Frege on Identity Statements*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gottlob Frege Patricia A
Gottlob Frege Patricia A. Blanchette This is the penultimate version of the essay whose final version appears in the Oxford Handbook of Nineteenth-Century German Philosophy, M. Forster and K. Gjesdal (eds), Oxford University Press 2015, pp 207-227 Abstract Gottlob Frege (1848-1925) made significant contributions to both pure mathematics and philosophy. His most important technical contribution, of both mathematical and philosophical significance, is the introduction of a formal system of quantified logic. His work of a more purely- philosophical kind includes the articulation and persuasive defense of anti-psychologism in mathematics and logic, the rigorous pursuit of the thesis that arithmetic is reducible to logic, and the introduction of the distinction between sense and reference in the philosophy of language. Frege’s work has gone on to influence contemporary work across a broad spectrum, including the philosophy of mathematics and logic, the philosophy of language, and the philosophy of mind. This essay describes the historical development of Frege’s central views, and the connections between those views. Introduction Friedrich Ludwig Gottlob Frege was born on November 8, 1848 in the Hanseatic town of Wismar. He was educated in mathematics at the University of Jena and at the University of Göttingen, from which latter he received his doctorate in 1873. He defended his Habilitation the next year in Jena, and took up a position immediately at the University of Jena. Here he spent his entire academic career, lecturing in mathematics and logic, retiring in 1918. His death came on July 26, 1925 in the nearby town of Bad Kleinen.1 Frege is best known for three significant contributions to philosophy. -
Gottlob Frege: on Sense and Reference Professor Jeeloo Liu [Introduction]
Phil/Ling 375: Meaning and Mind [Handout #13] Gottlob Frege: On Sense and Reference Professor JeeLoo Liu [Introduction] I. Language and the World ___ How does language depict reality? Does reality have the same structure as the structure of language? For instance, the basic linguistic structure is a subject and a predicate, and the basic structure of the world is a particular and a universal (e.g. “Socrates is wise”). The subject usually is something of the world and we describe some property it has or does not have. A is F is true is A is really F, is false when A is not F. II. Different Elements of Language Singular terms: Terms that designate particular things Proper names Indexicals: now, today, here, I… Demonstratives: that, this… Pronouns (singular): he, she,… Definite descriptions (the so-and-so): Indefinite (singular) descriptions (a so-and-so) General terms: Terms that designate a kind of things or a certain property Mass nouns ___ natural kind terms (‘water,’ ‘tiger,’ ‘lemon’) ___ non-natural kind terms (‘bachelor’, ‘contract,’ ‘chair’) Adjectives (predicates): colors, shapes, etc. III. Traditional Theories of Meaning Prior to Frege [A] The Ideational Theory ___ The meaning of a linguistic expression is the speaker’s idea that is associated with the expression. [B] Mill’s Theory [the Object Theory] ___ The meaning of a singular term is the thing designated by that term; ___ the meaning of a name is just what the name stands for; the name does not have any other meaning e.g. ‘Socrates’ means Socrates e.g. ‘Dartmouth’ e.g. -
Tractatus Logico-Philosophicus</Em>
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 8-6-2008 Three Wittgensteins: Interpreting the Tractatus Logico-Philosophicus Thomas J. Brommage Jr. University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Brommage, Thomas J. Jr., "Three Wittgensteins: Interpreting the Tractatus Logico-Philosophicus" (2008). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/149 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Three Wittgensteins: Interpreting the Tractatus Logico-Philosophicus by Thomas J. Brommage, Jr. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Philosophy College of Arts and Sciences University of South Florida Co-Major Professor: Kwasi Wiredu, B.Phil. Co-Major Professor: Stephen P. Turner, Ph.D. Charles B. Guignon, Ph.D. Richard N. Manning, J. D., Ph.D. Joanne B. Waugh, Ph.D. Date of Approval: August 6, 2008 Keywords: Wittgenstein, Tractatus Logico-Philosophicus, logical empiricism, resolute reading, metaphysics © Copyright 2008 , Thomas J. Brommage, Jr. Acknowledgments There are many people whom have helped me along the way. My most prominent debts include Ray Langely, Billy Joe Lucas, and Mary T. Clark, who trained me in philosophy at Manhattanville College; and also to Joanne Waugh, Stephen Turner, Kwasi Wiredu and Cahrles Guignon, all of whom have nurtured my love for the philosophy of language. -
First Order Logic
Artificial Intelligence CS 165A Mar 10, 2020 Instructor: Prof. Yu-Xiang Wang ® First Order Logic 1 Recap: KB Agents True sentences TELL Knowledge Base Domain specific content; facts ASK Inference engine Domain independent algorithms; can deduce new facts from the KB • Need a formal logic system to work • Need a data structure to represent known facts • Need an algorithm to answer ASK questions 2 Recap: syntax and semantics • Two components of a logic system • Syntax --- How to construct sentences – The symbols – The operators that connect symbols together – A precedence ordering • Semantics --- Rules the assignment of sentences to truth – For every possible worlds (or “models” in logic jargon) – The truth table is a semantics 3 Recap: Entailment Sentences Sentence ENTAILS Representation Semantics Semantics World Facts Fact FOLLOWS A is entailed by B, if A is true in all possiBle worlds consistent with B under the semantics. 4 Recap: Inference procedure • Inference procedure – Rules (algorithms) that we apply (often recursively) to derive truth from other truth. – Could be specific to a particular set of semantics, a particular realization of the world. • Soundness and completeness of an inference procedure – Soundness: All truth discovered are valid. – Completeness: All truth that are entailed can be discovered. 5 Recap: Propositional Logic • Syntax:Syntax – True, false, propositional symbols – ( ) , ¬ (not), Ù (and), Ú (or), Þ (implies), Û (equivalent) • Semantics: – Assigning values to the variables. Each row is a “model”. • Inference rules: – Modus Pronens etc. Most important: Resolution 6 Recap: Propositional logic agent • Representation: Conjunctive Normal Forms – Represent them in a data structure: a list, a heap, a tree? – Efficient TELL operation • Inference: Solve ASK question – Use “Resolution” only on CNFs is Sound and Complete. -
Does 2 + 3 = 5? : in Defense of a Near Absurdity
This is a repository copy of Does 2 + 3 = 5? : In Defense of a Near Absurdity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/127022/ Version: Accepted Version Article: Leng, Mary Catherine orcid.org/0000-0001-9936-5453 (2018) Does 2 + 3 = 5? : In Defense of a Near Absurdity. The Mathematical Intelligencer. ISSN 1866-7414 https://doi.org/10.1007/s00283-017-9752-8 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Does 2 + 3 = 5? In defence of a near absurdity1 Mary Leng (Department of Philosophy, University of York) James Robert Brown asks, “Is anyone really agnostic about 2 + 3 = 5, and willing only to give assent to PA 2 + 3 = 5?” (where PA stands for the Peano axioms for arithmetic). In fact Brown should qualify his ‘anyone’ with ‘anyone not already hopelessly corrupted by philosophy’, since, as he knows full well, there are plenty of so-called nominalist philosophers – myself included – who, wishing to avoid commitment to abstract (that is, non-spatiotemporal, acausal, mind- and language- independent) objects, take precisely this attitude to mathematical claims. -
Plato on the Foundations of Modern Theorem Provers
The Mathematics Enthusiast Volume 13 Number 3 Number 3 Article 8 8-2016 Plato on the foundations of Modern Theorem Provers Ines Hipolito Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Hipolito, Ines (2016) "Plato on the foundations of Modern Theorem Provers," The Mathematics Enthusiast: Vol. 13 : No. 3 , Article 8. Available at: https://scholarworks.umt.edu/tme/vol13/iss3/8 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 13, no.3, p.303 Plato on the foundations of Modern Theorem Provers Inês Hipolito1 Nova University of Lisbon Abstract: Is it possible to achieve such a proof that is independent of both acts and dispositions of the human mind? Plato is one of the great contributors to the foundations of mathematics. He discussed, 2400 years ago, the importance of clear and precise definitions as fundamental entities in mathematics, independent of the human mind. In the seventh book of his masterpiece, The Republic, Plato states “arithmetic has a very great and elevating effect, compelling the soul to reason about abstract number, and rebelling against the introduction of visible or tangible objects into the argument” (525c). In the light of this thought, I will discuss the status of mathematical entities in the twentieth first century, an era when it is already possible to demonstrate theorems and construct formal axiomatic derivations of remarkable complexity with artificial intelligent agents the modern theorem provers. -
Frege's Influence on Wittgenstein: Reversing Metaphysics Via the Context Principle*
Frege's Influence on Wittgenstein: Reversing Metaphysics via the Context Principle* Erich H. Reck Gottlob Frege and Ludwig Wittgenstein (the later Wittgenstein) are often seen as polar opposites with respect to their fundamental philosophical outlooks: Frege as a paradig- matic "realist", Wittgenstein as a paradigmatic "anti-realist". This opposition is supposed to find its clearest expression with respect to mathematics: Frege is seen as the "arch-pla- tonist", Wittgenstein as some sort of "radical anti-platonist". Furthermore, seeing them as such fits nicely with a widely shared view about their relation: the later Wittgenstein is supposed to have developed his ideas in direct opposition to Frege. The purpose of this paper is to challenge these standard assumptions. I will argue that Frege's and Wittgen- stein's basic outlooks have something crucial in common; and I will argue that this is the result of the positive influence Frege had on Wittgenstein. It would be absurd to claim that there are no important differences between Frege and Wittgenstein. Likewise, it would be absurd to claim that the later Wittgenstein was not critical of some of Frege's ideas. What, then, is the common element I see? My sugges- tion is that the two thinkers agree on what I call a reversal of metaphysics (relative to a standard kind of metaphysics attacked by both). This is not an agreement on one particu- lar thesis or on one argument. Rather, it has to do with what is prior and what is posterior when it comes to certain fundamental explanations in metaphysics (also, relatedly, in semantics and epistemology). -
Frege and the Logic of Sense and Reference
FREGE AND THE LOGIC OF SENSE AND REFERENCE Kevin C. Klement Routledge New York & London Published in 2002 by Routledge 29 West 35th Street New York, NY 10001 Published in Great Britain by Routledge 11 New Fetter Lane London EC4P 4EE Routledge is an imprint of the Taylor & Francis Group Printed in the United States of America on acid-free paper. Copyright © 2002 by Kevin C. Klement All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any infomration storage or retrieval system, without permission in writing from the publisher. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Klement, Kevin C., 1974– Frege and the logic of sense and reference / by Kevin Klement. p. cm — (Studies in philosophy) Includes bibliographical references and index ISBN 0-415-93790-6 1. Frege, Gottlob, 1848–1925. 2. Sense (Philosophy) 3. Reference (Philosophy) I. Title II. Studies in philosophy (New York, N. Y.) B3245.F24 K54 2001 12'.68'092—dc21 2001048169 Contents Page Preface ix Abbreviations xiii 1. The Need for a Logical Calculus for the Theory of Sinn and Bedeutung 3 Introduction 3 Frege’s Project: Logicism and the Notion of Begriffsschrift 4 The Theory of Sinn and Bedeutung 8 The Limitations of the Begriffsschrift 14 Filling the Gap 21 2. The Logic of the Grundgesetze 25 Logical Language and the Content of Logic 25 Functionality and Predication 28 Quantifiers and Gothic Letters 32 Roman Letters: An Alternative Notation for Generality 38 Value-Ranges and Extensions of Concepts 42 The Syntactic Rules of the Begriffsschrift 44 The Axiomatization of Frege’s System 49 Responses to the Paradox 56 v vi Contents 3. -
Toward a Logic of Everyday Reasoning
Toward a Logic of Everyday Reasoning Pei Wang Abstract: Logic should return its focus to valid reasoning in real-world situations. Since classical logic only covers valid reasoning in a highly idealized situation, there is a demand for a new logic for everyday reasoning that is based on more realistic assumptions, while still keeps the general, formal, and normative nature of logic. NAL (Non-Axiomatic Logic) is built for this purpose, which is based on the assumption that the reasoner has insufficient knowledge and resources with respect to the reasoning tasks to be carried out. In this situation, the notion of validity has to be re-established, and the grammar rules and inference rules of the logic need to be designed accordingly. Consequently, NAL has features very different from classical logic and other non-classical logics, and it provides a coherent solution to many problems in logic, artificial intelligence, and cognitive science. Keyword: non-classical logic, uncertainty, openness, relevance, validity 1 Logic and Everyday Reasoning 1.1 The historical changes of logic In a broad sense, the study of logic is concerned with the principles and forms of valid reasoning, inference, and argument in various situations. The first dominating paradigm in logic is Aristotle’s Syllogistic [Aristotle, 1882], now usually referred to as traditional logic. This study was carried by philosophers and logicians including Descartes, Locke, Leibniz, Kant, Boole, Peirce, Mill, and many others [Bochenski,´ 1970, Haack, 1978, Kneale and Kneale, 1962]. In this tra- dition, the focus of the study is to identify and to specify the forms of valid reasoning Pei Wang Department of Computer and Information Sciences, Temple University, Philadelphia, USA e-mail: [email protected] 1 2 Pei Wang in general, that is, the rules of logic should be applicable to all domains and situa- tions where reasoning happens, as “laws of thought”. -
Real and Imaginary Parts of Decidability-Making Gilbert Giacomoni
On the Origin of Abstraction : Real and Imaginary Parts of Decidability-Making Gilbert Giacomoni To cite this version: Gilbert Giacomoni. On the Origin of Abstraction : Real and Imaginary Parts of Decidability-Making. 11th World Congress of the International Federation of Scholarly Associations of Management (IF- SAM), Jun 2012, Limerick, Ireland. pp.145. hal-00750628 HAL Id: hal-00750628 https://hal-mines-paristech.archives-ouvertes.fr/hal-00750628 Submitted on 11 Nov 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the Origin of Abstraction: Real and Imaginary Parts of Decidability-Making Gilbert Giacomoni Institut de Recherche en Gestion - Université Paris 12 (UPEC) 61 Avenue de Général de Gaulle 94010 Créteil [email protected] Centre de Gestion Scientifique – Chaire TMCI (FIMMM) - Mines ParisTech 60 Boulevard Saint-Michel 75006 Paris [email protected] Abstract: Firms seeking an original standpoint, in strategy or design, need to break with imitation and uniformity. They specifically attempt to understand the cognitive processes by which decision-makers manage to work, individually or collectively, through undecidable situations generated by equivalent possible choices and design innovatively. The behavioral tradition has largely anchored on Simon's early conception of bounded rationality, it is important to engage more explicitly cognitive approaches particularly ones that might link to the issue of identifying novel competitive positions. -
The History of Logic
c Peter King & Stewart Shapiro, The Oxford Companion to Philosophy (OUP 1995), 496–500. THE HISTORY OF LOGIC Aristotle was the first thinker to devise a logical system. He drew upon the emphasis on universal definition found in Socrates, the use of reductio ad absurdum in Zeno of Elea, claims about propositional structure and nega- tion in Parmenides and Plato, and the body of argumentative techniques found in legal reasoning and geometrical proof. Yet the theory presented in Aristotle’s five treatises known as the Organon—the Categories, the De interpretatione, the Prior Analytics, the Posterior Analytics, and the Sophistical Refutations—goes far beyond any of these. Aristotle holds that a proposition is a complex involving two terms, a subject and a predicate, each of which is represented grammatically with a noun. The logical form of a proposition is determined by its quantity (uni- versal or particular) and by its quality (affirmative or negative). Aristotle investigates the relation between two propositions containing the same terms in his theories of opposition and conversion. The former describes relations of contradictoriness and contrariety, the latter equipollences and entailments. The analysis of logical form, opposition, and conversion are combined in syllogistic, Aristotle’s greatest invention in logic. A syllogism consists of three propositions. The first two, the premisses, share exactly one term, and they logically entail the third proposition, the conclusion, which contains the two non-shared terms of the premisses. The term common to the two premisses may occur as subject in one and predicate in the other (called the ‘first figure’), predicate in both (‘second figure’), or subject in both (‘third figure’). -
1 Introduction: Frege's Life and Work
1 Introduction: Frege’s Life and Work Biography Friedrich Ludwig Gottlob Frege was the founder of modern math- ematical logic, which he created in his first book, Conceptual Nota- tion, a Formula Language of Pure Thought Modelled upon the Formula Language of Arithmetic (Begriffsschrift, eine der arithmetischen nachge- bildete Formalsprache des reinen Denkens (1879), translated in Frege 1972). This describes a system of symbolic logic which goes far beyond the two thousand year old Aristotelian logic on which, hitherto, there had been little decisive advance. Frege was also one of the main formative influences, together with Bertrand Russell, Ludwig Wittgenstein and G. E. Moore, on the analytical school of philosophy which now dominates the English-speaking philo- sophical world. Apart from his definitive contribution to logic, his writings on the philosophy of mathematics, philosophical logic and the theory of meaning are such that no philosopher working in any of these areas today could hope to make a contribution without a thorough familiarity with Frege’s philosophy. Yet in his lifetime the significance of Frege’s work was little acknowledged. Even his work on logic met with general incomprehension and his work in philosophy was mostly unread and unappreciated. He was, however, studied by Edmund Husserl, Bertrand Russell, Ludwig Wittgenstein and Rudolf Carnap and via these great figures he has eventually achieved general recognition. Frege’s life was not a personally fulfilled one (for more detailed accounts of the following see Bynum’s introduction to Frege 1972 2 Introduction: Frege’s Life and Work and Beaney’s introduction to Frege 1997).