >9"#()*.,(.?%@(,4A%B-(*,%=,9C*.8%@(,4A%=(A%&#CD93%=(-EC#(% % B#(F%/G-+#D*#% H$*)#(.*3'%,4%/""C*#+%/(3.% &,01.019C#%4I(%J#.3-C39$78%K9$.3%9$+%B#+*#$8%>39337-(3% Contents 1. Introduction ......................................................................................................................... 1 1.1. Motivation ..................................................................................................................................1 1.2. Problem Statement and Research Questions .............................................................1 2. Related Work & Interdisciplinary Classification .................................................... 3 2.1. Archival Configurations .......................................................................................................3 2.1.1. On Documenting History ......................................................................................3 2.1.2. Document Access and Archive Interfaces .....................................................4 2.2. Hypermedia-Theory ..............................................................................................................5 2.2.1. Trail and Link Concepts ........................................................................................5 2.2.2. Hypertext as Interface for Narratives..............................................................7 2.2.3. Concepts of Authorship -
University of Southampton Research Repository Eprints Soton
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk Bibliography E. J. Aarseth. Cybertext: Perspectives on Ergodic Literature. Johns Hopkins University Press, Baltimore, 1997. Annette Adler, Anuj Gujar, Beverly L. Harrison, Kenton O’Hara, and Abigail Sellen. A diary study of work-related reading: Design implications for digital reading de- vices. In Proceedings of CHI ’98 Human Factors in Computing Systems, Los Angeles, California, USA, pages 241–248, 1998. M.J. Adler and C. van Doren. How to Read a Book. Simon and Schuster, New York, NY, 1972. Janet Adshead-Lansdale, editor. Dancing texts: intertextuality in interpretation. Dance Books, London, 1999. Maristella Agosti and James Allan. Methods and tools for the construction of hypertext. Information Processing and Management, 33(2):129–271, 1997. R. Akscyn, D. McCracken, and E. Yoder. KMS: A distributed hypermedia system for managing knowledge in organizations. -
RDF-Powered Semantic Video Annotation Tools with Concept Mapping to Linked Data for Next-Generation Video Indexing: a Comprehensive Review
RDF-Powered Semantic Video Annotation Tools with Concept Mapping to Linked Data for Next-Generation Video Indexing: A Comprehensive Review Leslie F. Sikos Abstract. Video annotation tools are often compared in the literature, however, most reviews mix unstructured, semi-structured, and the very few structured annotation software. This paper is a comprehensive review of video annotations tools generating structured data output for video clips, regions of interest, frames, and media fragments, with a focus on Linked Data support. The tools are compared in terms of supported input and output data formats, expressivity, annotation specificity, spatial and temporal fragmentation, the concept mapping sources used for Linked Open Data (LOD) interlinking, provenance data sup- port, and standards alignment. Practicality and usability aspects of the user in- terface of these tools are highlighted. Moreover, this review distinguishes ex- tensively researched yet discontinued semantic video annotation software from promising state-of-the-art tools that show new directions in this increasingly important field.. Keywords: Video Annotation, Multimedia Semantics, Spatiotemporal Frag- mentation, Video Scene Interpretation, Multimedia Ontologies, Hypervideo Application 1 Introduction While there are metadata formats available for images, audio files, and videos, they are often limited to technical characteristics and many of them are not structured. In contrast to MP3 files, which often provide information about the album, singer or band, release year, genre, and might even include the lyrics, video files typically do not have any information embedded to them about the depicted concepts, actors, or the plot. Online video information retrieval often relies on the text surrounding the media files embedded to web pages, mainly due to the huge “semantic gap” between what computers and humans understand (automatically extractable low-level features and sophisticated high-level content descriptors) [1].