The Glial Cell Line-Derived Neurotrophic Factor Family in Airway Infectious Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Glial Cell Line-Derived Neurotrophic Factor Family in Airway Infectious Disease The glial cell line-derived neurotrophic factor family in airway infectious disease A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 By Emma Connolly School of Biological Sciences Division of Infection, Immunity and Respiratory Medicine Contents List of Figures ..................................................................................................... 9 List of tables ...................................................................................................... 13 Abbreviations .................................................................................................... 14 Abstract ............................................................................................................. 17 Declaration ........................................................................................................ 18 Copyright Statement ......................................................................................... 18 Acknowledgement ............................................................................................ 19 Chapter 1 : Introduction .................................................................................... 20 1.0 Introduction ............................................................................................. 21 1.1 Airway host defence ................................................................................ 21 1.2 Tissue-resident lung macrophages ......................................................... 22 1.3 The function of tissue-resident lung macrophages .................................. 24 1.4 Regulation of alveolar macrophages by the airway epithelium ................ 24 1.5 The role of alveolar macrophages at homeostasis .................................. 26 1.6 The role of alveolar macrophages in host defence .................................. 27 1.7 Airway host defence to viral infection ...................................................... 28 1.7.1 Pattern recognition receptors ............................................................ 28 1.7.2 Toll-like receptors ............................................................................. 28 1.7.3 The Interferons ................................................................................. 31 1.8 Airway host defence to Influenza virus infection ...................................... 34 1.8.1 Interferon-stimulated genes important in influenza virus infection .... 35 1.8.2 Dysregulation of the type I IFN response .......................................... 36 1.9 The role of macrophages in airway disease ............................................ 36 1.9.1 The adaptation and plasticity of macrophages to their environment . 36 1.9.2 Classically activated and alternatively activated macrophages......... 37 1 1.10 Chronic airway disease ......................................................................... 38 1.11 Neuroimmune crosstalk ......................................................................... 40 1.12 Neurotrophic factors .............................................................................. 41 1.12.1 The glial cell line-derived neurotrophic factor family ....................... 42 1.12.2 RET-dependent GDNF family signalling ......................................... 43 1.12.3 GDNF family signalling in lipid rafts ................................................ 44 1.12.4 RET-independent GDNF family signalling ...................................... 45 1.12.5 The functions of the GDNF family in the nervous system ............... 45 1.12.6 The GDNF family in neurological diseases ..................................... 46 1.13 The neuroimmune crosstalk in lymphatic tissue .................................... 46 1.14 The neuroimmune crosstalk in mucosal tissue ...................................... 47 1.15 The functions of the GDNF family outside of the nervous system ......... 48 1.16 The role of the GDNF family in lymphatic tissue .................................... 49 1.17 The role of the GDNF family in the Intestine .......................................... 49 1.18 The peripheral nervous system and neurotrophic factors in chronic airway disease ............................................................................................... 50 1.19 Research hypothesis and aims ............................................................. 53 Chapter 2 : Methods ......................................................................................... 54 2.1 Mouse strains .......................................................................................... 55 2.2 Mouse experimental models .................................................................... 55 2.2.1 Influenza infection model .................................................................. 55 2.2.2 House dust mite model ..................................................................... 55 2.3 Isolation of mouse tissue cells ................................................................. 56 2.3.1 Isolation of murine bone marrow cells............................................... 56 2.3.2 Culture of murine bone marrow-derived macrophages ..................... 56 2.3.3 Isolation of mouse bronchoalveolar lavage macrophages ................ 56 2.3.4 Digestion of mouse lung tissue ......................................................... 57 2 2.3.5 Digestion of mouse ear and back skin tissue .................................... 57 2.4 Isolation of human tissue cells ................................................................ 58 2.4.1 Isolation of human peripheral blood monocytes................................ 58 2.4.2 Culture of human monocyte-derived macrophages .......................... 58 2.4.3 Isolation of human bronchoalveolar lavage macrophages ................ 59 2.4.4 Isolation and culture of airway macrophages from human lung resection samples ...................................................................................... 59 2.4.5 Sputum sample collection and processing ........................................ 60 2.5 Cell line culture ........................................................................................ 60 2.5.1 Beas-2b cells .................................................................................... 60 2.5.2 A549 cells ......................................................................................... 61 2.5.3 THP-1 cells ....................................................................................... 61 2.6 mRNA detection assays .......................................................................... 61 2.6.1 RT-qPCR .......................................................................................... 61 2.6.2 RT2 Profiler PCR array for mouse neurotrophins and receptors ....... 62 2.7 Protein detection assays ......................................................................... 63 2.7.1 Concentrating protein in supernatants .............................................. 63 2.7.2 Cytokine Bead Array ......................................................................... 63 2.7.3 Human TNFα and IL-6 ELISAs ......................................................... 64 2.7.4 Human and mouse Neurturin ELISAs ............................................... 64 2.7.5 Western Blotting ............................................................................... 65 2.7.6 Immunocytochemistry and immunofluorescence .............................. 65 2.7.7 PathScan Antibody Array Kits (Fluorescent Readout) ...................... 66 2.7.8 Flow cytometry .................................................................................. 66 2.8 Phagocytosis assay ................................................................................. 70 2.9 Cell death detection assays .................................................................... 70 3 2.9.1 Annexin V flow staining ..................................................................... 70 2.9.2 LDH assay ........................................................................................ 70 2.10 Statistics ................................................................................................ 71 Chapter 3 : Characterisation of the GDNF family receptor, GFRα2, on airway macrophages in health and disease ................................................................. 72 3.1 Introduction .............................................................................................. 73 3.1.1 Neuronal factor function outside the nervous system ....................... 73 3.1.2 Are neuronal factors expressed on airway immune cells? ................ 73 3.1.3 The GDNF family expression and signalling on airway cells ............. 74 3.1.4 The role of the GDNF family in disease ............................................ 75 3.1.5 Hypothesis ........................................................................................ 76 3.1.6 Aims .................................................................................................. 76 3.2 Results .................................................................................................... 77 3.2.1 Screening mouse macrophages for neurotrophic factors.................. 77 3.2.2 The expression of the GDNF family on mouse bone marrow-derived macrophages ............................................................................................. 82 3.2.3 The cytokine IL-4 enhances the mRNA of the GFRα2 receptor
Recommended publications
  • For Inflammatory Bowel Disease
    250 NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedures overview of leukapheresis (white cell apheresis) for inflammatory bowel disease Introduction This overview has been prepared to assist members of the Interventional Procedures Advisory Committee (IPAC) in making recommendations about the safety and efficacy of an interventional procedure. It is based on a rapid review of the medical literature and specialist opinion. It should not be regarded as a definitive assessment of the procedure. Date prepared This overview was prepared in August 2004. Procedure names • Leukapheresis • White cell apheresis. • Leukocyte removal therapy. • Selective granulocyte and monocyte adsorption apheresis. • Leukocytapheresis. Specialty society • British Society of Gastroenterology. Description Indications Inflammatory bowel disease. Ulcerative colitis and Crohn’s disease are the most common forms of inflammatory bowel disease. Ulcerative colitis causes inflammation and ulceration of the rectum and sometimes the colon. Symptoms include bloody diarrhoea and rectal bleeding. Crohn’s disease usually causes inflammation and ulceration of the small and large intestines, but it can affect any part of the digestive tract. The main symptoms are abdominal pain, diarrhoea and weight loss. Both of these are chronic conditions, characterised by periods of clinical relapse and remission. The incidence of ulcerative colitis is around 10 to 20 per 100,000 per year in the UK and the incidence of Crohn’s disease is approximately 5 to 10 per 100,000 per year.1 Current treatment and alternatives Conservative treatments include dietary measures, and medications to control inflammation. Immunosuppressants may be used if other medical therapies are ineffective at maintaining remission. Patients with ulcerative colitis that does not respond to medical therapy may be treated with surgery to remove the colon.
    [Show full text]
  • The GDNF Family: a Role in Cancer? Graeme C
    Volume 20 Number 1 January 2018 pp. 99–117 99 www.neoplasia.com The GDNF Family: A Role in Cancer? Graeme C. Fielder*, 1, 2, Teresa Wen-Shan Yang*, 1, Mahalakshmi Razdan†, Yan Li†, Jun Lu†, Jo K. Perry‡, Peter E. Lobie§ and Dong-Xu Liu† *University of Auckland, Auckland, New Zealand; †The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; ‡Liggins Institute, University of Auckland, Auckland, New Zealand; §Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China Abstract The glial cell line–derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non–hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention. Neoplasia (2018) 20, 99–117 Introduction GFL Signaling The glial cell line–derived neurotrophic factor (GDNF) family of Each member of the GDNF family is expressed as a pre-pro-precursor ligands (GFLs) is comprised of four structurally related factors: protein, which is proteolytically cleaved at a putative furin-like GDNF,neurturin(NRTN),artemin(ARTN),andpersephin cleavage site (RAAR) by yet unidentified enzymes to generate an (PSPN) [1–3].
    [Show full text]
  • Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: a Phase II Randomized Trial
    Supplementary Materials: Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: a Phase II Randomized Trial Johanna Buchroithner, Friedrich Erhart, Josef Pichler, Georg Widhalm, Commented [FE1]: Authorship order was changed by Matthias Preusser, Günther Stockhammer, Martha Nowosielski, Sarah Iglseder, Christian F. request from the senior corresponding author – details see Freyschlag, Stefan Oberndorfer, Karin Bordihn, Gord von Campe, Markus Hoffermann, email Reinhard Ruckser, Karl Rössler, Sabine Spiegl-Kreinecker, Michael B. Fischer, Thomas Czech, Carmen Visus, Günther Krumpl, Thomas Felzmann and Christine Marosi Figure S1. Influence of extent-of-resection (EOS) on overall survival (OS). Patients of the Audencel cohort and the SOC cohort were stratified into three groups based on the EOR that could be achieved (100% vs 90-99% vs. 70-90%). A minimal EOR of 70% was an inclusion criterion for the study, so no study patient was below that threshold. Kaplan-Meier analysis shows that EOR did not have an influence on the OS outcome in the Audencel cohort compared to the SOC cohort (p = 0.762). Commented [M2]: “ml” in figure s2a should be changed to “mL” Commented [FE3R2]: I would rather prefer to have “ml” here Figure S2. Relation of DC vaccine quality control and overall survival (OS). One main quality control parameter measured during the production of the personalized, autologous vaccine was the IL-12 production capacity of every single vaccine. When analyzing a possible correlation with OS, no such connection could be made (a, p = 0.891). Similarly, the T cell proliferation capacity of the DC vaccine did not have a connection to survival — for three different DC: T cell ratios tested: 1:5 (b),1:10 (c), 1:20 (d).
    [Show full text]
  • GDNF Family Ligands and DRG Sensory Neurons 4337
    Development 127, 4335-4344 (2000) 4335 Printed in Great Britain © The Company of Biologists Limited 2000 DEV1547 Positive and negative interactions of GDNF, NTN and ART in developing sensory neuron subpopulations, and their collaboration with neurotrophins Christel Baudet1, Åsa Mikaels1, Heiner Westphal2, Jens Johansen3, Teit E. Johansen3 and Patrik Ernfors1,* 1Laboratory of Molecular Neurobiology, Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden 2Laboratory of Mammalian Genes and Development, National Institute of Health, Bethesda, MD 20892, USA 3NsGene A/S, DK-2570 Ballerup, Denmark *Author for correspondence (e-mail: [email protected]) Accepted 25 July; published on WWW 26 September 2000 SUMMARY Glial cell line-derived neurotrophic factor (GDNF), family receptors are medium sized, whereas small-caliber neurturin (NTN) and neublastin/artemin (ART) are distant nociceptive cells preferentially express a single receptor. In members of the transforming growth factor β family, contrast to brain-derived neurotrophic factor (BDNF)- and have been shown to elicit neurotrophic effects upon dependent neurons, embryonic nerve growth factor (NGF)- several classes of peripheral and central neurons. Limited dependent nociceptive neurons switch dependency to information from in vitro and expression studies has GDNF, NTN and ART postnatally. Neurons that survive in also substantiated a role for GDNF family ligands in the presence of neurotrophin 3 (NT3) or neurotrophin 4 mammalian somatosensory neuron development. Here, we (NT4), including proprioceptive afferents, Merkel end show that although dorsal root ganglion (DRG) sensory organs and D-hair afferents, are also supported by GDNF neurons express GDNF family receptors embryonically, family ligands neonatally, although at postnatal stages they they do not survive in response to their ligands.
    [Show full text]
  • Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: from Biology to Therapy
    International Journal of Molecular Sciences Review Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: From Biology to Therapy 1, 1, 1,2,3, 3,4 María San Román Gil y, Javier Pozas y, Javier Molina-Cerrillo * , Joaquín Gómez , Héctor Pian 3,5, Miguel Pozas 1, Alfredo Carrato 1,2,3 , Enrique Grande 6 and Teresa Alonso-Gordoa 1,2,3 1 Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; [email protected] (M.S.R.G.); [email protected] (J.P.); [email protected] (M.P.); [email protected] (A.C.); [email protected] (T.A.-G.) 2 The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain 3 Medicine School, Alcalá University, 28805 Madrid, Spain; [email protected] (J.G.); [email protected] (H.P.) 4 General Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain 5 Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain 6 Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain; [email protected] * Correspondence: [email protected] These authors have contributed equally to this work. y Received: 30 June 2020; Accepted: 10 July 2020; Published: 13 July 2020 Abstract: Thyroid cancer represents a heterogenous disease whose incidence has increased in the last decades. Although three main different subtypes have been described, molecular characterization is progressively being included in the diagnostic and therapeutic algorithm of these patients. In fact, thyroid cancer is a landmark in the oncological approach to solid tumors as it harbors key genetic alterations driving tumor progression that have been demonstrated to be potential actionable targets.
    [Show full text]
  • Regulation of GDNF Expression in Sertoli Cells
    157 3 REPRODUCTIONREVIEW Regulation of GDNF expression in Sertoli cells Parag A Parekh1, Thomas X Garcia2,3 and Marie-Claude Hofmann1 1Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA, 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA, 3Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA Correspondence should be addressed to M-C Hofmann; Email: [email protected] Abstract Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self- renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis. Reproduction (2019) 157 R95–R107 Introduction reserve stem cells (A0), coexisting with a population of renewing spermatogonia that they called A1–A4 Proper regulation of stem cell fate is critical to maintain (Clermont & Leblond 1953, Clermont & Bustos-Obregon adequate cell numbers in health and diseases.
    [Show full text]
  • Neuronal Types and Their Specification Dynamics in the Autonomic Nervous System
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM Alessandro Furlan Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © Alessandro Furlan, 2016 ISBN 978-91-7676-419-0 On the cover: abstract illustration of sympathetic neurons extending their axons Credits: Gioele La Manno NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM THESIS FOR DOCTORAL DEGREE (Ph.D.) By Alessandro Furlan Principal Supervisor: Opponent: Prof. Patrik Ernfors Prof. Hermann Rohrer Karolinska Institutet Max Planck Institute for Brain Research Department of Medical Biochemistry and Research Group Developmental Neurobiology Biophysics Division of Molecular Neurobiology Examination Board: Prof. Jonas Muhr Co-supervisor(s): Karolinska Institutet Prof. Ola Hermansson Department of Cell and Molecular Biology Karolinska Institutet Department of Neuroscience Prof. Tomas Hökfelt Karolinska Institutet Assistant Prof. Francois Lallemend Department of Neuroscience Karolinska Institutet Division of Chemical Neurotransmission Department of Neuroscience Prof. Ted Ebedal Uppsala University Department of Neuroscience Division of Developmental Neuroscience To my parents ABSTRACT The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbation of autonomic nervous system activity can lead to a broad spectrum of disorders collectively known as dysautonomia and other diseases such as hypertension.
    [Show full text]
  • Statistical Analysis Plan
    STATISTICAL ANALYSIS PLAN NCT Number: NCT03259334 Study Title: A Phase 3 Randomized, Double-blind, Placebo-controlled, Parallel-group Efficacy and Safety Study of SHP647 as Induction Therapy in Subjects with Moderate to Severe Ulcerative Colitis (FIGARO UC 301) Study Number: SHP647-301 SAP Version and Date: Version 3.0: 04 Nov 2020 STATISTICAL ANALYSIS PLAN SHP647 PHASE 3 A Phase 3 Randomized, Double-blind, Placebo-controlled, Parallel group Efficacy and Safety Study of SHP647 as Induction Therapy in Subjects with Moderate to Severe Ulcerative Colitis (FIGARO UC 301) PROTOCOL IDENTIFIER: SHP647-301 Study Sponsor(s): Shire Human Genetic Therapies, Inc. ("Shire"), 300 Shire Way, Lexington, MA 02421 USA Author: , PPD Protocol: V1 (06 Jul 2017); Amendment 1, 05 Sep 2018; Amendment 2, 11 Nov 2019 SAP Version #: 3.0 SAP Date: For non-commercial04 Nov 2020 use only Status: Final Shire CONFIDENTIAL Page 2 SHP647-301 Statistical Analysis Plan v 3.0 SHP647 04 Nov 2020 REVISION HISTORY Version Issue Date Summary of Changes 1.0 30 Aug 2019 Final 2.0 13 Aug 2020 Incorporated Protocol Amendment 2 Updates. - Added Hypersensitivity AEs. - Changed study treatment name. - Changed sample size calculation. - Changed the term ‘dimension’ to ‘domain’ for IBDQ Domain Scores. - Updated Prior medication definition to remove restriction for stop date. Due to the early discontinuation of the study before full enrollment, previously planned supplementary and subgroup analyses were removed. - Removed Per-protocol Set and Completers Set. - Removed supplementary analyses for efficacy endpoints (per-protocol, completer, missing data assumptions, etc). - Removed subgroup for efficacy endpoints beyond the actual randomization factors.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
    GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756
    [Show full text]
  • Appendix 1 – Protocol for Preventing Or Reversing Chronic Disease The
    Appendix 1 – Protocol for Preventing or Reversing Chronic Disease The first author has developed a protocol over the past decade for preventing or reversing chronic disease based on the following systemic medical principle: “at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective”[1]. The protocol methodology refines the age-old principles of both reducing harm in addition to providing treatment, and allows better identification of factors that contribute to the disease process (so that they may be eliminated if possible). These contributing factors are expansive and may include a combination of Lifestyle choices (diet, exercise, smoking), iatrogenic and biotoxin exposures, environmental/occupational exposures, and psychosocial stressors. This strategy exploits the existing literature to identify patterns of biologic response using biomarkers from various modalities of diagnostic testing to capture a much broader list of potential contributing factors. Existing inflammatory bowel diseases (IBD) Biomarker Identification to Remove Contributing Factors and Implement Treatment The initial protocol steps are diagnostic. The main output of these diagnostics will be identification of the biomarker levels and symptoms that reflect abnormalities, and the directions of change required to eliminate these abnormalities. In the present study, hundreds of general and specific biomarkers and symptoms were identified from the core IBD literature. The highest frequency (based on numbers of record appearances) biomarkers and symptoms were extracted, and are listed in Table 1 (highest frequency items first, reading down each column before proceeding to the next column). They are not necessarily consensus biomarkers. They are biomarkers whose values were altered by a treatment or contributing factor, and reported in the core IBD literature.
    [Show full text]
  • Artemin-Stimulated Progression of Human Non–Small Cell Lung Carcinoma Is Mediated by BCL2
    Published OnlineFirst June 8, 2010; DOI: 10.1158/1535-7163.MCT-09-1077 Research Article Molecular Cancer Therapeutics Artemin-Stimulated Progression of Human Non–Small Cell Lung Carcinoma Is Mediated by BCL2 Jian-Zhong Tang1, Xiang-Jun Kong3, Jian Kang1, Graeme C. Fielder1, Michael Steiner1, Jo K. Perry1, Zheng-Sheng Wu4, Zhinan Yin5, Tao Zhu3, Dong-Xu Liu1, and Peter E. Lobie1,2 Abstract We herein show that Artemin (ARTN), one of the glial cell line–derived neurotrophic factor family of li- gands, promotes progression of human non–small cell lung carcinoma (NSCLC). Oncomine data indicate that expression of components of the ARTN signaling pathway (ARTN, GFRA3, and RET) is increased in neoplas- tic compared with normal lung tissues; increased expression of ARTN in NSCLC also predicted metastasis to lymph nodes and a higher grade in certain NSCLC subtypes. Forced expression of ARTN stimulated survival, anchorage-independent, and three-dimensional Matrigel growth of NSCLC cell lines. ARTN increased BCL2 expression by transcriptional upregulation, and inhibition of BCL2 abrogated the oncogenic properties of ARTN in NSCLC cells. Forced expression of ARTN also enhanced migration and invasion of NSCLC cells. Forced expression of ARTN in H1299 cells additionally resulted in larger xenograft tumors, which were high- ly proliferative, invasive, and metastatic. Concordantly, either small interfering RNA–mediated depletion or functional inhibition of endogenous ARTN with antibodies reduced oncogenicity and invasiveness of NSCLC cells. ARTN therefore mediates progression of NSCLC and may be a potential therapeutic target for NSCLC. Mol Cancer Ther; 9(6); 1697–708. ©2010 AACR. Introduction Therefore, identification and subsequent targeting of novel oncogenic pathways may provide an advantage to Lung carcinoma is currently responsible for the highest the current regimens used to treat lung carcinoma and cancer-related mortality worldwide, with overall 5-year consequently improve prognosis.
    [Show full text]
  • The Production Cycle of Blood and Transfusion: What the Clinician Should Know
    MEDICAL EDUCATION The production cycle of blood and transfusion: what the clinician should know O ciclo de produção do sangue e a transfusão: o que o médico deve saber Gustavo de Freitas Flausino1, Flávio Ferreira Nunes2, Júnia Guimarães Mourão Cioffi3, Anna Bárbara de Freitas Carneiro-Proietti4 DOI: 10.5935/2238-3182.20150047 ABSTRACT Since the history of mankind, blood has been associated with the concept of life. How- 1 Medical School student at the Federal University of Ouro Preto – UFOP. Ouro Preto, MG – Brazil. ever, improper use of blood and blood products increases the risk of transfusion-related 2 MD, Occupational Physician. Hemominas Foundation, complications and adverse events to recipients. It also contributes to the shortage of Hospital Foundation of Minas Gerais State – FHEMIG. Belo Horizonte, MG – Brazil. blood products and possibility of unavailability to patients in real need. Objective: 3 MD, Hematologist. President of the Hemominas Founda- this study aims to describe the history of blood transfusion and correct way of using tion. Belo Horizonte, MG – Brazil. 4 MD, Hematologist. Post-doctorate in Hematology. Re- hemotherapy, aiming to clarify to medical students and residents, as well as interested searcher and international consultant at the Hemominas doctors, the importance of this knowledge when prescribing a hemo-component. Meth- Foundation. Belo Horizonte, MG – Brazil. odology: the topics described correspond to the summary of knowledge taught during the training courses offered by the Hemominas Foundation for medical students and residents. Conclusion: the doctor’s performance is undeniably linked to the scientific conception of his fundamentals gradually and continuously obtained since the begin- ning of medical training.
    [Show full text]