The-Glymphatic-System.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Professor Of
CURRICULUM VITAE Name: ALEXEI VERKHRATSKY Date of birth: July 30, 1961 Citizenship: British Title: MD, PhD, Dr. Sci. Department: Professor of Neurophysiology Faculty of Life Sciences, The University of Manchester Michael Smith Building, Oxford Road, Manchester M13 9PT, UK e-mail: [email protected] Current appointments: Professor of Neurophysiology Higher Education and academic degrees: 1993: Doctor of Medical Sciences, Bogomoletz Institute of Physiology, Physiology, "Mechanisms of calcium signal generation in neurones and glial cells". 1983-1986: PhD, Bogomoletz Institute of Physiology: Physiology, "Tetrodotoxin sensitive ionic currents in the membrane of isolated cardiomyocytes" 1977 - 1983: MD, Kiev Medical Institute. Honours: 2003: Elected Member of Academia Europaea 2006 - 2013: Chairman of the Physiology and Medicine Section of the Academia Europaea; Member of the Council 2012: Elected member of Real Academia Nacional de Farmacia, Spain 2012: Research Award of German Purine Club 2012: Elected member of European Dana Alliance for the Brain Initiatives (since 2015 Dana Alliance for Brain Initiatives). 2013: Recipient of Dozor Visiting Scholar award, Ben Gurion University, Beer Sheva, Israel. 2013: Fellow of Japan Society for the Promotion of Science (JSPS). 2013: Elected member of Nationale Akademie der Wissenschaften Leopoldina (The German National Academy of Sciences Leopoldina). 2016 - present: Vice-Presidnet and Chairmen of the Class C (Life Science and Medicine) of the Academia Europaea. 2016: Copernicus Gold -
OMB No. 0925-0046, Biographical Sketch Format Page
BIOGRAPHICAL SKETCH NAME: Nedergaard, Maiken eRA COMMONS USER NAME (credential, e.g., agency login): mnedergaard POSITION TITLE: Professor EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY University of Copenhagen M.D. 1983 Medicine University of Copenhagen Ph.D. 1989 Neuroscience A. Personal statement The objective of my work is to understand the biological functions of astrocytes, their ability to interact with other cell types, and to use this knowledge to develop novel therapeutic strategies to treat, or perhaps cure, a variety of neurological diseases. In vivo explorations have radically challenged the classical dogma – that neurons are the sole substrate of higher brain function – and have led to a shift in paradigm by including astrocytes and other glial cells in higher cognitive functions. No current medications used in clinical medicine target glial cells – the most numerous cells in CNS. The premise for my work is that understanding the basic functions of glial cells offers extraordinary opportunities for combating disease. We have recently identified a fundamentally novel pathway for interstitial solute clearance from the brain consisting of a para-arterial cerebrospinal fluid (CSF) influx path and a para-venous interstitial fluid (ISF) clearance route, which are coupled through convective interstitial bulk flow supported by astrocytic AQP4 water channels. We designated it “the glymphatic system” based on its adoption of functions analogous to the peripheral lymphatic system and the dependence of CSF/ISF fluxes on astroglial AQP4. -
Review Article Meninges: from Protective Membrane to Stem Cell Niche
Am J Stem Cell 2012;1(2):92-105 www.AJSC.us /ISSN: 2160-4150/AJSC1205003 Review Article Meninges: from protective membrane to stem cell niche Ilaria Decimo1, Guido Fumagalli1, Valeria Berton1, Mauro Krampera2, Francesco Bifari2 1Department of Public Health and Community Medicine, Section of Pharmacology, University of Verona, Italy; 2De- partment of Medicine, Stem Cell Laboratory, Section of Hematology, University of Verona, Italy Received May 16, 2012; accepted May 23, 2012; Epub 28, 2012; Published June 30, 2012 Abstract: Meninges are a three tissue membrane primarily known as coverings of the brain. More in depth studies on meningeal function and ultrastructure have recently changed the view of meninges as a merely protective mem- brane. Accurate evaluation of the anatomical distribution in the CNS reveals that meninges largely penetrate inside the neural tissue. Meninges enter the CNS by projecting between structures, in the stroma of choroid plexus and form the perivascular space (Virchow-Robin) of every parenchymal vessel. Thus, meninges may modulate most of the physiological and pathological events of the CNS throughout the life. Meninges are present since the very early em- bryonic stages of cortical development and appear to be necessary for normal corticogenesis and brain structures formation. In adulthood meninges contribute to neural tissue homeostasis by secreting several trophic factors includ- ing FGF2 and SDF-1. Recently, for the first time, we have identified the presence of a stem cell population with neural differentiation potential in meninges. In addition, we and other groups have further described the presence in men- inges of injury responsive neural precursors. In this review we will give a comprehensive view of meninges and their multiple roles in the context of a functional network with the neural tissue. -
Perivascular Space Semi-Automatic Segmentation (PVSSAS): a Tool for Segmenting, Viewing and Editing Perivascular Spaces
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385336; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Perivascular Space Semi-Automatic Segmentation (PVSSAS): A Tool for Segmenting, Viewing and Editing Perivascular Spaces Authors: Derek A Smith, BA a,b,d, (212) 824-8497, [email protected] Gaurav Verma, PhD a,b,d, [email protected] Daniel Ranti, BS, a,b,f, (617) 645-8004, [email protected] Matthew Markowitz, PhD, g, (212)413-3300, [email protected] Priti Balchandani, PhD a,b,c,d,e, (212) 241-0695, [email protected] Laurel Morris, PhD a,b,d,f, (212) 241-2774, [email protected] Keywords: Perivascular Spaces, Semi-Automated, Frangi filter, Matlab, 7 T MRI, User-friendly #Pages: 8 #Words: 1833 #References: 30 #Figs: 2 #Tables: 0 Affiliation Addresses: a Icahn School of Medicine at Mount Sinai, Hess CSM Building (1470 Madison Avenue, New York, NY, 10029) b BioMedical Engineering and Imaging Institute at Mount Sinai School of Medicine, Leon and Norma Hess Center for Science and Medicine, 1470 Madison Avenue, New York, NY 10029 c Fishberg Department of Neuroscience at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029 d Department of Radiology at the Icahn School of Medicine at Mount Sinai, 1 Gustave L. -
Once Considered Mainly 'Brain Glue,' Astrocytes' Power Revealed 4 April 2012
Once considered mainly 'brain glue,' astrocytes' power revealed 4 April 2012 A type of cell plentiful in the brain, long considered levels must come down immediately for the brain to mainly the stuff that holds the brain together and work properly. Scientists have long known that oft-overlooked by scientists more interested in that's a job for astrocytes - sopping up excess flashier cells known as neurons, wields more potassium, ending the nerve pulse, and restoring power in the brain than has been realized, the cells so they can fire again immediately. according to new research published in Science Signaling. In the paper in Science Signaling, Nedergaard's team discovered an expanded role for astrocytes. Neuroscientists at the University of Rochester The team learned that in addition to simply Medical Center report that astrocytes are crucial absorbing excess potassium, astrocytes for creating the proper environment for our brains themselves can cause potassium levels around the to work. The team found that the cells play a key neuron to drop, putting neuronal signaling to a stop. role in reducing or stopping the electrical signals that are considered brain activity, playing an active "Far from only playing a passive role, astrocytes role in determining when cells called neurons fire can initiate the uptake of potassium in a way that and when they don't. affects neuronal activity," said Nedergaard. "It's a simple, yet powerful mechanism for astrocytes to That is a big step forward from what scientists rapidly modulate neuronal activity." have long considered the role of astrocytes - to nurture neurons and keep them healthy. -
Subcortical Cystic Lesions Within the Anterior Superior Temporal Gyrus: a Newly Recognized Characteristic Location for Dilated Perivascular Spaces
CLINICAL REPORT BRAIN Subcortical Cystic Lesions within the Anterior Superior Temporal Gyrus: A Newly Recognized Characteristic Location for Dilated Perivascular Spaces S. Rawal, S.E. Croul, R.A. Willinsky, M. Tymianski, and T. Krings ABSTRACT SUMMARY: Cystic parenchymal lesions may pose an important diagnostic challenge, particularly when encountered in unexpected locations. Dilated perivascular spaces, which may mimic cystic neoplasms, are known to occur in the inferior basal ganglia and mesen- cephalothalamic regions; a focal preference within the subcortical white matter has not been reported. This series describes 15 cases of patients with cystic lesions within the subcortical white matter of the anterior superior temporal lobe, which followed a CSF signal; were located adjacent to a subarachnoid space; demonstrated variable surrounding signal change; and, in those that were followed up, showed stability. Pathology study results obtained in 1 patient demonstrated chronic gliosis surrounding innumerable dilated perivascular spaces. These findings suggest that dilated perivascular spaces may exhibit a regional preference for the subcortical white matter of the anterior superior temporal lobe. Other features—lack of clinical symptoms, proximity to the subarachnoid space, identification of an adjacent vessel, and stability with time—may help in confidently making the prospective diagnosis of a dilated perivascular space, thereby preventing unnecessary invasive management. ABBREVIATION: SAS ϭ subarachnoid space ystic lesions of the brain -
Perivascular Space Fluid Contributes to Diffusion Tensor Imaging Changes in White Matter
bioRxiv preprint doi: https://doi.org/10.1101/395012; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Perivascular space fluid contributes to diffusion tensor imaging changes in white matter Running title: A systematic bias in DTI findings Authors: Farshid Sepehrband Ph.D.1, *, Ryan P Cabeen Ph.D.1, Jeiran Choupan Ph.D.1, 2, Giuseppe Barisano M.D.1, 3, Meng Law M.D.1, 4, Arthur W Toga Ph.D.1, for the Alzheimer’s Disease Neuroimaging Initiative Affiliations: 1. Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA 2. Department of Psychology, University of Southern California, Los Angeles, USA 3. Neuroscience Graduate Program, University of Southern California, Los Angeles, USA 4. Radiology and Nuclear Medicine, Alfred Health, Melbourne, Australia Correspondence to: Farshid Sepehrband, PhD Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA T: (+1) 323-442-7246 E: [email protected] Word count: 4700 Number of figures: 7 Number of tables: 0 Keywords: diffusion tensor imaging, bias, perivascular space Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. -
University of Copenhagen, Copenhagen, Denmark
Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Louveau, Antoine; Plog, Benjamin A.; Antila, Salli; Alitalo, Kari; Nedergaard, Maiken; Kipnis, Jonathan Published in: The Journal of Clinical Investigation DOI: 10.1172/JCI90603 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Louveau, A., Plog, B. A., Antila, S., Alitalo, K., Nedergaard, M., & Kipnis, J. (2017). Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of Clinical Investigation, 127(9), 3210-3219. https://doi.org/10.1172/JCI90603 Download date: 26. Sep. 2021 Understanding the functions and relationships of the glymphatic system and meningeal lymphatics Antoine Louveau, … , Maiken Nedergaard, Jonathan Kipnis J Clin Invest. 2017;127(9):3210-3219. https://doi.org/10.1172/JCI90603. Review Series Recent discoveries of the glymphatic system and of meningeal lymphatic vessels have generated a lot of excitement, along with some degree of skepticism. Here, we summarize the state of the field and point out the gaps of knowledge that should be filled through further research. We discuss the glymphatic system as a system that allows CNS perfusion by the cerebrospinal fluid (CSF) and interstitial fluid (ISF). We also describe the recently characterized meningeal lymphatic vessels and their role in drainage of the brain ISF, CSF, CNS-derived molecules, and immune cells from the CNS and meninges to the peripheral (CNS-draining) lymph nodes. We speculate on the relationship between the two systems and their malfunction that may underlie some neurological diseases. Although much remains to be investigated, these new discoveries have changed our understanding of mechanisms underlying CNS immune privilege and CNS drainage. -
Hydraulic Resistance of Perivascular Spaces in the Brain
Tithof et al. Fluids Barriers CNS (2019) 16:19 https://doi.org/10.1186/s12987-019-0140-y Fluids and Barriers of the CNS RESEARCH Open Access Hydraulic resistance of periarterial spaces in the brain Jefrey Tithof1, Douglas H. Kelley1, Humberto Mestre2, Maiken Nedergaard2 and John H. Thomas1* Abstract Background: Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebro- spinal fuid (CSF): a fow of CSF in these channels is thought to be an important part of the brain’s system for clearing metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer bounda- ries are often oblate, and the arteries that form the inner boundaries are often ofset from the central axis. Methods: We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier–Stokes equation to determine the velocity profle for steady laminar fow and then compute the corresponding hydraulic resistance. Results: We fnd that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efcient fow of cerebrospinal fuid. We fnd that the minimum hydraulic resistance (and therefore maximum fow rate) for a given PAS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. -
The Brain's Waste-Removal System
Cerebrum August 2018 The Brain’s Waste-Removal System By Helene Benveniste, M.D., Ph.D. Source/Shutterstock Editor’s Note: The brain, like other parts of the body, needs to maintain “homeostasis” (a constant state) to function, and that requires continuous removal of metabolic waste. For decades, the brain’s waste-removal system remained a mystery to scientists. A few years ago, a team of researchers—with the help of our author—finally found the answer. This discovery—dubbed the glymphatic system— will help us understand how toxic waste accumulates in devastating disorders such as Alzheimer’s disease and point to possible strategies to prevent it. In early February 2012, I received a note from Maiken Nedergaard, a renowned neuroscientist at the University of Rochester whom I knew from our time as medical students at the University of 1 Cerebrum August 2018 Copenhagen. She explained that her team had discovered important features of a new system that transports the fluid that surrounds the brain—a substance called cerebrospinal fluid (CSF). The discovery of how this fluid was transported in the brain, she believed, was the key to understanding how waste is cleared from the brain. Nedergaard’s work with the non-neuronal brain cells called “astroglia” had led her to suspect that these cells might play a role in CSF transport and brain cleansing. She was inspired by an older study' which showed that CSF could rapidly penetrate into channels along the brain vasculature, and astroglial cells structurally help create these channels. Now she needed help with visualizing the system in the whole brain to confirm her suspicions. -
Aquaporin-4 Dependent Glymphatic Solute Transport in Rodent Brain
bioRxiv preprint doi: https://doi.org/10.1101/216499; this version posted November 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Aquaporin-4 dependent glymphatic solute transport in rodent brain Humberto Mestre1*, Benjamin T. Kress1*, Wenyan Zou2*, Tinglin Pu2*, Giridhar Murlidharan3*, Ruth M. Castellanos Rivera3*, Matthew J. Simon4*, Martin M. Pike6*, Benjamin A Plog1, Anna L. R. Xavier7, Alexander S. Thrane7,8 Iben Lundgaard9,1, John H. Thomas10, Ming Xiao2,±, Aravind Asokan3, ±, Jeffrey J. Iliff5,11,±, Maiken Nedergaard1, 2, ± 1Center for Translational Neuromedicine, University of Rochester Medical Center, Elmwood Avenue 601, Rochester, NY 14642, USA, 2Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, P. R. China, 3Gene Therapy Center, 5123 Thurston Building, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7352, USA, 5Department of Anesthesiology and Perioperative Medicine, 4Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Mail Code L458; Portland, OR 97229, USA, 6Advanced Imaging Research Center, Oregon Health & Science University, Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Mail Code L458; Portland, OR 97229, USA, 6 Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Denmark, Blegdamsvej 3B, 2200 Copenhagen N, Denmark,7Department of Ophthalmology, Haukeland University Hospital, Jonas Lies Vei 72, 5021 Bergen, Norway 0047 55974100, 8Department of Experimental Medical Science, Wallenberg Centre for Molecular Medicine, Lund University, Sölvegatan 19, 221 84 Lund, Sweden, 9Department of Mechanical Engineering and Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA, 10Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. -
The Meninges As Barriers and Facilitators for the Movement of Fluid, Cells and Pathogens Related to the Rodent and Human CNS
The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron; Carare, Roxana O.; Møllgård, Kjeld Published in: Acta Neuropathologica DOI: 10.1007/s00401-018-1809-z Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Weller, R. O., Sharp, M. M., Christodoulides, M., Carare, R. O., & Møllgård, K. (2018). The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 135(3), 363-385. https://doi.org/10.1007/s00401-018-1809-z Download date: 28. Sep. 2021 Acta Neuropathologica (2018) 135:363–385 https://doi.org/10.1007/s00401-018-1809-z REVIEW The meninges as barriers and facilitators for the movement of fuid, cells and pathogens related to the rodent and human CNS Roy O. Weller1 · Matthew M. Sharp1 · Myron Christodoulides2 · Roxana O. Carare1 · Kjeld Møllgård3 Received: 5 November 2017 / Revised: 2 January 2018 / Accepted: 15 January 2018 / Published online: 24 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Meninges that surround the CNS consist of an outer fbrous sheet of dura mater (pachymeninx) that is also the inner peri- osteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilita- tors in the foetal CNS.