Fes, Or Mackinawite

Total Page:16

File Type:pdf, Size:1020Kb

Fes, Or Mackinawite Mineral Spectroscopy; A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Spectroscopic studies of iron sulfide formation and phase relations at low temperatures ALISTAIRR. LENNIE and DAVID J. VAUGHAN Department of Earth Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, England Ahstract- The iron mono sulfides mackinawite (Fe1+xS) and "amorphous FeS," the first formed iron sulfides in aqueous systems at low temperatures, have been studied using X-ray photoelectron and X-ray absorption spectroscopies. The divalent oxidation state of Fe and the local structure environment of Fe and S in mackinawite have been confirmed. Comparisons of the Fe K-edge X-ray absorption spectra of synthetic mackinawite with those of "amorphous FeS" precipitates subjected to ageing for periods ranging from 1 to 1800 seconds, and precipitated under pH conditions between pH 3.9 and pH 7.4, show the precipitates to have local structure consistent with that found in crystalline mackinawite. Combining these data with results in the literature leads to the proposal of a model which accounts for the formation from aqueous solution of Cubic FeS, troilite, and macki- nawite. We use this model, which takes account of the effect of electron withdrawal by H+ at the crystal surface, to propose that these three phases can all be formed from Fe in tetrahedral coordina- tion with S. This model facilitates understanding of the phase relationships in the Fe-S system at low temperatures, whereby initial formation is of iron "monosulfides" with either cubic close- packed (ccp) or hexagonal close-packed (hcp) S sublattices. Subsequent sulfidation of either sub- lattice type will form pyrite (or marcasite). However, the predominant sulfidation sequence at low temperatures is: [Cubic FeSj/amorphous FeS ---> mackinawite ---> greigite ---> marcasite/pyrite. Both the nucleation of hcp S sub-lattice phases in low temperature aqueous iron sulfide systems, and the formation of hcp phases by transformation from the cubic monosulfides, are inhibited by kinetic factors. INTRODUCTION and, perhaps, in catalysing reactions leading to the build-up of complex organic molecules. THE MINERALS of the iron-sulfur system are im- At temperatures in excess of ~ 350°C, the phase portant Earth and planetary materials for a number relations in the Fe-S system are relatively straightfor- of reasons. Troilite (FeS) is an important phase in ward, but at lower temperatures the Fe-S system be- iron meteorites, suggesting that sulfur may coexist comes much more complex and less well understood. with iron in the core of the Earth. Iron sulfides, as In part, this arises from ordering of vacancies upon well as occurring as accessory minerals in many cooling of the pyrrhotite (Fel_xS) solid solution, form- common rocks, are major phases in the sulfide ore ing complex superstructures. A further complexity deposits that are still the main suppliers of many concerns phases found only in relatively low tempera- base (Cu, Pb, Zn), ferroalloy (Ni, Co, Mn), and ture environments in nature, which can be synthe- rare or precious (Ga, Ge, Ag, Pt) metals. Studies sized only in solution. For this reason, these lower of iron sulfide formation in Recent sediments via temperature phases may not even appear in the (equi- sulfate-reducing-bacteria, and in hydrothermal sys- librium) phase diagrams that have generally been tems presently active at or near mid-ocean ridges, constructed on the basis of experiments involving have stimulated new ideas regarding the role of reaction between elemental iron and sulfur in sealed sulfides in the geochemical cycling of the elements. evacuated silica capsules. Several important phases These studies have not only furthered understand- (notably marcasite, FeS2, and mackinawite Fel+xS) ing of the processes of formation of metal sulfide are of this type, along with a number of rarer minerals ore deposits, but have also suggested that metal (greigite Fe3S4 and, possibly, smythite ~ F~S 11) and sulfides may entrap heavy metal pollutants in sedi- phases so far found only in synthesis experiments ments. Furthermore, the discovery of life forms (e.g., Cubic FeS). It seems very likely that all of these adapted to the warm but anoxic environments of phases are metastable; indeed calculations of the free' sea-floor hydrothermal systems, and the known energies of formation of these phases confirm this sulfur-metabolizing ancient bacteria, has fueled a view (see Fig. I). Although some of these minerals debate that anoxic sulfide environments could have appear to be rare in their geological occurrence, they been the sites for the emergence of life on Earth. are of considerable importance as transient species This debate has centred around iron sulfides which produced when iron and sulfur react in aqueous solu- may have played a central role in supplying energy tions, subsequently transforming to the more stable 117 A. R. Lennie and D. J. Vaughan 118 -60-.---------------, formation of mackinawite, Cubic FeS and troilite. This work forms part of a series of contributions !::, -SO ;" to studies of the crystal chemistry and phase rela- S -100 tions of the iron sulfides (LENNIE,1994; LENNIEet :;;i at. 1995a, 1995b). Q' -120 ~ ~ -140 MACKINAWITE 2!, Mackinawite possesses a layer structure similar ~-160-ISO L~--,--__:_r:-__;~-?:~~ to that found in tetragonal lead oxide (see Table 1.0 1.2 1.4 1.6 I.S 2.0 1) with Fe and S occupying the sites of 0 and Pb, FeS FeS 2 respectively, in PbO. Here we investigate further Composition (FeS,) the oxidation state and local structure of Fe and S FIG. 1. Schematic free energy-composition diagram for in synthetic mackinawite. the iron sulfide minerals. The gain in free energy, ~fGO(298.l5 K), in kl.mol " (of Fe), is that obtained from forming the various sulfides from the elements. Open cir- Synthesis cles represent Amorphous FeS (1), mackinawite (2), grei- gite (3) and marcasite (4). Filled circles represent the Several different methods for synthesis of mack- pyrrhotites: Troilite (5), FellS 12 (6), FelOS11(7), Fe9SlO (8), inawite have been described in the literature. Fe7SB (9), and pyrite (l0). Data for 1 - 3 are calculated BERNER(1964) found that reaction of metallic Fe from solubility data of DAVISON (1991); for 4 and 10 with a saturated solution of H2S gave well crys- from CHASE et al. (1985) and for 5 - 9 from GRPNVOLD and STPLEN (1992). The dashed line is the join between tallised tetragonal FeS. Alternatively, mackinawite monoclinic pyrrhotite and pyrite; the solid line is the join has been prepared by reacting aqueous solutions between troilite and monoclinic pyrrhotite. Free energy of Fe(U) ions and HS- ions forming an X-ray amor- values for phases 1, 2, 3, and 4 lie above these lines phous precipitate which, even on ageing, gives a suggesting metastability for these phases at this poorly crystalline mackinawite. temperature. In the present work, sulfidation of a commercial iron wire (Roncraft, Sheffield) was used to produce crystalline mackinawite. Here, a solution of Na2S O.S phases (BONEVet al., 1989). The keys to understand- was added slowly to an molar acetic acid/ace- ing these phases are concerned with their mechanisms tate buffer (pH = 4.6) in which approximately 4- of formation in solution, and with relationships to Sg of finely divided iron wire had been previously other iron sulfides, as determined by the kinetics and immersed. Dissolution of the iron wire by reaction mechanisms of transformations. The known iron sul- with the acetate buffer for 30 minutes or so evolved fide minerals, their structures and stabilities are sum- H2, providing a reducing solution environment. marized in Table 1. Detailed accounts of the mineral The Na2S solution was then added slowly, and ex- chemistry of these sulfides are provided by WArm ceeded the capacity of the acetate buffer, increasing (1970), POWERand FINE (1976), VAUGHANand the pH to a value of approximately pH = 6.S. This CRAIG(1978), VAUGHANand LENNIE(1991). solution, containing the iron wire, was allowed to Formation of iron-sulfur phases is affected by stand for 24 hours. The generated H2 trapped in the d-electron configuration of Fe, resulting in a the wool matte floated the iron to the top of the more complex range of structures than would be solution: Mackinawite forming on the iron surface otherwise expected. As an example of this, the for- spalled off and dropped to the bottom of the flask. mation of (metastable) marcasite (FeS2) from After reaction, the remaining iron wool was re- acidic aqueous solution has been explained by the moved, the supernatent solution poured off, and effect of bonding of H+ at the crystal surface on the mackinawite carefully rinsed then dried under the Fe 3d electronic structure. We were interested vacuum. Samples were sealed under vacuum in in examining the formation of the reduced phase(s) glass tubes until required for further analysis. to determine if electron withdrawing effects might also be responsible for formation of Cubic FeS and Crystal structure troilite, both of which, like marcasite, show pH- dependant formation. The mackinawite synthesised as described above In the present article, we examine the monosul- was examined using high resolution X-ray powder fide mackinawite and explore the properties of diffraction from which a Rietveld structure re- "amorphous FeS" as a key to understanding the finement was obtained. The structural parameters Iron sulfide formation 119 Table 1. The iron sulfides, their structures, stabilities and natural occurrence' Composition Crystal structure type Stability:j: Natural occurrence mineral structural data t FeS2 pyrite-type (cubic) The most abundant sulfide. Found as an accessory pyrite Pa3; a= 5.42 mineral in many igneous, metamorphic and sedi- mentary rocks including coals.
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth
    ACCRETION OF WATER IN CARBONACEOUS CHONDRITES: CURRENT EVIDENCE AND IMPLICATIONS FOR THE DELIVERY OF WATER TO EARLY EARTH Josep M. Trigo-Rodríguez1,2, Albert Rimola3, Safoura Tanbakouei1,3, Victoria Cabedo Soto1,3, and Martin Lee4 1 Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Catalonia, Spain. E-mail: [email protected] 2 Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Catalonia, Spain 3 Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain. E-mail: [email protected] 4 School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK. Manuscript Pages: 37 Tables: 2 Figures: 10 Keywords: comet; asteroid; meteoroid; meteorite; minor bodies; primitive; tensile strength Accepted in Space Science Reviews (SPAC-D-18-00036R3, Vol. Ices in the Solar System) DOI: 10.1007/s11214-019-0583-0 Abstract: Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies.
    [Show full text]
  • A New Occurrence of Terrestrial Native Iron in the Earth's Surface
    geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine.
    [Show full text]
  • Sulfide/Silicate Melt Partitioning During Enstatite Chondrite Melting
    61st Annual Meteoritical Society Meeting 5255.pdf SULFIDE/SILICATE MELT PARTITIONING DURING ENSTATITE CHONDRITE MELTING. C. Floss1, R. A. Fogel2, G. Crozaz1, M. Weisberg2, and M. Prinz2, 1McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, St. Louis MO 63130, USA ([email protected]), 2American Museum of Natural History, Department of Earth and Planetary Sciences, New York NY 10024, USA. Introduction: Aubrites are igneous rocks thought (present only in CaS-saturated charges) has a flat REE to have formed from an enstatite chondrite-like pattern with abundances of about 0.5 x CI. precursor [1]. Yet their origin remains poorly Discussion: Oldhamite/glass D values are close to understood, at least partly because of confusion over 1 for most REE, consistent with previous results the role played by sulfides, particularly oldhamite. [4,5,6], and significantly lower than those expected CaS in aubrites contains high rare earth element based on REE abundances in aubritic oldhamite. In (REE) abundances and exhibits a variety of patterns contrast, D values for FeS are surprisingly high (from [2] that reflect, to some extent, those seen in about 0.1 to 1), given the low REE abundances of oldhamite from enstatite chondrites [3]. However, natural troilite. FeS/silicate partition coefficients experimental work suggests that CaS/silicate melt reported by [5] are somewhat lower, but exhibit a REE partition coefficients are too low to account for similar pattern. Alkali loss from the charges, the high abundances observed [4,5] and do not explain resulting in Ca-enriched glass, might provide a partial the variable patterns.
    [Show full text]
  • MACKINAWITE from SOUTH AFRICA W. C J. Van RDNSBU*.O, Geological Surtey Oj Soulh Africa, Preloria, Soulh A.[Ri Co, L. Lrbnunsbyc
    TI.IE AMERICAN MINERALOGIST, VOL 52, JULY AUGUST, 1967 MACKINAWITE FROM SOUTH AFRICA W. C J. vAN RDNSBU*.o,Geological Surtey oJ Soulh Africa, Preloria,Soulh A.[rico, AND L. LrBnuNsByc, Deparlment of Geology,Llnit:ersity of Pretoria, Pre!oria,Soul h Africa. ABSTRAcT Mackinawite has been identified in mafic and ultramafic rocks of the Bushveld igneous complex and Insizwa and also in the carbonatite and pegmatoid of Loolekop, Phalaborrva complex in South Africa. The mineral occurs predominantly as somewhat irregular to oriented intergrowths in pentlandite in all these occurrences and less commonly as regular oriented lamellae in chalcopyrite and rarely in cubanite. The textural evidence suggests that mackinawite may represent an exsolution product of pentlandite, chalcopyrite and cubanite. INrnonucrroN The iron sulphide, mackinawite was recently named in a paper by Evans, et al, (1964). Natural occurrencesof this mineral f rom Finland were describedby- Kouvo et al (1963)and from the Muskox intrusion in Canada by Chamberlain and Delabio (1965). During the presentinvestigation mackinawite was distinguishedfrom valleriite in the carbonatite and pegmatoid of Loolekop, Phalaborwa complex, in the Bushveld igneous complex, and from Insizwa, Cape Province.The mode of occurrenceof the mackinawite in the carbonatite difiers somewhatfrom that in the mafic rocks of Insizwa and the Bush- veld complex. MrNnn.q.rocv The physicaland optical propertiesof mackinawitefrom the Bushveid complex,Insizwa and Loolekop are very similar and are in closeagree- ment with the propertiesgiven for the same mineral from the Muskox intrusion by Chamberlain and Delabio (1965). The mineral takes a fairly good polish,particularly after buffing with a chromic oxide slurry.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
    Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock­ The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock­ annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • Arsenian Sphalerite from Mina Ai,Caran, Pampa Larga
    MINERALOGICAL NOTES AMERICAN MINERALOGIST, \IOL. 55, SEPTEMBER.OCTOBER, 1970 ARSENIANSPHALERITE FROM MINA AI,CARAN, PAMPALARGA, COPIAPO, CHILE Arew H. Cr-anr, Department oJ GeologicalSciences, Queen's Uniaersity, Kingston, Ontario, Canado. ABSTRACT Bright pink sphalerite from the arsenic-rich Alacr6n deposit, with a:5.4110 +0.0003 A, is shown by electron-probe microanalysis to contain only traces of iron but 17 +0.3 weight percent As INrnooucrroN The literature containsnumerous reports of appreciablesolid solution of arsenicin sphalerite(e.g. Schroll, 1953; Fleischer,1955), but the an- alytical evidenceremains largeiy unconvincing.Moss (1955;and in Hey, 1955,Frondel, 1967)proposed that the mineral voltzite has the general composition (Zn,As)S or Zn(As,S), but Frondel (1967) subsequently found no evidenceto support this suggestion.Most recent electron- probe microanalysesof sphaleritedo not record even traces of arsentc. Ilowever, Herzenberg(1932,1933) found 0.64 weight percentarsenic by chemical analysisof a raspberry-redsphalerite-like mineral from Llall- agua, Bolivia, which he named gumuc'ionite.Later workers (e.g.Hey, 1955)have assumedthat this material representsa mixture of sphalerite and realgarbut no further work appearsto have been carried out on the original or similar specimens.The presentnote describesthe occurrence of an apparently similar, and demonstrably arsenic-bearingsphalerite. Spner-Bnrrr rN rHE Ar,acnAN DBposrr Sphalerite is a minor constituent of the mineralogically complex, polymetallic Alacr6n vein deposit (Parker, Salas and P6rez, 1963),in the Pampa Larga mining district of northern Chile (Lat. 27"36'5.;Long. 70'11'W.). It occurs, however, in at least three parageneticcontexts: (1) in associationwith early arsenopyrite, pyrite, stibnite, smithite, aAsS (Clark, 1970a)and arsenolamprite(Clark, 1970b), among other minerals; (2) with late-stagegreigite, pyrite, native arsenic,realgar, and orpiment;and (3) rarely, as free-standingcrystals in vugs, in association with realgar and orpiment.
    [Show full text]
  • Using the High-Temperature Phase Transition of Iron Sulfide Minerals As
    www.nature.com/scientificreports OPEN Using the high-temperature phase transition of iron sulfde minerals as an indicator of fault Received: 9 November 2018 Accepted: 15 May 2019 slip temperature Published: xx xx xxxx Yan-Hong Chen1, Yen-Hua Chen1, Wen-Dung Hsu2, Yin-Chia Chang2, Hwo-Shuenn Sheu3, Jey-Jau Lee3 & Shih-Kang Lin2 The transformation of pyrite into pyrrhotite above 500 °C was observed in the Chelungpu fault zone, which formed as a result of the 1999 Chi-Chi earthquake in Taiwan. Similarly, pyrite transformation to pyrrhotite at approximately 640 °C was observed during the Tohoku earthquake in Japan. In this study, we investigated the high-temperature phase-transition of iron sulfde minerals (greigite) under anaerobic conditions. We simulated mineral phase transformations during fault movement with the aim of determining the temperature of fault slip. The techniques used in this study included thermogravimetry and diferential thermal analysis (TG/DTA) and in situ X-ray difraction (XRD). We found diversifcation between 520 °C and 630 °C in the TG/DTA curves that signifes the transformation of pyrite into pyrrhotite. Furthermore, the in situ XRD results confrmed the sequence in which greigite underwent phase transitions to gradually transform into pyrite and pyrrhotite at approximately 320 °C. Greigite completely changed into pyrite and pyrrhotite at 450 °C. Finally, pyrite was completely transformed into pyrrhotite at 580 °C. Our results reveal the temperature and sequence in which the phase transitions of greigite occur, and indicate that this may be used to constrain the temperature of fault-slip. This conclusion is supported by feld observations made following the Tohoku and Chi-Chi earthquakes.
    [Show full text]
  • FREE MACKINAWITE FREE SULFIDATED IRON When and Where You Want It
    FREE MACKINAWITE FREE SULFIDATED IRON when and where you want it REACTIVE IRON SULFIDES As reviewed by Fan et al., (2017), multiple studies have shown that various reactive iron sulfide species can aid in the biogeochemical transformation of organic constituents of interest (COIs) such as halogenated organic solvents, and that they can be useful in precipitating inorganic COIs such as arsenic, chromium and mercury. This is most apparent with nanoscale or fine (e.g., < 10 micron) zero valent iron (ZVI) particles because they have more surface area which can be quickly passivated, hence within a short period of time, they typically exhibit lower efficiency for dechlorination. In an effort to mitigate this phenomenon various formulations of sulfidated iron (S-ZVI) and other reactive iron sulfide species such as mackinawite per se have become available commercially as remedial amendments designed to be injected or otherwise applied directly to an impacted environment. The reactive properties of S-ZVI adhere to classic corrosion chemistry principles governing the conditions under which sulfur attacks iron. Recognizing the potential distinctions between chemical sulfidation and natural sulfidation, an alternative means of harnessing the activity of reactive iron sulfides - instead of buying mackinawite alone (for example) - is to generate multiple iron sulfide species, in place, and for free as part of an engineered remedial amendment that integrates multiple synergistic biogeochemical reactions (see Mangayayam et al, 2019 for emerging insights into the actual value of buying and applying sulfidated iron products directly). In so doing the remedial actions occur where they are needed and not simply where the insoluble precipitates are directly emplaced.
    [Show full text]
  • Bulk Mineralogical Changes of Hydrous Micrometeorites During Heating in the Upper Atmosphere at Temperatures Below 1000 °C
    Bulk mineralogical changes of hydrous micrometeorites during heating in the upper atmosphere at temperatures below 1000 °C Item Type Article; text Authors Nozaki, Wataru; Nakamura, Tomoki; Noguchi, Takaaki Citation Nozaki, W., Nakamura, T., & Noguchi, T. (2006). Bulk mineralogical changes of hydrous micrometeorites during heating in the upper atmosphere at temperatures below 1000 °C. Meteoritics & Planetary Science, 41(7), 1095-1114. DOI 10.1111/j.1945-5100.2006.tb00507.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 06/10/2021 08:34:17 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656158 Meteoritics & Planetary Science 41, Nr 7, 1095–1114 (2006) Abstract available online at http://meteoritics.org Bulk mineralogical changes of hydrous micrometeorites during heating in the upper atmosphere at temperatures below 1000 °C Wataru NOZAKI1, Tomoki NAKAMURA1*, and Takaaki NOGUCHI2 1Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University 33, Hakozaki, Fukuoka 812-8581, Japan 2Materials and Biological Science, Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan *Corresponding author. E-mail: [email protected] (Received 04 August 2005; revision accepted 25 April 2006) Abstract–Small particles 200 μm in diameter from the hydrous carbonaceous chondrites Orgueil CI, Murchison CM2, and Tagish Lake were experimentally heated for short durations at subsolidus temperatures under controlled ambient pressures in order to examine the bulk mineralogical changes of hydrous micrometeorites during atmospheric entry. The three primitive meteorites consist mainly of various phyllosilicates and carbonates that are subject to decomposition at low temperatures, and thus the brief heating up to 1000 °C drastically changed the mineralogy.
    [Show full text]