Estonian Oil Shale Properties and Utilization in Power Plants

Total Page:16

File Type:pdf, Size:1020Kb

Estonian Oil Shale Properties and Utilization in Power Plants ENERGETIKA. 2007. T. 53. Nr. 2. P. 8–18 © Lietuvos mokslų akademija, 2007 © Lietuvos mokslų akademijos leidykla, 2007 Estonian oil shale properties and utilization in power plants Arvo Ots Oil shale is a sedimentary rock containing organic matter and belongs to the sapropel fuel group. Estonia has significant oil shale recourses. Estonia is the only country in the world that uses oil Thermal Engineering Department, shale fired power plants to supply most of its electricity to domestic customers and can export Tallinn University of Technology, it to neighboring countries. Estonian oil shale is a carbonaceous fuel which contains a compli- Kopli 116, 11712 Tallinn, Estonia cated composition of organic and mineral matter. The complicated compositio offers numerous E-mail: [email protected] sophisticated problems that can influence power plant equipment operation and reliability.We have examined oil shale as a power fuel and its utilization problems. Key words: organic matter, mineral matter, combustion characteristics, pulverized firing, fluid- ized bed combustion, environmental protection 1. INTRODUCTION Various aspects of Estonian oil shale and its characteristics as well as energy use are presented in [1–4]. Oil shale is a sedimentary rock containing organic matter, ker- Below, we present Estonian oil shale as a power fuel and its ogen, and belongs to the group of sapropel fuels. A significant utilization problems in power plants. feature of oil shale organic matter is its low solubility in strong solvents. 2. ESTONIAN OIL SHALE GEOLOGY AND Oil shale differs from humus fuels by its high content of or- RESERVES ganic matter. The atomic ratio of hydrogen to carbon (H/C) is about 1.5, which is approximately the same as for crude oil, for The oil shale body lies at a depth of between 30 to 60 m, but in coals being only about 0.3 to 0.4. The high hydrogen-to-carbon the center of the Pandivere upland its depth of occurrence is 100 ratio is the main reason for the high yield of volatile matter and to 120 meters. The total area is about 30002 km . The mined area condensable oil during the thermal decomposition of kerogen. covers a total of 425 km2. Oil shale deposits have been discovered on all continents. Oil shale beds have a stratified structure,with oil shale seams More than 600 oil shale basins are known. The world oil shale alternating with mineral interbeds. resources are estimated to about 11.5 Tt. Figure 1 shows a cross-section of an Estonian oil shale deposit. The largest oil shale resources belong to the Middle In an oil shale seam, organic matter is tightly bound with Cambrian, Early and Middle Ordovician, Later Devonian, sandy-clay minerals and forms a uniform mixture. Oil shale is Late Jurassic, and Paleogene periods. The formation oil shale a yellow-brownish, relatively soft material. The main substances took place mostly in marine conditions and less often in lakes. in the interbeds are carbonate minerals – mainly calcium car- Therefore, the geotectonic structure of oil shale deposits is pre- bonate, to a lesser extent dolomite. dominantly of the platform type. A commercial bed consists of seven indexed oil shale seams Estonia has significant oil shale resources; they are esti- counted from bottom to top. The majority of oil shale seams mated to more than 7 Gt. Estonia is the only country in the contain lens-like concretions of kerogenous limestone. They are world that operates oil shale fired power plants to supply most present in different layers and in various proportions. The thick- of its electricity to domestic customers and can export power ness of oil shale seams varies from 0.05 to 0.6 m. to neighboring countries. In addition to thermal power plants, There are four oil shale seams in the Leningrad oil shale basin, Estonia has also oil shale thermal processing plants for shale oil and they are marked with Roman numbers from top to bottom. production. Power plants and processing factories in Estonia are Considering oil shale as a fuel, its dry matter consists of supplied with oil shale from two underground mines and two three parts: organic – R, sandy-clay (terrigenous) – T, and car- opencast mines. bonate – K. Consequently, Estonian oil shale as a power fuel undoubtedly belongs to Rd + Td + Kd = 100%. the fuel class with the most complicated organic and mineral The values of R,T,and K differ for different oil shale seams. matter composition in the world. The composition of oil shale Figure 2 shows the dynamics of Estonian oil shale produc- offers numerous complicated and interrelated problems that tion over time and also the operation time of opencast and un- can influence power plant equipment operation and reliability. derground mines. Estonian oil shale properties and utilization in power plants 9 Fig. 1. Cross-section of oil shale deposit: 1 – limestone, 2 – kerogenous limestone, 3 – oil shale The largest consumers of oil shale in Estonia are thermal power plants. Today power plants consume about 12 Mt/y. The shale oil production industry consumes the second highest amount – about 2 Mt/y. 3. OIL SHALE PROPERTIES 3.1. Organic and combustible matter The elemental composition of the organic matter of oil shale is given in Table 1. The main characteristics of the organic matter of oil shale are a high hydrogen and oxygen content and a low nitrogen percent- age. Oil shale organic matter contains on average about 1.8% of organic sulfur. An important characteristic of the organic matter is a high chlorine content. One of the combustible components of oil shale is marcasite (pyrite) with the general chemical formula FeS2 (Tables 2 and 3). The sum of organic and pyretic sulfur is called combustible or volatile sulfur: SV = So + Sp. Organic matter together with pyretic sulfur is considered a combustible matter of oil shale. Figure 3 presents the thermal decomposition characteristics of oil shale as the release of different components during devola- tilization. The first signs of the thermal decomposition of organic mat- Fig. 2. Estonian oil shale production and operation time of mines ter appear at 150 °C. Visible decomposition starts at 200–250 °C. Table 1. Elemental composition of organic matter of Estonian oil shale, % Element C H O N S Cl Range 77.11–77.80 9.49–9.82 9.68–10.22 0.30–0.44 1.68–1.95 0.60–0.96 Average 77.45 9.70 10.01 0.33 1.76 0.75 10 Arvo Ots Their ratio corresponds to the average oil shale carbonate part CaO/MgO = 7.3. The average ratio of oxides and 2CO in the oil shale carbonate part is MOc/CO2 = 1.217, where MOc and CO2 denote the con- tent of oxides in carbonate minerals and mineral CO2 content in mineral matter, respectively. Table 3. Mineralogical composition of Estonian oil shale mineral matter, % Group of Mineral Formula Content minerals Calcite CaCO3 69.1 Carbonate Dolomite CaMg(CO ) 30.6 minerals 3 2 Siderite FeCO3 0.3 Total 100.0 Quartz SiO2 23.9 Rutile TiO2 0.7 Fig. 3. Material balance of Estonian oil shale organic matter as a function of tem- Orthoclase K O·Al O ·6SiO 29.0 perature 2 2 3 2 Albite Na2O·Al2O3·6SiO2 6.0 Sandy-clay Anorthite CaO·Al2O3·2SiO2 1.4 minerals One feature in the decomposition process of oil shale organic Muskovite [K1-x(H2O)x·Al3Si3O10(OH)2]2 23.7 matter is thermobitumen formation at temperatures between Amphipole [NaCa2Mg4)Fe,Al)Si8O22(OH)2] 2.1 250–425 °C. It is also notable that the proportion of the condens- Markasite FeS2 9.3 ing phase in volatile matter decreases with temperature and the Limonite Fe2O3·H2O 2.9 decrease is accompanied by an increase in the gaseous phase. Gypsum CaSO4·2H2O 1.0 Due to the high H/C ratio, oil shale has a very high volatile Total 100.0 matter content. Its standard value is 85–90%. The higher heating value (HHV) of oil shale organic matter is The main components in the sandy-clay part are SiO2, Al2O3 36.68 MJ/kg and the lower heating value (LHV) is 34.56 MJ/kg. and K2O. The content of potassium (given as2 K O) exceeds that The LHV of volatile matter is approximately 34 MJ/kg. of Na2O by about 8 to 12 times. Table 3 gives the mineralogical composition of Estonian oil 3.2. Mineral matter shale mineral matter. The mineral matter of oil shale can be divided into two large The main minerals in the carbonate part are calcite and dol- groups: sandy-clay or terrigenous part and carbonate matter. omite. The sandy-clay part is densely intertwined with organic matter. Carbonate minerals in the Estonian oil shale deposit occur as separate layers or are distributed as limestone concretions in oil shale seams. Table 2 presents the chemical composition of the sandy-clay and carbonate parts of oil shale. The main component of the oil shale carbonate matter is calcium oxide (48.1%), followed by magnesium oxide (6.6%). Table 2. Chemical composition of Estonian oil shale mineral matter, % Sandy-clay part Carbonate part Component Content Component Content SiO2 59.8 CaO 48.1 CaO 0.7 MgO 6.6 Al2O3 16.1 FeO 0.2 Fe2O3 2.8 CO2 45.1 TiO2 0.7 MgO 0.4 Na2O 0.8 K2O 6.3 FeS2 9.3 SO3 0.5 H2O 2.6 Total 100.0 Total 100.0 Fig. 4. Thermal effects occurring during combustion of oil shale in a calorimetric bomb Estonian oil shale properties and utilization in power plants 11 The main minerals in the oil shale sandy-clay part are quartz, ∆QC – thermal effect due to incomplete combustion of carbon, feldspars (mainly as orthoclase), and micas (mainly as musco- ∆Qc – thermal effect due to incomplete decomposition of car- vite).
Recommended publications
  • Oil Shale Ash Utilization in Industrial Processes As an Alternative Raw Material
    OIL SHALE ASH UTILIZATION IN INDUSTRIAL PROCESSES AS AN ALTERNATIVE RAW MATERIAL Hussain Azeez Mohamed Leonel Campos Master of Science Thesis Stockholm 2016 Hussain Azeez Mohamed Leonel Campos OIL SHALE ASH UTILIZATION IN INDUSTRIAL PROCESSES AS AN ALTERNATIVE RAW MATERIAL Supervisor: Monika Olsson, Industrial Ecology, KTH Graham Aid, R&D Professional, Ragn Sells AB Paul Würtzell, R&D, Ragn Sells AB Examiner: Ann-Catrine M Norrström, Land and Water Resources Engineering, KTH Monika Olsson, Industrial Ecology, KTH Master of Science Thesis STOCKHOLM 2016 PRESENTED AT INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY TRITA-IM-EX 2016:19 Industrial Ecology, Royal Institute of Technology www.ima.kth.se Abstract Oil shale is a fine-grained sedimentary rock with the potential to yield significant amounts of oil and combustible gas when retorted. Oil shale deposits have been found on almost every continent, but only Estonia, who has the 8th largest oil shale deposit in the world has continuously utilized oil shale in large scale operations. Worldwide, Estonia accounts for 80% of the overall activity involving oil shale, consuming approximately 18 million tons while producing 5–7 million tons of oil shale ash (OSA) annually. Since the amounts are quite significant, Estonia has made the choice to store OSA outdoors as ash heaps, which currently average a height of 45m and overall cover an area of approximately 20 km2. Oil shale is primarily composed of organic matter (15%–55%), low– magnesium calcite (>50%), dolomite (<10%–15%), and siliciclastic minerals (<10–15%). When oil shale is combusted in thermal power plants (TPP), temperatures as high as 1500˚C are reached; calcining CaCO3 into CaO in the process.
    [Show full text]
  • Ettekanne.-Veiderma-Siirde-2007.Pdf
    Presentation by the European Academies Science Advisory Council on the meeting of the Committee on Industry, Research and Energy of the European Parliament, 12 April 2007 Oil shale industry – viewed in the light of the Estonian experience Mihkel Veiderma, Andres Siirde Oil shale (OS) is a sedimentary rock containing up to 50 % organic matter, representing a mixture of high-molecular polyfunctional organic compounds and known as kerogen. OS of different deposits differ by genesis, composition of organic and mineral matter. For example, the element composition of the Estonian OS kerogen corresponds to the formula C 10 H 15.2 O 0.93 S 0.08 Cl 0.03 N 0.03 (i.e. ratio atoms H/C is about 1.5 instead of 2 in usual crude oil), its mineral part consists mainly of carbonates and sandy-clayey minerals. In comparison with coal, kerogen is rich in hydrogen and for this reason it is directly convertible by retorting into oil. The calorific value of OS, depending on kerogen content, is at least 2-3 times lower than that of coal. The world OS resources are estimated to amount to 11 trillion tons, i.e. 12 times more of proved reserves of anthracite, coal and lignite, all of them in aggregate. Due to differences in quality it is more correct to report resources of OS in barrels of oil obtainable by retorting. By this technique of counting, resources of OS form more than 3 trillion bbl (Fig. 1). 3 500 000 3 170 000 3 000 000 2 500 000 2 100 000 2 000 000 1 500 000 1 000 000 372 000 372 000 Shale oil resources(million U.S.
    [Show full text]
  • Energy Policies Beyond IEA Countries
    Estonia 2013 Please note that this PDF is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at http://www.iea.org/ termsandconditionsuseandcopyright/ 2013 Energy Policies OECD/IEA, © Beyond IEA Countries Energy Policies Beyond IEA Countries Estonia 2013 One of the fastest-growing economies in the OECD, Estonia is actively seeking to reduce the intensity of its energy system. Many of these efforts are focused on oil shale, which the country has been using for almost a century and which meets 70% of its energy demand. While it provides a large degree of energy security, oil shale is highly carbon-intensive. The government is seeking to lessen the negative environmental impact by phasing out old power plants and developing new technologies to reduce significantly CO2 emissions. The efforts on oil shale complement Estonia’s solid track record of modernising its overall energy system. Since restoring its independence in 1991, Estonia has fully liberalised its electricity and gas markets and attained most national energy policy targets and commitments for 2020. It has also started preparing its energy strategy to 2030, with an outlook to 2050. Estonia is also promoting energy market integration with neighbouring EU member states. The strengthening of the Baltic electricity market and its timely integration with the Nordic market, as well as the establishment of a regional gas market, are therefore key priorities for Estonia. Following its accession to the Organisation for Economic Co-operation and Development (OECD) in 2010, Estonia applied for International Energy Agency (IEA) membership in 2011.
    [Show full text]
  • Baltic Energy Technology Scenarios 2018
    Baltic Energy Technology Scenarios 2018 Baltic Energy Technology Scenarios 2018 Tomi J. Lindroos, Antti Lehtilä and Tiina Koljonen (VTT team). Anders Kofoed-Wiuff, János Hethey, Nina Dupont and Aisma Vītiņa (Ea Energy Analyses team). TemaNord 2018:515 Baltic Energy Technology Scenarios 2018 Tomi J. Lindroos, Antti Lehtilä and Tiina Koljonen (VTT team). Anders Kofoed-Wiuff, János Hethey, Nina Dupont and Aisma Vītiņa (Ea Energy Analyses team). ISBN 978-92-893-5457-8 (PRINT) ISBN 978-92-893-5458-5 (PDF) ISBN 978-92-893-5459-2 (EPUB) http://dx.doi.org/10.6027/TN2018-515 TemaNord 2018:515 ISSN 0908-6692 Standard: PDF/UA-1 ISO 14289-1 © Nordic Council of Ministers 2018 Cover photo: Tautvydas Lapūnas Photo: p 19/MKstudio; p 30/Capitanoseye; p 48/Egert; p 82/Alex Tihonovs; p 110/A. Aleksandraviciuss Print: Rosendahls Printed in Denmark Disclaimer This publication was funded by the Nordic Council of Ministers. However, the content does not necessarily reflect the Nordic Council of Ministers’ views, opinions, attitudes or recommendations. Rights and permissions This work is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) https://creativecommons.org/licenses/by/4.0. Translations: If you translate this work, please include the following disclaimer: This translation was not pro- duced by the Nordic Council of Ministers and should not be construed as official. The Nordic Council of Ministers cannot be held responsible for the translation or any errors in it. Adaptations: If you adapt this work, please include the following disclaimer along with the attribution: This is an adaptation of an original work by the Nordic Council of Ministers.
    [Show full text]
  • Industrial Society and Chemical Pollution
    INDUSTRIAL SOCIETY 13 AND CHEMICAL POLLUTION Industrial mass production of chemicals in is one of the large environmental dilemmas of modern society. Pollution from the site of production was originally the largest problem. Today, pollution during consumption and waste, the 384 INDUSTRIALrest of a product’s SOCIETY life-cycle, is ANDoften much CHEMICAL more problematic. POLLUTION (Photo: Lars Rydén.) "By how much does resource efficiency have to be increased? The factor of two on the global level, if combined with the equity considerations ... (a kind of human right to resource use) translates into a factor ten improvement in resource productivity for industrialized countries. This goal, to be reached in a 30 to 50 year time span, is equivalent to an annual increase in resource productivity of 4.5 %, and considered a pragmatic, feasable and necessary policy target." F. Schmidt-Bleek on use of material resources in the Factor 10 Club, 1994. Industrial society has developed in the Baltic Sea region biomagnification. DDT is an early example of a for almost 150 years. The smoking chimneys of factories persistent organic pollutant, POP. were first seen as a sign of progress and a promise of Many technically very useful substances turned out future well-being. In the former socialist countries to be dangerous in the same way. The polychlorinated development of heavy industry was a main concern up biphenyls, PCBs, were used in large amounts in e.g. to the time of Soviet Union breakup. In the West, not electric equipment or building materials just because it only heavy industry but also production of consumer was so stable.
    [Show full text]
  • Artificial Mountains in North-East Estonia: Monumental Dumps of Ash and Semi-Coke T. Pae , A. Luud , M. Sepp
    Oil Shale, 2005, Vol. 22, No. 3 ISSN 0208-189X Pp 333-343 © 2005 Estonian Academy Publishers ARTIFICIAL MOUNTAINS IN NORTH-EAST ESTONIA: MONUMENTAL DUMPS OF ASH AND SEMI-COKE T. PAE *(1), A. LUUD (1,2), M. SEPP (1) (1) Institute of Geography, Tartu University 46 Vanemuise St., Tartu 51014, Estonia (2) Institute of Ecology, Department of North-East Estonia 15 Pargi St., Jõhvi 41537, Estonia The most distinguished landforms in East-Viru County, Estonia, apart from the Baltic Klint, are the artificial landforms1 generated by mining and processing of oil shale. The data in scientific literature about the height of artificial mountains is poor and sometimes controversial. Ambiguous estimations exist regarding the highest mountain. In the present paper the height of the artificial landforms in North-East Estonia is investigated. Kohtla-Järve semi-coke mountain is found to be the highest artificial landform in the Baltic States. In addition, typology, history, and future of artificial mountains are studied. Introduction Processes of oil shale mining, combustion in power plants, and thermal processing in chemical plants generate huge amount of solid waste. After mining the oil shale layer from the mine, limestone is separated from mining mass and stored in the waste piles near separation plant. As the Estonian oil shale contains 15–70% organic matter [1] and the average ash content in the combustible mass varies between 40–50%, about half of the total mass becomes waste after combustion or chemical processing [2]. Waste piles are characteristic in places where oil shale industry exists. Such landforms remain in the landscape and give evidence of closed mines and human activities for a long time after the termination of mining.
    [Show full text]
  • OIL SHALE, NATURAL BITUMEN, HEAVY OIL and PEAT – Vol
    COAL, OIL SHALE, NATURAL BITUMEN, HEAVY OIL AND PEAT – Vol. II -Oil Shale - J.L.Qian and S.Y.Li OIL SHALE J.L.Qian and S.Y.Li School of Chemical Engineering, University of Petroleum, Beijing, China Keywords : Oil shale, Algal shale, Bituminous shale, Kukersite, Kerogen, Pyrolysis, Shale oil, Resources, Reserves, Combustion, Origin, Formation, Algae, Sapropel, Classification, Aboveground mining, Underground mining, Properties, Composition, Bitumen, Baltic, Green River, Irati, Fushun, Maoming, Stuart, Fischer Assay, Heating value, Retorting, Kiviter retort, Petrosix retort, Fushun retort, Union oil rock, pump type retort, Galoter retort, Tosco retort, Underground retorting , In-situ retorting , Shale oil upgrading, Shale oil processing, Shale ash, Cement, Soil improver, Retorted shale, Environmental problems, Waste water, Dust, Economic problem, Oil shale industry, Gasoline, Diesel, fuel, Wax, Liquid petroleum gas, Sulfur, Naphtha, Phenols, Australia, Brazil, China, Estonia, German, Israel, Russia, USA Contents 1. Introduction 2. Resources 3. Origin and Formation 3.1 Origin 3.2 Formation 3.3 Age of Formation 3.4 Environment of Formation 3.5 Classification of Kerogen 4. Mining 4.1 Aboveground Mining 4.2 Underground Mining 5. Properties and Composition 5.1 Physical Properties 5.2 Chemical Composition 5.3 Analysis and Evaluation of Oil Shale 6. Pyrolysis 6.1 Pyrolysis reaction and Mechanism 6.2 Pyrolysis Kinetics 6.3 ParticulateUNESCO and Lump Oil Shale Pyrolysis – EOLSS 7. Retorting Technology 7.1 AbovegroundSAMPLE Retorting CHAPTERS 7.2 Underground Retorting 7.3 Condensation and Recovery System 8. Shale Oil and Its Products 8.1 Shale Oil Characteristics 8.2 Shale Oil Processing and its products 9. Combustion 9.1 Pulverized Oil Shale Suspension Combustion 9.2 Particulate Oil Shale Fluidized Bed Combustion 10.
    [Show full text]
  • Environmental Hazard of the Waste Streams of Estonian Oil Shale Industry: an Ecotoxicological Review
    Oil Shale, 2006, Vol. 23, No. 1 ISSN 0208-189X pp. 53–93 © 2006 Estonian Academy Publishers ENVIRONMENTAL HAZARD OF THE WASTE STREAMS OF ESTONIAN OIL SHALE INDUSTRY: AN ECOTOXICOLOGICAL REVIEW A. KAHRU*, L. PÕLLUMAA Laboratory of Molecular Genetics National Institute of Chemical Physics and Biophysics Akadeemia tee 23, Tallinn 12618 Estonia In Estonia there is the largest industrially-used oil-shale basin in the world. This review addresses the environmental hazard of the waste streams of oil- shale industry via solid waste- and water-path, mainly focusing on ecotoxico- logical risk due to open semicoke deposition inducing hazard to surrounding soils and groundwater. This is the first comprehensive ecotoxicological review of available data on oil shale industry pollution in Estonia as well as world-wide. Introduction Oil shale is fine-grained sedimentary rock containing relatively large amounts of organic matter. Oil shales are widely distributed all over the world; more than 600 deposits are known, and their prospective resources are estimated to be over 500 million tonnes [1]. On dry weight basis, oil shale consists of 10– 60% of organics, 20–70% of carbonate minerals and 15–60% of sandy-clay minerals [2]. Estonian oil shale basin is the largest industrially used one in the world: the mining of oil shale in Estonia started in 1916 and reached its peak in 1980 when 31 million tonnes of oil shale per year were excavated [3]. As referred by Raukas [1] during last fifty years, power production in Estonia has almost fully been based on domestic oil shale: about 90% of the excavated Estonian oil shale is used as fuel in power plants.
    [Show full text]
  • WEC Congress IA Paper Final
    Developments in Production of Synthetic Fuels out of Estonian Oil Shale Indrek Aarna Enefit Outotec Technology OÜ Abstract (100 words) Estonia is still the world leader in utilization of oil shale. Enefit has cooperated with Outotec to develop a new generation of solid heat carrier technology – Enefit280, which is more efficient, environmentally friendlier and has higher unit capacity. The breakeven price of oil produced in Enefit280 process is competitive with conventional oils. The new technology has advantages that allow easy adaptation to other oil shales around the world. Hydrotreated shale oil liquids have similar properties to crude oil cuts. Design for a shale oil hydrotreater unit can use process concepts, hardware components, and catalysts commercially proven in petroleum refining services. Keywords: oil shale, retorting, upgrading 1. Introduction The first written information about oil shale in Estonia was documented already in 1777 [1]. The occurrence of burning rock on the southern coast of the Gulf of Finland is present in the travel notes of the 18th century naturalist and explorer Johann Anton Güldenstädt [1,2]. Studies of Estonian oil shale resources and mining possibilities intensified in the beginning of 20th century due to industrial development of Saint Petersburg and a shortage of fuel resources in the region. In 1918 the first mine was opened in North-Eastern Estonia. At that time, oil shale was used primarily in the cement industry and as a household fuel. Shale oil production started in Estonia in 1921, when the first experimental oil shale processing retorts were built in Kohtla-Järve [2]. These retorts used vertical retort technology, the forerunner of the current Kiviter processing technology.
    [Show full text]
  • Review on Oil Shale Data Jean Laherrere August 2005
    Review on Oil shale data Jean Laherrere August 2005 -Introduction Andre Combaz who led the GERB (Groupe d’Etudes des Roches Bitumineuses) in the 1970s gave me several boxes of documents on oil shale. This data with my own file and what I could find on the web is analyzed in this review. Three annexes (A2005, A1999-2004 and A1965-1980) gather most of the data and are attached to this review. -History Oil shales are a misnomer being neither shale or oil, in fact an immature source-rock which has not yet generated any oil and needs to be heated at 600 °C to yield oil by pyrolysis. In fact they should be classified with coal and peat. USDOE/EIA reports the oil shale of Estonia in the world lignite production (table 5.4). Most oil shale in Estonia was burned in electric or cement plants. Oil shales are completely different from oilsands (or extra-heavy oils), which are at the end of the oil cycle before being entirely degraded. But many people, even so-called experts (Chevalier) confuse them! Oil shale has a long past of production, starting in 1837 in France (Autun mines, which were closed in 1957), Scotland 1850-1963, Australia 1865-1952, 1998-2004, Brazil 1881-1900,1941- 1957, 1972-, Estonia 1921-, Sweden 1921-1965, Switzerland 1921-1935, Spain 1922-1966, China 1929-, South Africa 1935-1960. Combaz did in 1975 two good graphs on the past history involving many countries. Figure 1: different processes from Combaz Figure 2: history of oil shale production from 1838 to 1975 from Combaz 1 -US history Oil shale has a long history in the US involving many up and downs.
    [Show full text]
  • Cornell International Affairs Review 14.1
    1 CORNELL INTERNATIONAL AFFAIRS REVIEW Editors-in-Chief Laura DeMassa ‘21 Benjamin Wang ‘22 Managing Editors Madison Kang ‘23 Billie Koffman ‘23 Asha Patt ‘23 Seyda Takis ‘21 Graduate Editors Michael Kriner Cameron Mailhot Angie Torres Hoang Vu Content Editors Hurya Ahmed ‘22 Michael Dekhtyar ‘24 Luke Hartigan ‘24 Samantha Surdek ‘24 Undergraduate Editors Faith Fisher ‘22 Angela He ‘21 Margaret Lim ‘22 Sergio Limandibhratha ‘22 Peter Mao ‘22 Eric Miranda ‘22 Lin Poyraz ‘23 Anna Sattler ‘21 Risa Sunakawa ‘22 Executive Board President Aadi Kulkarni ‘22 Vice President, External Eric Lee ‘21 Vice President, Internal Michael Tyrrell ‘23 Administrator Jack Carlos Mindich ‘21 Volume XIII Spring 2020 2 The Cornell International Affairs Review BOARD OF ADVISORS Dr. Heike Michelsen, Primary Advisor Associate Director for Assessment and Grant Writing, Mario Einaudi Center for International Studies Professor Ross Brann, Department of Near Eastern Studies Professor Raymond Craib, Department of History Professor Gustavo Flores-Macias, Department of Government Professor Durba Ghosh, Department of History Professor Christopher Way, Department of Government EMERITUS BOARD MEMBERS Professor Robert Andolina, Johnson School of Management Professor Matthew Evangelista, Department of Government Professor Peter Katzenstein, Department of Government Professor Isaac Kramnick, Department of Government Professor David Lee, Department of Applied Economics and Management Professor Elizabeth Sanders, Department of Government Professor Nina Tannenwald, Brown University
    [Show full text]
  • Life Cycle Analysis of the Estonian Oil Shale Industry
    Eestimaa Looduse Fond Tallinna Tehnikaülikool Estonian Fund for Nature Tallinn University of Technology Life Cycle Analysis of the Estonian Oil Shale Industry Olga Gavrilova1, Tiina Randla1, Leo Vallner2, Marek Strandberg3, Raivo Vilu1 1 Institute of Chemistry, Tallinn University of Technology, 2 Institute of Geology, Tallinn University of Technology 3Estonian Fund for Nature Tallinn 2005 CONTENT Introduction....................................................................................................................... 9 1. General characteristics of the energy sector in Estonia......................................10 1.1. Energy sector of Estonia and its comparison with the other European countries .................................................................................................. 10 1.2. Location of oil shale mining and oil shale consuming enterprises............. 13 1.3. Social indicators of Ida-Viru county......................................................... 16 1.4. Brief history of oil shale mining and consumption in Estonia................... 16 2. Oil shale – a resource for energy generation........................................................18 2.1. Oil shale deposits in the world.................................................................. 18 2.2. Chemical composition of oil shale............................................................ 18 2.3. Oil shale deposits in Estonia..................................................................... 19 2.4. Structure of oil shale beds .......................................................................
    [Show full text]