Mountain Pine Beetle

Total Page:16

File Type:pdf, Size:1020Kb

Mountain Pine Beetle A NNorthernorthern FFrontront RRangeange LLandownerandowner GGuideuide ttoo LLivingiving wwithith BBarkark BBeetleseetles You are the steward of your land! Pine beetles are changing the look of forests throughout the West. Although the forests will recover, many property owners will see trees around them die. Each homeowner can take steps to minimize the impact on their land, speed the recovery of the forest around them, and minimize the danger of wildfi re to their property. The following pages contain information on the nature of the threat to property and the types of assistance available through federal, state, and county programs. WYOMING COLORADO WHAT’S INSIDE 2 Meet the Beetles 3 What Can YOU Do? 5 Preventive Spray or Pheromone Pouches? 6 Mountain Pine Beetle in Lodgepole Pine 7 Mountain Pine Beetle in Ponderosa Pine 8 Neighbors Helping Neighbors Larimer 9 Fire Behavior in Beetle-Infested Forests Boulder 10 Defensible Space 10 Community Wildfi re Protection Plans 11 The Benefi ts of Fire Gilpin Jefferson 11 Beetles Also Like Urban Pine Trees 12 Using Wood From Beetle-Infested Forests 12 Online Resources and Contact Information Clear Creek Beetle infestation National Forest Wilderness areas National Park State lands Small beetles, big impact. Whitney Cranshaw, Colorado State University, Bugwood.org Meet the Beetles: Two Species of Concern By Colorado State Forest Service Staff Mountain Pine Beetle Ips Beetles he mountain pine beetle (MPB), Dendroctonus leven species of Ips beetles are native to Tponderosae, is a bark beetle native to western EColorado; Ips pini, the pine engraver beetle, North America. Its range extends west from the is the most common. Its primary hosts are the same Great Plains, from British Columbia to Mexico. as MPB—lodgepole pine and ponderosa pine—but The MPB usually takes 1 year to complete its lifecycle, developing through four it can attack most other species of pine in its range, which extends across the stages: egg, larva, pupa, and adult. Except for a few days during the summer United States and much of North America. Generally, Ips beetles attack stressed when adults emerge and fl y to new trees, all development takes place under the or dying pine trees and do not cause a lot of damage. But, Ips beetle populations bark of infested trees. Female beetles lay tiny, pearl-white eggs under the bark have been increasing due to the effects of the MPB epidemic, drought, and the of pine trees in the late summer and early fall. The eggs hatch in 10 to 14 days. availability of wounded trees. In some counties, Ips beetles have recently killed The white larvae overwinter in galleries under the bark and begin to mature the dozens to hundreds of healthy trees in a single year. Like the MPB, Ips beetles following spring. By July, most pupae have transformed into adults. Adults are introduce blue-stain fungi to trees; the fungi quicken tree death by blocking the black and 1/8- to 1/4-inch long. fl ow of water up the tree. Adults feed under the bark during the summer and emerge through an exit hole, Ips beetles complete their four-stage lifecycle in only 40 to 55 days, and can produce with peak emergence occurring from mid-July to mid-August. Within a few days, two to four generations of beetles per year. This makes them more challenging for the the beetles enter other trees—there are usually enough insects emerging from homeowner to control than MPB. In the spring, beetles begin to emerge as early as one tree to attack several additional trees. In Colorado, MPB can attack all native March, when consistent daytime temperatures reach 50 to 60°F, and fl ight can continue species of pine, including lodgepole, ponderosa, limber, and bristlecone, and even into November. Beetles can attack trees throughout the fl ight period; however, the some urban pines like Scotch and Austrian. Beetles carry the spores of blue-stain fi rst spring fl ight appears to be the most damaging. Ips beetles are about the size of a fungi on their bodies and introduce them into pine trees. The combination of the grain of rice (1/8- to 3/8-inch long), reddish-brown to black, and can be distinguished feeding beetles and spreading fungi kills the tree within a year. from MPB by the depressed cavity and spines at the rear end of the body. 2 You Are the Steward of Your Land! Here’s What You Can Do as a Forest Landowner By Irene Shonle, Director, CSU Extension, Gilpin County lthough this mountain pine beetle (MPB) epidemic is If you see blue staining and breeding galleries but no insects, Atoo big to stop, you might be able to slow the spread and you also fi nd small, circular exit holes about the size of both MPB and Ips beetles and reduce the level of tree of a BB gun pellet on the outer surface of the bark, then the mortality in your backyard forest. Be proactive! Look for insects have already fl own from the tree. The wood is no new Ips beetle attacks throughout the warm months, and longer infested, and it is safe to be used as fi rewood. If tree survey the trees on your property in the fall to look for new needles have been red and dead for at least 1 year, then the MPB attacks. Removing beetle-infested trees early will tree is no longer infested. You can examine fi rewood and have a positive impact on forest health, reduce the number slash using these same techniques—with slash, peel back of hazard trees on your property, and decrease potential the bark on the largest branches. wildfi re danger. Fall Is a Great Time to Survey Your Trees Is Your Tree, Slash Pile, or Firewood Still and Determine Treatment Options Infested? In the fall, most new beetle attacks have already occurred, You may already know which trees on your property have except for those by a few late-season Ips beetles. There been attacked by beetles and whether slash and fi rewood is no snow on the ground, the days are beautiful, and came from beetle-infested trees, but determining if the wood there are many treatment options, including saving newly is still infested by those beetles can be tricky. In general, Peel back bark to check for insects, infested wood for fi rewood. As the fl ight time of the beetles infested wood should be free from MPB after about 1 eggs, or larvae in beetle galleries. approaches during the spring, the number of treatment year—adult MPB typically fl y from infested trees anytime options decreases. between July and September, a year after their eggs were laid. Ips beetles have a Experts recommend that people carry out their forestry practices (cutting trees much shorter life cycle, and they may live in a tree or slash pile for as little as 6 for beetle sanitation, fi re mitigation, or forest health) during the fall and winter weeks before emerging. Take time to look carefully at your trees, wood, and slash months. In addition to the reasons noted earlier, this is because Ips beetles are before transporting them to other locations. attracted to the smell of newly cut wood and slash. Restricting your cutting To determine whether a tree is still infested, look for pitch tubes or small mounds to the cooler season will help prevent new infestations. If it is not possible to of reddish-orange boring dust on the main tree trunk. Peel back an area of bark perform your forestry work during this time, it is still better to cut infested trees the size of a deck of cards just above the tubes or dust. A wound like this will not or work on fi re mitigation during the spring or summer than not to do it at all. Be hurt a healthy tree, but don’t cut into a tree more than once or twice if you don’t sure to follow the slash management guidelines, and store any newly cut wood fi nd signs of beetles. If you see live adult insects, eggs, or larvae in breeding away from living trees. galleries, the tree is still infested and will need to be treated to kill the beetles before moving the wood. continued on page 4 Was Your Tree Hit by Ips Beetles or MPB? Pitch Time Boring Dust Signs of Gallery Sawdust Diameter of Beetle Tubes of Fading at Base of Tree Woodpecker Feeding Blue-stain Shape in Galleries? Attacked Tree Ips No March– Yes: fi ne and Yes Yes Y, X, or H No Smaller than 8” November reddish MPB Yes May–July Yes: coarser Yes Yes I or J Yes Usually bigger and reddish- than 6” white Ladd Livingston, Idaho Dept. of Lands, Bugwood.org U.S. Forest Service, Bugwood.org Jerald E. Dewey, MPB pitch tubes and boring dust Ips beetle galleries often form MPB galleries often form (sawdust) are evident on infested trees. a Y, X, or H shape. an I or J shape. 3 continued from page 3 Treating Infested Trees rees must be treated to destroy live beetles after they are cut down. THere are some options: 1. Take the entire tree to a sort yard for disposal. Visit http://www.peaktopeakwood.org for information on sort yard locations. 2. Chip the entire tree and/or slash pile to destroy the beetle. Spread the chips out in a thin layer so they will dry quickly and not attract Ips beetles. 3. Peel the bark from the trunk with a chain saw, draw knife, or Log Wizard® (a chainsaw attachment that peels logs).
Recommended publications
  • Yellowstone National Park, Resources and Issues, Vegetation
    VEGETATION More than 1,300 plant taxa occur in Yellowstone National Park. The whitebark pine, shown here and found in high elevations in the Greater Yellowstone Ecosystem, is an important native species in decline. Vegetation The vegetation communities of Yellowstone National major disturbances. Yellowstone is home to three Park include overlapping combinations of species endemic plant species, at least two of which depend typical of the Rocky Mountains as well as of the on the unusual habitat created by the park’s thermal Great Plains to the east and the Intermountain region features. Most vegetation management in the park to the west. The exact vegetation community pres- is focused on minimizing human-caused impacts on ent in any area of the park reflects the consequences their native plant communities to the extent feasible. of the underlying geology, ongoing climate change, substrates and soils, and disturbances created by fire, Vegetation Communities floods, landslides, blowdowns, insect infestations, There are several vegetation communities in and the arrival of nonnative plants. Yellowstone: higher- and lower-elevation forests Today, the roughly 1,386 native taxa in the park and the understory vegetation associated with them, represent the species able to either persist in the area sagebrush-steppe, wetlands, and hydrothermal. or recolonize after glaciers, lava flows, and other Quick Facts Number in Yellowstone • Three endemic species (found only Management Issues Native plant taxa: more than 1,300: in Yellowstone): Ross’s bentgrass, • Controlling nonnative species, • Hundreds of wildfowers. Yellowstone sand verbena, which threaten native species, Yellowstone sulfur wild buckwheat. especially near developed areas; • Trees: nine conifers (lodgepole some are spreading into the Nonnative plant species: 225.
    [Show full text]
  • Mountain Pine Beetle Host Selection Behavior Confirms High Resistance in Great Basin Bristlecone Pine
    Forest Ecology and Management 402 (2017) 12–20 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Mountain pine beetle host selection behavior confirms high resistance in Great Basin bristlecone pine ⇑ Erika L. Eidson a, Karen E. Mock a,b, Barbara J. Bentz c, a Wildland Resources Department, Utah State University, Logan, UT 84321, USA b Ecology Center, Utah State University, Logan, UT 84321, USA c USDA Forest Service Rocky Mountain Research Station, Logan, UT 84321, USA article info abstract Article history: Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epi- Received 9 February 2017 demic levels across much of western North America, including high elevations where cool temperatures Received in revised form 12 May 2017 previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible Accepted 8 June 2017 hosts and experienced high levels of mortality in recent outbreaks, but co-occurring Great Basin bristle- cone pines (Pinus longaeva) were not attacked. Using no-choice attack box experiments, we compared Great Basin bristlecone pine resistance to mountain pine beetle with that of limber pine (P. flexilis), a Keywords: well-documented mountain pine beetle host. We confined sets of mountain pine beetles onto 36 pairs Mountain pine beetle of living Great Basin bristlecone and limber pines and recorded beetle status after 48 h. To test the role Great Basin bristlecone pine Host selection of induced defenses in Great Basin bristlecone pine resistance, we then repeated the tests on 20 paired Tree resistance sections of Great Basin bristlecone and limber pines that had been recently cut, thereby removing their capacity for induced defensive reactions to an attack.
    [Show full text]
  • The Introduction of Pinus Contorta in Sweden
    The Introduction of Pinus contorta in Sweden Implications for forest diversity Sofia Bäcklund Faculty of Forest Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2016 Acta Universitatis Agriculturae Sueciae 2016:30 Cover: A 15-year old Pinus contorta stand. Dorotea, Sweden (photo: S. Bäcklund) ISSN 1652-6880 ISBN (print version) 978-91-576-8562-9 ISBN (electronic version) 978-91-576-8563-6 © 2016 Sofia Bäcklund, Uppsala Print: SLU Service/Repro, Uppsala 2016 The introduction of Pinus contorta in Sweden. Implications for forest diversity Abstract An increasing demand for forest-based products calls for further development and intensification of forest management. The use of non-native tree species in forestry is a common and expanding silvicultural practice worldwide but the effect of non-native trees on native biodiversity and ecosystem functioning is still poorly understood. The general aim of this thesis is to increase our knowledge about what effects large-scale introduction of a non-native tree species have on forest biodiversity over a chronosequence of forest stand ages. The non-native Pinus contorta and the two native tree species Pinus sylvestris and Picea abies were studied over three age classes (15, 30, 85 years old) of managed forests in northern Sweden to compare the stand- and tree structures, the cover and composition of functional groups of ground vegetation, and the species- and functional diversity of epiphytic lichens. Differences in ground vegetation cover were linked to both tree species and different stand and tree characteristics, but the differences were not consistent over the age classes.
    [Show full text]
  • 2017 Idaho Forest Health Highlights
    Idaho’s Forest Resources Idaho has over 21 million acres of forest land, from the Canadian border in the north, to the Great Basin in the south. Elevations range from less than 1,000 feet along the Clearwater River valley to over 12,000 feet in the Lost River Range of southern Idaho. The mixed conifer forests in the Panhandle area can be moist forest types that include tree species found on the Pacific Coast such as western hemlock, Pacific yew, and western redcedar. Southern Idaho forests are generally drier, and ponderosa pine and Douglas-fir are most common. Lodgepole pine, Engelmann spruce, whitebark pine and subalpine fir occur at higher elevations throughout the state. A Diverse State The Salmon River Valley generally divides the moister mixed conifer forests of the Panhandle region from the drier forests of southern Idaho. Much of southern Idaho is rangeland with scattered juniper- dominated woodlands typical of the Great Basin. The highest mountain peaks also occur in southern Idaho. Most of the com- mercial forest land is found in the north, and Douglas-fir, grand fir, western larch, lodgepole pine and western redcedar are valuable timber species. Idaho’s forests are important for many reasons. Forests are home to wildlife, provide watersheds for drinking water, and protect streams that are habitat for many species of fish, including salmon, steelhead and bull trout. Forests are also important for recreation, and Idaho has over 4.5 million acres of wilderness. Idaho’s forests are renewable, and are an important resource for the forest products industry. Maintaining healthy for- ests is crucial to protect all the things that they provide.
    [Show full text]
  • Pinus Ponderosa Dougl. Ex Laws. Family: Pinaceae Ponderosa Pine
    Pinus ponderosa Dougl. Ex Laws. Family: Pinaceae Ponderosa Pine Ponderosa pine (Pinus ponderosa) is known also as western soft pine, western yellow pine, bull pine, and blackjack pine. Jeffrey pine (P. jeffreyi), which grows in close association with ponderosa pine in California and Oregon, is usually marketed with ponderosa pine and sold under that name. The name ponderosa refers to ponderous, or heavy, referring to the wood. Other Common Names: Arizona pijn, Arizona pine, Arizona ponderosa pine, Arizona white pine, Arizona yellow pine, Arizona-tall, big pine, bird's-eye pine, blackjack pine, British soft pine, British Colombia soft pine, British Columbia pine, bull pine, California white pine, California yellow pine, foothills yellow pine, gelb kiefer, gul-tall, heavy pine, heavy-wooded pine, knotty pine, longleaf pine, Pacific ponderosa pine, pin a bois lourd, pin d'Arizona, pin de Bentham, pinabete, pino, pino blanco, pino cenizo, pino chino, pino de Arizona, pino di Arizona, pino giallo, pino ponderosa, pino ponderoso, pino real, pitch pine, ponderosa pine, ponderosa pijn, pondosa, pondosa pine, red pine, rock pine, vastamerikansk langbarri tall, western pitch pine, western yellow pine, westerse gele pijn, yellow pine. Distribution: Widely distributed throughout the Rocky Mountains and mountains of the Pacific coast. Also grows from North Dakota and Montana west to British Colombia and south through Washington, Oregon and southern California east through Arizona and the trans-Pecos area of Texas, north through New Mexico, Oklahoma, Colorado, Nebraska and South Dakota. It also grows in northern Mexico. Major producing areas are in Oregon, Washington, and California. Other important producing areas are in Idaho and Montana; lesser amounts come from the southern Rocky Mountain region and the Black Hills of South Dakota and Wyoming.
    [Show full text]
  • Connon Nurseries Taylor's Sunburst Lodgepole Pine
    Taylor's Sunburst Lodgepole Pine Pinus contorta 'Taylor's Sunburst' Height: 15 feet Spread: 10 feet Sunlight: Hardiness Zone: 4a Description: Wow! When you see this pine tree, you want it - the bright yellow-gold new growth contrasts stunningly with the older green needles for nearly two months in spring, then come the bright red cones; this plant is certain to turn heads in your landscape Ornamental Features Taylor's Sunburst Lodgepole Pine foliage Taylor's Sunburst Lodgepole Pine has attractive green foliage which Photo courtesy of NetPS Plant Finder emerges yellow in spring. The needles are highly ornamental and remain green throughout the winter. The red fruits are held in cones in mid summer. The flowers are not ornamentally significant. The shaggy brick red bark adds an interesting dimension to the landscape. Landscape Attributes Taylor's Sunburst Lodgepole Pine is a multi-stemmed evergreen shrub with an upright spreading habit of growth. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub. When pruning is necessary, it is recommended to only trim back the new growth of the current season, other than to remove any dieback. It has no significant negative characteristics. Taylor's Sunburst Lodgepole Pine is recommended for the following landscape applications; - Accent - Vertical Accent - General Garden Use Planting & Growing Taylor's Sunburst Lodgepole Pine will grow to be about 15 feet tall at maturity, with a spread of 10 feet. It has a low canopy, and is suitable for planting under power lines.
    [Show full text]
  • Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park
    Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 2003 Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park Tania Schoennagel Monica G. Turner William H. Romme Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Schoennagel, T., Turner, M. and Romme, W. (2003). Influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology, 84(11): 2967—2978. This Article is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Ecology, 84(11), 2003, pp. 2967±2978 q 2003 by the Ecological Society of America THE INFLUENCE OF FIRE INTERVAL AND SEROTINY ON POSTFIRE LODGEPOLE PINE DENSITY IN YELLOWSTONE NATIONAL PARK TANIA SCHOENNAGEL,1,3 MONICA G. TURNER,1 AND WILLIAM H. ROMME2 1Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA 2Department of Forest Sciences, Colorado State University, Fort Collins, Colorado 80523 USA Abstract. The time interval between stand-replacing ®res can in¯uence patterns of initial post®re succession if the abundance of post®re propagules varies with pre®re stand age.
    [Show full text]
  • Characteristics of Mountain Pine Beetles Reared in Four Pine Hostsl
    Characteristics of Mountain Pine Beetles Reared in Four Pine Hostsl GENE D. AMMAN Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Ogden, Utah 84401 ABSTRACT Environ. Entomo!. ]]: 590-593 (1982) Mountain pine beetles, Dendroctonus ponderosae Hopkins(Coleoptera: Scolytidae),obtained from naturally infested lodgepole pine, Pinus contorta var. latifo/ia Engelmann, were reared in four common hosts: ponderosa pine, P. ponderosa Lawson; western white pine, P. monticola Douglas; whitebark pine, P. albicaulis Engelmann; and lodgepole pine. Emerging beetles were collected daily, counted, and sexed, and pronotal,width was measured. Significantdifferencesin brood production, sizeoffemale beetles, and developmentalrate, but not sex ratio, occurred among hosts. Differenceswere not all associatedwith the same speciesof tree. However, the results indicate that, overall, lodgepole pine is the poorest, and ponderosa pine is the best, of the four hosts for mountain pine beetles. The mountain pine beetle, Dendroctonus pon- ditions, any acceptable host and sometimes any derosae Hopkins (Coleoptera: Sco]ytidae), infests conifer may be attacked. 13 species of pine native to North America (Wood Another interesting aspect of host switching by 1963) and several exotics (Furniss and Schenk 1969, the mountain pine beetle, and one which this study McCambridge 1975). In addition, it infests severa] addresses, is the effect on the first-generation pro- nonpine hosts from which little or no brood is pro- geny when parents from lodgepole pine are intro- duced (BeaI1939, Evenden et at. 1943, Furniss and duced into other pine hosts. Host effects were Schenk 1969). The phenomenon of mountain pine evaluated by using four mountain pine beetle char- beetles infesting one host species and their brood acteristics-brood production, female size, sex ratio, then infesting a different host species is of interest to and developmental rate.
    [Show full text]
  • Douglas- Fir Limber Pine Lodgepole Pine Ponderosa Pine Blue Spruce
    NAME ORIGIN BARK FEMALE CONES NEEDLES WHERE USES TRIVIA Named by Smooth gray bark To 4ÂÂ long, Soft, flat, 2-sided, Found on north or Railroad crossties, State tree of Scottish botanist on young trees yellowish to light 1¼″ long and south-facing slopes, mine timbers, for Oregon. David Douglas. with numerous brown hanging cones rounded at the tip. in shady ravines and building ships and The Latin name DOUGLAS- Fir is from the resin scars. with uniquely 3- Dark yellow green or on rocky slopes boats, construction psuedotsuga Middle English pointed bracts blue green. Shortly where the soil is lumber, plywood, means FIR firre and Old protruding from cone stalked spreading fairly deep. telephone poles, ÂÂfalse Psuedotsuga English fyrh. scales like a snakes- mostly in two rows. fencing, railroad-car fir.ÂÂ menziesii tongue. Single small groove construction, boxes Can drop 2 on topside of needles and crates, flooring, million seeds in and single white line furniture, ladders a good year. on underside of and pulpwood. needles. Pine is from the Light gray to Big (to 9ÂÂ long) Stout in clusters of 5 Found on rocky, Lumber, railroad Cones start to LIMBER Latin pinus and blackish brown. cylindrical, greenish needles, to 3″ long. gravelly slopes, cross ties, poles, appear after the the Old English Smooth and silvery brown, with thick, Straight or slightly ridges and peaks. turpentine, tar and tree reaches 20 PINE pin. gray on young broad scales. Cone curved, not sticky to fuel. years of age. Pinus flexilis trees. scales lack prickles. the touch. Dark green. Pine is from the Bark is grayish or Light yellow brown, Stout, twisted Found in well Lumber, knotty Many Plains Latin pinus and light brown, thin reddish or dark green, needles, mostly in drained soils, dry pine paneling, Indian tribes the Old English and with many lopsided cones to pairs, to 2½″ long.
    [Show full text]
  • Pinus Contorta Dougl
    Unclassified ENV/JM/MONO(2008)32 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 05-Dec-2008 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2008)32 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 04 December 2008 Series on Harmonisation of Regulatory Oversight in Biotechnology No. 44 CONSENSUS DOCUMENT ON THE BIOLOGY OF LODGEPOLE PINE (Pinus contorta Dougl. ex. Loud.) English - Or. English JT03257048 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2008)32 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No.
    [Show full text]
  • The Introduction of Lodgepole Pine (Pinus Contorta) in Sweden“
    The introduction of lodgepole pine (Pinus contorta var. latifolia) in Sweden Erik Valinger Professor Two pioneers in the 1970s Iggesunds bruk (Roland Nellbäck) SCA (Stig Hagner) Photo: Bror Österman Photo: SCA PF Reasons for the introduction • Filling up expected gap in timber supply • Other positive characteristics: – Good ability to survive damage – Frost tolerant and high seedling survival – Resistant to several fungi, e.g. pine rust (Melampsora populnea) , pine blister rust (Cronartium flaccidum) , pine needle-cast fugus (Lophodermium seditiosum) – Less attractive to Moose (Alces alces) – Wood characteristics as Scots pine Distribution in Sweden Figure: Lodgepole pine, proportion of total productive woodland in Sweden 2005-2009. (Swedish National Forest Inventory, 2009). 60° SLU’s oldest provenace trial with lodgepole pine ”The Bang-series” Established 1960-62 11 sites from Skåne to Norrbotten 10 to 23 provenances Production results • Approx. 600 000 ha of lodgepole pine in Sweden • Approx. 2 % of productive foreset area and 1 % of total standing volume • 30-40% increase in growth 3 • Actual effect of total growth ~1 mill. m Standing volume 35 30 3 25 20 15 10 Standingvolume,mill. m 5 0 0-9 10-14 15-19 20-24 25-29 30-34 35-44 45- Total Diameter classes, cm Figure 1. Standing volume of lodgepole pine per diameter class (mill. m3) Korsseleberget • One of the oldest stands in Sweden (87 yrs) • Total production 612 m3, i.e. 7 m3/ha, yr Drawbacks and hazards • Infection byGremeniella abietina • Rodents • Wind and snow damage • Instability
    [Show full text]
  • The Mountain Pine Beetle
    The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson Sponsored by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre Victoria, BC Canada 2006 Pacific Forestry Centre 506 West Burnside Road Victoria, British Columbia V8Z 1M5 Phone: (250) 363-0600 www.pfc.cfs.nrcan.gc.ca © Her Majesty the Queen in Right of Canada, 2006 Printed in Canada Library and Archives Canada Cataloguing in Publication Safranyik, L., 1938- The mountain pine beetle : a synthesis of biology, management, and impacts on lodgepole pine / by Les Safranyik and Bill Wilson. Includes bibliographical references. Available also on the Internet and on CD-ROM. ISBN 0-662-42623-1 Cat. no.: Fo144-4/2006E 1. Mountain pine beetle. 2. Lodgepole pine--Diseases and pests--Control--Canada, Western. 3. Lodgepole pine--Diseases and pests--Economic aspects--Canada, Western. 4. Lodgepole pine—Diseases and pests--Control. 5. Forest management--Canada, Western. I. Wilson, Bill, 1950- II. Pacific Forestry Centre III. Title. SB945.M78S33 2006 634.9’7516768 C2006-980019-7 This book presents a synthesis of published information on mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae]) biology and management with an emphasis on lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of western Canada. Intended as a reference for researchers as well as forest managers, the book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns.
    [Show full text]