Lexbank: a Multilingual Lexical Resource for Low-Resource

Total Page:16

File Type:pdf, Size:1020Kb

Lexbank: a Multilingual Lexical Resource for Low-Resource LEXBANK: A MULTILINGUAL LEXICAL RESOURCE FOR LOW-RESOURCE LANGUAGES by Feras Ali Al Tarouti M.S., King Fahd University of Petroleum & Minerals, 2008 B.S., University of Dammam, 2001 A dissertation submitted to the Graduate Faculty of the University of Colorado Colorado Springs in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2016 ii © Copyright by Feras Ali Al Tarouti 2016 All Rights Reserved iii This dissertation for Doctor of Philosophy degree by Feras Ali Al Tarouti has been approved for the Department of Computer Science by Jugal Kalita, Chair Tim Chamillard Rory Lewis Khang Nhut Lam Sudhanshu Semwal Date iv Al Tarouti, Feras A. (Ph.D., Computer Science) LexBank: A Multilingual Lexical Resource for Low-Resource Languages Dissertation directed by Professor Jugal Kalita In this dissertation, we present new methods to create essential lexical resources for low-resource languages. Specifically, we develop methods for enhancing automatically cre- ated wordnets. As a baseline, we start by producing core wordnets, for several languages, using methods that need limited freely available resources for creating lexical resources (Lam et al., 2014a,b, 2015b). Then, we establish the semantic relations between synsets in wordnets we create. Next, we introduce a new method to automatically add glosses to the synsets in our wordnets. Our techniques use limited resources as input to ensure that they can be felicitously used with languages that currently lack many original resources. Most existing research works with languages that have significant lexical resources available, which are costly to construct. To make our created lexical resources publicly available, we developed LexBank which is a web-based system that provides language services for several low-resource languages. To my mother, father and my wife. vi Acknowledgments I would like to express my appreciation to my wife and the mother of my kids Omima for the unlimited support she gave to me during my journey toward my Ph.D. I am also very grateful to the support and guidance provided by my advisor Dr. Jugal Kalita. In addition, I would like to thank my dissertation committee members: Dr. Sudhanshu Semwal, Dr. Tim Chamillard, Dr. Rory Lewis and Dr. Khang Nhut Lam for their guidance and consultation. vii Table of Contents 1 Introduction 1 1.1 Motivation . 1 1.2 Research Focus . 4 1.2.1 Assamese Language . 4 1.2.1.1 Assamese Script . 5 1.2.1.2 Assamese Morphology . 5 1.2.1.3 Assamese Syntax . 6 1.2.2 Vietnamese Language . 6 1.2.2.1 Vietnamese Script . 7 1.2.2.2 Vietnamese Morphology . 7 1.2.2.3 Vietnamese Syntax . 8 1.3 Research Contributions . 8 2 Case Study: The Current Status of and Challenges in Processing Information in Arabic 11 2.1 Introduction . 11 2.2 Fundamentals of Arabic . 12 2.2.1 Arabic Script . 13 viii 2.2.2 Arabic Morphology . 16 2.2.3 Arabic Syntax . 18 2.3 Summary . 19 3 Literature Review 21 3.1 Automatic Construction of Wordnets . 21 3.2 Wordnet Management Tools . 26 3.3 Creating Bilingual Dictionaries . 29 3.4 Summary . 31 4 Automaticaaly Constructing Structured Wordnets 32 4.1 Constructing Core Wordnets . 32 4.2 Constructing Wordnet Semantic Relations . 34 4.3 Experiments and Evaluation . 37 4.4 Summary . 39 5 Enhancing Automatic Wordnet Construction Using Word Embeddings 40 5.1 Introduction . 40 5.2 Similarity Metrics . 42 5.3 Generating Word Embeddings . 43 5.4 Removing Irrelevant Words in Synsets . 44 5.5 Validating Candidate Relations . 45 5.6 Selecting Thresholds . 46 5.7 Experiments . 46 ix 5.7.1 Generating Vector Representations of Wordnets Words . 46 5.7.2 Producing Word Embeddings for Arabic . 48 5.8 Evaluation and Discussion . 49 5.9 Summary . 51 6 Selecting Glosses for Wordnet Synsets Using Word Embeddings 54 6.1 Literature Review . 54 6.2 Creating Language Model Using Word Embeddings . 55 6.3 Generating Vector Representation of Wordnet Synsets . 55 6.4 Automatically Selecting a Synset Gloss From a Corpus Using Synset2Vec . 58 6.5 Evaluation . 59 6.5.1 Using Synset2vec to Select Glosses for PWN Synsets . 60 6.5.2 Using Synset2vec to Select Glosses for Arabic, Assamese and Viet- namese Synsets . 61 6.5.3 Results and Discussion . 62 6.6 Summary . 64 7 LexBank: A Multilingual Lexical Resource 67 7.1 Introduction . 67 7.2 Database Design . 68 7.2.1 The System Settings Database . 68 7.2.1.1 Users_Info . 68 7.2.1.2 System_log . 69 7.2.2 The Lexical Resources Database . 69 x 7.2.2.1 CoreWordnet . 70 7.2.2.2 Sem_Relations . 70 7.2.2.3 WordnetGlosses . 70 7.2.2.4 Sem_Relations_Eval_Data . 71 7.2.2.5 Sem_Relations_Eval_Response . 71 7.2.2.6 WordnetGlosses_Eval_Data . 72 7.2.2.7 WordnetGlosses_Eval_Response . 72 7.3 Application Layer . 73 7.4 Web Interface Design and Implementation . 74 7.4.1 Registration Form . 75 7.4.2 Log-in Form . 76 7.4.3 The Main Menu . 78 7.4.4 Searching Wordnet By Lexeme Web Form . 79 7.4.5 Searching Wordnet by OffsetPos Web Form . 80 7.4.6 Evaluating Semantic Relations Between Synsets Web Form . 82 7.4.7 Evaluating Wordnet Synsets Glosses Web Form . 86 7.4.8 Searching Bilingual Dictionary Web Form . 88 7.4.9 Users Management Web Form . 89 7.5 Summary . 91 8 Conclusions 92 9 Future Work 95 9.1 Extending Bilingual Dictionaries . 95 xi 9.1.1 Related Work . 95 9.1.2 Extending Bilingual Dictionaries Using Structured Wordnets . 97 9.2 Integrating Part-of-speech Tagging into Wordnet Construction . 99 9.3 Wordnet Expansion Using Word Embeddings . 100 9.4 Producing Vector Representation for Multi-word Lexemes . 101 9.5 Vector Representation for Mulit-lingual Wordnets . 101 Bibliography 102 Appendices 115 A Papers Resulting from The Dissertation 115 B Data Processing Software Code 116 B.1 ComputCosineSim.py . 116 B.2 GenerateVectorForSynset.py . 118 B.3 GenerateVectorForGloss.py . 119 B.4 ComputeGlossSynsetSimilarity.py . 120 C Microsoft SQL Server Tables 121 D LexBank Utility Class 133 E IRB Approval Letter 146 xii List of Tables 3.1 A list of the Java libraries tested in (Finlayson, 2014). 26 3.2 A comparison between some of the Java libraries for accessing the PWN. 27 4.1 Wordnet semantic relations. 35 4.2 Size, coverage and precision of the core wordnets we create for Arabic, Assamese and Vietnamese. 38 4.3 Precision of the semantic relations established for our Arabic wordnet. 38 5.1 An example of cosine similarity between words in a candidate synset . 45 5.2 The weighted average similarity between related words in AWN. 48 5.3 Comparison between the weighted similarity averages obtained using dif- ferent word2vec settings. 49 5.4 Comparison between the number of synsets in AWN and our Arabic word- net using different threshold values. 49 5.5 Precision of the Arabic wordnet we create. 50 5.6 Precision of the Assamese wordnet we create. 50 5.7 Precision of the Vietnamese wordnet we create. 50 5.8 Examples of related words and their cosine similarity from our Arabic wordnet. 51 xiii 5.9 Examples of related words and their cosine similarity from our Assamese wordnet. 52 5.10 Examples of related words and their cosine similarity from our Vietnamese wordnet. 52 6.1 Meanings of the noun “spill” and its synonyms. 56 6.2 Cosine similarity between the different synset vectors and glosses of the word “abduction” in PWN. 60 6.3 The precision of selecting glosses for PWN synsets . 62 6.4 Examples of Arabic glosses we produce in our Arabic wordnet. 63 6.5 Examples of Assamese glosses we produce in our Assamese wordnet. 64 6.6 Examples of Vietnamese glosses we produce in our Vietnamese wordnet. 65 6.7 The precision of selecting glosses for Arabic, Assamese and Vietnamese synsets . 65 xiv List of Figures 3.1 An overview of the CSS management tool, adapted from (Nagvenkar et al., 2014) . 28 4.1 IWND . 33 4.2 Core wordnet mapping to structured wordnet. 35 4.3 Creating wordnet semantic relations using intermediate wordnet. 36 4.4 The effect of missing synsets in recovering wordnet semantic relations us- ing intermediate wordnet. 37 4.5 Percentage of synset semantic relations recovered for the Arabic, Assamese and Vietnamese wordnets. 39 5.1 A histogram of synonyms, semantically.
Recommended publications
  • Modeling Popularity and Reliability of Sources in Multilingual Wikipedia
    information Article Modeling Popularity and Reliability of Sources in Multilingual Wikipedia Włodzimierz Lewoniewski * , Krzysztof W˛ecel and Witold Abramowicz Department of Information Systems, Pozna´nUniversity of Economics and Business, 61-875 Pozna´n,Poland; [email protected] (K.W.); [email protected] (W.A.) * Correspondence: [email protected] Received: 31 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: One of the most important factors impacting quality of content in Wikipedia is presence of reliable sources. By following references, readers can verify facts or find more details about described topic. A Wikipedia article can be edited independently in any of over 300 languages, even by anonymous users, therefore information about the same topic may be inconsistent. This also applies to use of references in different language versions of a particular article, so the same statement can have different sources. In this paper we analyzed over 40 million articles from the 55 most developed language versions of Wikipedia to extract information about over 200 million references and find the most popular and reliable sources. We presented 10 models for the assessment of the popularity and reliability of the sources based on analysis of meta information about the references in Wikipedia articles, page views and authors of the articles. Using DBpedia and Wikidata we automatically identified the alignment of the sources to a specific domain. Additionally, we analyzed the changes of popularity and reliability in time and identified growth leaders in each of the considered months. The results can be used for quality improvements of the content in different languages versions of Wikipedia.
    [Show full text]
  • Lexical Resource Reconciliation in the Xerox Linguistic Environment
    Lexical Resource Reconciliation in the Xerox Linguistic Environment Ronald M. Kaplan Paula S. Newman Xerox Palo Alto Research Center Xerox Palo Alto Research Center 3333 Coyote Hill Road 3333 Coyote Hill Road Palo Alto, CA, 94304, USA Palo Alto, CA, 94304, USA kapl an~parc, xerox, com pnewman©parc, xerox, tom Abstract This paper motivates and describes the morpho- logical and lexical adaptations of XLE. They evolved This paper motivates and describes those concurrently with PARGRAM, a multi-site XLF_~ aspects of the Xerox Linguistic Environ- based broad-coverage grammar writing effort aimed ment (XLE) that facilitate the construction at creating parallel grammars for English, French, of broad-coverage Lexical Functional gram- and German (see Butt et. al., forthcoming). The mars by incorporating morphological and XLE adaptations help to reconcile separately con- lexical material from external resources. structed linguistic resources with the needs of the Because that material can be incorrect, in- core grammars. complete, or otherwise incompatible with The paper is divided into three major sections. the grammar, mechanisms are provided to The next section sets the stage by providing a short correct and augment the external material overview of the overall environmental features of the to suit the needs of the grammar developer. original LFG GWB and its provisions for morpho- This can be accomplished without direct logical and lexicon processing. The two following modification of the incorporated material, sections describe the XLE extensions in those areas. which is often infeasible or undesirable. Externally-developed finite-state morpho- 2 The GWB Data Base logical analyzers are reconciled with gram- mar requirements by run-time simulation GWB provides a computational environment tai- of finite-state calculus operations for com- lored especially for defining and testing grammars bining transducers.
    [Show full text]
  • Wordnet As an Ontology for Generation Valerio Basile
    WordNet as an Ontology for Generation Valerio Basile To cite this version: Valerio Basile. WordNet as an Ontology for Generation. WebNLG 2015 1st International Workshop on Natural Language Generation from the Semantic Web, Jun 2015, Nancy, France. hal-01195793 HAL Id: hal-01195793 https://hal.inria.fr/hal-01195793 Submitted on 9 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WordNet as an Ontology for Generation Valerio Basile University of Groningen [email protected] Abstract a structured database of words in a format read- able by electronic calculators. For each word in In this paper we propose WordNet as an the database, WordNet provides a list of senses alternative to ontologies for the purpose of and their definition in plain English. The senses, natural language generation. In particu- besides having a inner identifier, are represented lar, the synset-based structure of WordNet as synsets, i.e., sets of synonym words. Words proves useful for the lexicalization of con- in general belong to multiple synsets, as they cepts, by providing ready lists of lemmas have more than one sense, so the relation between for each concept to generate.
    [Show full text]
  • Wikipedia As a Lens for Studying the Real-Time Formation of Collective Memories of Revolutions
    International Journal of Communication 5 (2011), Feature 1313–1332 1932–8036/2011FEA1313 WikiRevolutions: Wikipedia as a Lens for Studying the Real-time Formation of Collective Memories of Revolutions MICHELA FERRON University of Trento PAOLO MASSA Fondazione Bruno Kessler In this article, we propose to interpret the online encyclopedia Wikipedia as an online setting in which collective memories about controversial and traumatic events are built in a collaborative way. We present the richness of data available on the phenomenon, providing examples of users’ participation in the creation of articles related to the 2011 Egyptian revolution. Finally, we propose possible research directions for the empirical study of collective memory formation of traumatic and controversial events in large populations as they unfold over time. Introduction On December 17, 2010, Mohammed Bouazizi, a 26-year-old fruit vendor in the central town of Sidi Bouzid doused himself and set himself on fire in front of a local municipal office. On January 25, 2011, a series of protests began in downtown Cairo and across the country against the government of Egyptian President Hosni Mubarak, in what has been called the “Day of Revolt.” In the following days, protests spread across Tunisia and Egypt, leading to the flight of the Tunisian president Zine El Abidine Ben Ali from his country on January 14, 2011, and to the resignation of Hosni Mubarak on February 11, 2011. Besides the great deal of media attention received by these events, the Tunisian and Egyptian revolutions also triggered an intense flurry of editing activity and heated discussions on the online encyclopedia Wikipedia.
    [Show full text]
  • Modeling and Encoding Traditional Wordlists for Machine Applications
    Modeling and Encoding Traditional Wordlists for Machine Applications Shakthi Poornima Jeff Good Department of Linguistics Department of Linguistics University at Buffalo University at Buffalo Buffalo, NY USA Buffalo, NY USA [email protected] [email protected] Abstract Clearly, descriptive linguistic resources can be This paper describes work being done on of potential value not just to traditional linguis- the modeling and encoding of a legacy re- tics, but also to computational linguistics. The source, the traditional descriptive wordlist, difficulty, however, is that the kinds of resources in ways that make its data accessible to produced in the course of linguistic description NLP applications. We describe an abstract are typically not easily exploitable in NLP appli- model for traditional wordlist entries and cations. Nevertheless, in the last decade or so, then provide an instantiation of the model it has become widely recognized that the devel- in RDF/XML which makes clear the re- opment of new digital methods for encoding lan- lationship between our wordlist database guage data can, in principle, not only help descrip- and interlingua approaches aimed towards tive linguists to work more effectively but also al- machine translation, and which also al- low them, with relatively little extra effort, to pro- lows for straightforward interoperation duce resources which can be straightforwardly re- with data from full lexicons. purposed for, among other things, NLP (Simons et al., 2004; Farrar and Lewis, 2007). 1 Introduction Despite this, it has proven difficult to create When looking at the relationship between NLP significant electronic descriptive resources due to and linguistics, it is typical to focus on the dif- the complex and specific problems inevitably as- ferent approaches taken with respect to issues sociated with the conversion of legacy data.
    [Show full text]
  • TEI and the Documentation of Mixtepec-Mixtec Jack Bowers
    Language Documentation and Standards in Digital Humanities: TEI and the documentation of Mixtepec-Mixtec Jack Bowers To cite this version: Jack Bowers. Language Documentation and Standards in Digital Humanities: TEI and the documen- tation of Mixtepec-Mixtec. Computation and Language [cs.CL]. École Pratique des Hauts Études, 2020. English. tel-03131936 HAL Id: tel-03131936 https://tel.archives-ouvertes.fr/tel-03131936 Submitted on 4 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Préparée à l’École Pratique des Hautes Études Language Documentation and Standards in Digital Humanities: TEI and the documentation of Mixtepec-Mixtec Soutenue par Composition du jury : Jack BOWERS Guillaume, JACQUES le 8 octobre 2020 Directeur de Recherche, CNRS Président Alexis, MICHAUD Chargé de Recherche, CNRS Rapporteur École doctorale n° 472 Tomaž, ERJAVEC Senior Researcher, Jožef Stefan Institute Rapporteur École doctorale de l’École Pratique des Hautes Études Enrique, PALANCAR Directeur de Recherche, CNRS Examinateur Karlheinz, MOERTH Senior Researcher, Austrian Center for Digital Humanities Spécialité and Cultural Heritage Examinateur Linguistique Emmanuel, SCHANG Maître de Conférence, Université D’Orléans Examinateur Benoit, SAGOT Chargé de Recherche, Inria Examinateur Laurent, ROMARY Directeur de recherche, Inria Directeur de thèse 1.
    [Show full text]
  • Unification of Multiple Treebanks and Testing Them with Statistical Parser with Support of Large Corpus As a Lexical Resource
    Eng. &Tech.Journal, Vol.34,Part (B), No.5,2016 Unification of Multiple Treebanks and Testing Them With Statistical Parser With Support of Large Corpus as a Lexical Resource Dr. Ahmed Hussein Aliwy Computer Science Department, University of Kufa/Kufa Email:[email protected] Received on:12/11/2015 & Accepted on:21/4/2016 ABSTRACT There are many Treebanks, texts with the parse tree, available for the researcher in the field of Natural Language Processing (NLP). All these Treebanks are limited in size, and each one used private Context Free Grammar (CFG) production rules (private formalism) because its construction is time consuming and need to experts in the field of linguistics. These Treebanks, as we know, can be used for statistical parsing and machine translation tests and other fields in NLP applications. We propose, in this paper, to build large Treebank from multiple Treebanks for the same language. Also, we propose to use an annotated corpus as a lexical resource. Three English Treebanks are taken for our study which arePenn Treebank (PTB), GENIA Treebank (GTB) and British National Corpus (BNC). Brown corpus is used as a lexical resource which contains approximately one million tokens annotated with part of speech tags for each. Our work start by the unification of POS tagsets of the three Treebank then the mapping process between Brown Corpus tagset and the unified tagset is done. This is done manually according to our experience in this field. Also, all the non-terminals in the CFG production are unified.All the three Treebanks and the Brown corpus are rebuilt according to the new modification.
    [Show full text]
  • Instructions for ACL-2010 Proceedings
    Towards the Representation of Hashtags in Linguistic Linked Open Data Format Thierry Declerck Piroska Lendvai Dept. of Computational Linguistics, Dept. of Computational Linguistics, Saarland University, Saarbrücken, Saarland University, Saarbrücken, Germany Germany [email protected] [email protected] the understanding of the linguistic and extra- Abstract linguistic environment of the social media post- ing that features the hashtag. A pilot study is reported on developing the In the light of recent developments in the basic Linguistic Linked Open Data (LLOD) Linked Open Data (LOD) framework, it seems infrastructure for hashtags from social media relevant to investigate the representation of lan- posts. Our goal is the encoding of linguistical- guage data in social media so that it can be pub- ly and semantically enriched hashtags in a lished in the LOD cloud. Already the classical formally compact way using the machine- readable OntoLex model. Initial hashtag pro- Linked Data framework included a growing set cessing consists of data-driven decomposition of linguistic resources: language data i.e. hu- of multi-element hashtags, the linking of man-readable information connected to data ob- spelling variants, and part-of-speech analysis jects by e.g. RDFs annotation properties such as of the elements. Then we explain how the On- 'label' and 'comment' , have been suggested to toLex model is used both to encode and to en- be encoded in machine-readable representation3. rich the hashtags and their elements by linking This triggered the development of the lemon them to existing semantic and lexical LOD re- model (McCrae et al., 2012) that allowed to op- sources: DBpedia and Wiktionary.
    [Show full text]
  • The Interplay Between Lexical Resources and Natural Language Processing
    Tutorial on: The interplay between lexical resources and Natural Language Processing Google Group: goo.gl/JEazYH 1 Luis Espinosa Anke Jose Camacho-Collados Mohammad Taher Pilehvar Google Group: goo.gl/JEazYH 2 Luis Espinosa Anke (linguist) Jose Camacho-Collados (mathematician) Mohammad Taher Pilehvar (computer scientist) 3 www.kahoot.it PIN: 7024700 NAACL 2018 Tutorial: The Interplay between Lexical Resources and Natural Language Processing Camacho-Collados, Espinosa-Anke, Pilehvar 4 QUESTION 1 PIN: 7024700 www.kahoot.it NAACL 2018 Tutorial: The Interplay between Lexical Resources and Natural Language Processing Camacho-Collados, Espinosa-Anke, Pilehvar 5 Outline 1. Introduction 2. Overview of Lexical Resources 3. NLP for Lexical Resources 4. Lexical Resources for NLP 5. Conclusion and Future Directions NAACL 2018 Tutorial: The Interplay between Lexical Resources and Natural Language Processing Camacho-Collados, Espinosa-Anke, Pilehvar 6 INTRODUCTION NAACL 2018 Tutorial: The Interplay between Lexical Resources and Natural Language Processing Camacho-Collados, Espinosa-Anke, Pilehvar 7 Introduction ● “A lexical resource (LR) is a database consisting of one or several dictionaries.” (en.wikipedia.org/wiki/Lexical_resource) ● “What is lexical resource? In a word it is vocabulary and it matters for IELTS writing because …” (dcielts.com/ielts-writing/lexical-resource) ● “The term Language Resource refers to a set of speech or language data and descriptions in machine readable form, used for … ” (elra.info/en/about/what-language-resource )
    [Show full text]
  • Exploring Complex Vowels As Phrase Break Correlates in a Corpus of English Speech with Proposel, a Prosody and POS English Lexicon
    This is a repository copy of Exploring complex vowels as phrase break correlates in a corpus of English speech with ProPOSEL, a Prosody and POS English Lexicon. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/81922/ Proceedings Paper: Brierley, C and Atwell, ES (2009) Exploring complex vowels as phrase break correlates in a corpus of English speech with ProPOSEL, a Prosody and POS English Lexicon. In: Proceedings of InterSpeech'2009. INTERSPEECH 2009, 6-10 Sept 2009, Brighton, UK. International Speech Communications Association , 868 - 871. ISBN 9781615676927 Reuse See Attached Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Exploring Complex Vowels as Phrase Break Correlates in a Corpus of English Speech with ProPOSEL, a Prosody and POS English Lexicon. Claire Brierley 1 2, Eric Atwell 2 1 School of Games Computing and Creative Technologies, University of Bolton, UK 2 School of Computing, University of Leeds, UK [email protected], [email protected] Abstract 2. Features used in phrase break prediction Real-world knowledge of syntax is seen as integral to the Syntactic features are integral to phrase break prediction machine learning task of phrase break prediction but there is a because of the overlap between syntactic and prosodic deficiency of a priori knowledge of prosody in both rule-based phrasing. The boundary annotation / | / in the following and data-driven classifiers.
    [Show full text]
  • Methods for Efficient Ontology Lexicalization for Non-Indo
    Methods for Efficient Ontology Lexicalization for Non-Indo-European Languages The Case of Japanese Bettina Lanser A thesis presented for the degree of Doctor rerum naturalium (Dr. rer. nat.) Bielefeld University June 2017 ii This work was supported by the Cluster of Excellence Cognitive Interaction Technol- ogy CITEC (EXC 277) at Bielefeld University, which is funded by the German Research Foundation (DFG). Printed on non-ageing paper — ISO 9706 ABSTRACT In order to make the growing amount of conceptual knowledge available through on- tologies and datasets accessible to humans, NLP applications need access to information on how this knowledge can be verbalized in natural language. One way to provide this kind of information are ontology lexicons, which apart from the actual verbalizations in a given target language can provide further, rich linguistic information about them. Compiling such lexicons manually is a very time-consuming task and requires expertise both in Semantic Web technologies and lexicon engineering, as well as a very good knowledge of the target language at hand. In this thesis we present two alternative approaches to generating ontology lexicons by means of crowdsourcing on the one hand and through the framework M-ATOLL on the other hand. So far, M-ATOLL has been used with a number of Indo-European languages that share a large set of common characteristics. Therefore, another focus of this work will be the generation of ontology lexicons specifically for Non-Indo-European languages. In order to explore these two topics, we use both approaches to generate Japanese ontology lexicons for the DBpedia ontology: First, we use CrowdFlower to generate a small Japanese ontology lexicon for ten exemplary ontology elements according to a two-stage workflow, the main underlying idea of which is to turn the task of generating lexicon entries into a translation task; the starting point of this translation task is a manually created English lexicon for DBpedia.
    [Show full text]
  • Maurice Gross' Grammar Lexicon and Natural Language Processing
    Maurice Gross’ grammar lexicon and Natural Language Processing Claire Gardent, Bruno Guillaume, Guy Perrier, Ingrid Falk To cite this version: Claire Gardent, Bruno Guillaume, Guy Perrier, Ingrid Falk. Maurice Gross’ grammar lexicon and Natural Language Processing. Language and Technology Conference, Apr 2005, Poznan/Pologne, France. inria-00103156 HAL Id: inria-00103156 https://hal.inria.fr/inria-00103156 Submitted on 3 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Maurice Gross’ grammar lexicon and Natural Language Processing Claire Gardent♦, Bruno Guillaume♠, Guy Perrier♥, Ingrid Falk♣ ♦CNRS/LORIA ♠INRIA/LORIA ♥University Nancy 2/LORIA ♣CNRS/ATILF Nancy, France [email protected] Abstract Maurice Gross’ grammar lexicon contains an extremly rich and exhaustive information about the morphosyntactic and semantic proper- ties of French syntactic functors (verbs, adjectives, nouns). Yet its use within natural language processing systems is still restricted. In this paper, we first argue that the information contained in the grammar lexicon is potentially useful for Natural Language Processing (NLP). We then sketch a way to translate this information into a format which is arguably more amenable for use by NLP systems. 1. Maurice Gross’s grammar lexicon gether all the verbs which can take besides a subject, an Much work in syntax concentrates on identifying and infinitival complement but not a finite or a nominal one.
    [Show full text]