20071002-SPIRIT Eval Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Robotics to Equip K-12 Teachers: Silicon Prairie Initiative for Robotics in Information Technology (Spirit)
AC 2009-2198: USING ROBOTICS TO EQUIP K-12 TEACHERS: SILICON PRAIRIE INITIATIVE FOR ROBOTICS IN INFORMATION TECHNOLOGY (SPIRIT) Alisa Gilmore, University of Nebraska - Lincoln Alisa N. Gilmore, P.E. is a Senior Lecturer in the Department of Computer and Electronics Engineering at the University of Nebraska-Lincoln. She serves as senior technical staff for two NSF grants in the ITEST and Discovery K-12 programs associated with using robotics in the K-12 arena to motivate student achievement in STEM activities. She has been involved as a community outreach speaker, presenter, and collaborator with local schools, students, and teachers for over ten years, working to expose pre-college students to engineering. Ms. Gilmore has extensive industrial experience in the telecommunications and manufacturing areas, and since 2003 has used her industry background to foster industrial partnerships at the university and to develop and teach courses in circuits, telecommunications, and robotics. Bing Chen, UNL Dr. Bing Chen is chairman of the Department of Computer and Electronics Engineering on the Omaha campus of the College of Engineering, University of Nebraska - Lincoln at the Peter Kiewit Institute. He is the Principal Investigator on three NSF grants involving levels K-16 in educational robotics. His primary interest involves providing a continuous exposure to students with educational robotics both within a classroom environment and in after school settings year round to stimulate student creativity and possible pursuit of STEM careers in order to meet national long term needs and global challenges posed by competitive engineering programs overseas. His other long term research interest has been in the area of renewable energy. -
An Introduction to the NASA Robotics Alliance Cadets Program
Session F An Introduction to the NASA Robotics Alliance Cadets Program David R. Schneider, Clare van den Blink NASA, DAVANNE, & Cornell University / Cornell University CIT [email protected], [email protected] Abstract The 2006 report National Defense Education and Innovation Initiative highlighted this nation’s growing need to revitalize undergraduate STEM education. In response, NASA has partnered with the DAVANNE Corporation to create the NASA Robotics Alliance Cadets Program to develop innovative, highly integrated and interactive curriculum to redesign the first two years of Mechanical Engineering, Electrical Engineering and Computer Science. This paper introduces the NASA Cadets Program and provides insight into the skill areas targeted by the program as well as the assessment methodology for determining the program’s effectiveness. The paper also offers a brief discussion on the capabilities of the program’s robotic platform and a justification for its design into the program. As an example of the integration of the robotic platform with the program’s methodologies, this paper concludes by outlining one of the first educational experiments of NASA Cadets Program at Cornell University to be implemented in the Spring 2007 semester. I. Introduction To be an engineer is to be a designer, a creator of new technology, and the everyday hero that solves society’s problems through innovative methods and products by making ideas become a reality. However, the opportunity to truly explore these key concepts of being an engineer are often withheld from most incoming engineering students until at least their junior year causing many new students to lose motivation and potentially leave the program. -
Radio Frequency Identification Based Smart
ISSN (Online) 2456-1290 International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE) Vol 2, Issue 2, February 2017 A Review Approach on Design and Development of Transportation Path Follower Robot for Material Handling [1] Mr. Pathade Akash, [2] Mr. Bajaj Kishan [3] Mr. Bajaj Kaushik, [4] Ms. Patil Tanvi [1][2][3][4] Mechanical Engineering , Sandip Institute of Technology and Research Centre (SITRC),Nashik Abstract:-- In this project instead of doing manual work, automatized work is done. Transportation path follower robot is a type of robot which is used for material handling and transporting the material from one place to another. The main purpose of this project is to reduce labour, cost involved with it and also to save the time. It is six wheel electric rover, which will provide paper work from administration office to every department. Robotic vehicles are capable of traveling where people cannot go, or where the hazards of human presence. Keywords: Automatized, material handling, reduce labour, Rocker bogie, Ultrasonic, RFID. depending on the environment and application. It is common to utilize so-called supervisory control‖ for high- I. INTRODUCTION level observation and monitoring of vehicle motion. In other Transportation path follower robot is a type of instances, an interface is provided for more continuous robot which is used for material handling and transporting human input constituting a remotely operated vehicle, or the material from one place to another. The robot is a ROV. In this case, the ROV is often linked by cable or mechanical or virtual artificial agent, usually an wireless communications in order to provide higher electromechanical machine that is guided by computer bandwidth communications of operator input. -
The Robotic Autonomy Mobile Robotics Course: Robot Design, Curriculum Design and Educational Assessment
The Robotic Autonomy Mobile Robotics Course: Robot Design, Curriculum Design and Educational Assessment Illah R. Nourbakhsha, Kevin Crowleyb, Ajinkya Bhavea, Emily Hamnera, Thomas Hsiuc, Andres Perez-Bergquista, Steve Richardsd, Katie Wilkinsonb a The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 b Learning Research and Development Ctr, Univ. of Pittsburgh, Pittsburgh, PA 15260 c Gogoco, LLC. Sunnyvale, CA 94086 d Acroname, Inc. Boulder, CO 80303 Abstract Robotic Autonomy is a seven-week, hands-on introduction to robotics designed for high school students. The course presents a broad survey of robotics, beginning with mechanism and electronics and ending with robot behavior, navigation and remote teleoperation. During the summer of 2002, Robotic Autonomy was taught to twenty eight students at Carnegie Mellon West in cooperation with NASA/Ames (Moffett Field, CA). The educational robot and course curriculum were the result of a ground-up design effort chartered to develop an effective and low-cost robot for secondary level education and home use. Cooperation between Carnegie Mellon’s Robotics Institute, Gogoco, LLC. and Acroname Inc. yielded notable innovations including a fast-build robot construction kit, indoor/outdoor terrainability, CMOS vision-centered sensing, back-EMF motor speed control and a Java-based robot programming interface. In conjunction with robot and curriculum design, the authors at the Robotics Institute and the University of Pittsburgh’s Learning Research and Development Center planned a methodology for evaluating the educational efficacy of Robotic Autonomy, implementing both formative and summative evaluations of progress as well as an in- depth, one week ethnography to identify micro-genetic mechanisms of learning that would inform the broader evaluation. -
Design Elements of a Mobile Robotics Course Based on Student Feedback
Paper ID #14163 Design Elements of a Mobile Robotics Course Based on Student Feedback Prof. Alisa Gilmore P.E., University of Nebraska, Lincoln Alisa N. Gilmore, M.S.E.C.E., P.E. is an Associate Professor of Practice at the University of Nebraska - Lincoln. She has developed and teaches courses in robotics, telecommunications, circuits and controls. Page 26.460.1 Page c American Society for Engineering Education, 2015 Design Elements of a Mobile Robotics Course Based on Student Feedback The use of robots in undergraduate classrooms has seen a boom in recent years due to the universal appeal of robots, and the applicability of robot systems to preparing students for career paths in computer science, robotics and intelligent systems, and as well as for teaching fundamental engineering and programming concepts in a fresh way. At our University, a novel robot platform was developed in 2008 as part of a funded outreach project, applicable to both K- 12 outreach and university level instruction. The robot platform, named the CEENBoT, became a central learning platform for instructing K-12 math and science teachers in a large educational robotics project and was simultaneously adopted into the Freshman and Sophomore curriculum in the department of Computer and Electronics Engineering (CEEN), one of the key partners in the outreach project. In the CEEN department, use of the CEENBoT was proliferated through a progression of undergraduate courses as an active learning component in teaching students fundamental computer and electrical engineering topics with a goal of providing additional hands-on engagement. Most often, this included at least one lab or project using the CEENBoT platform in each course. -
Computer Interface Innovations for an Ece Mobile Robotics Platform Applicable to K-12 and Univer- Sity Students
AC 2011-2200: COMPUTER INTERFACE INNOVATIONS FOR AN ECE MOBILE ROBOTICS PLATFORM APPLICABLE TO K-12 AND UNIVER- SITY STUDENTS Alisa N. Gilmore, University of Nebraska - Lincoln Alisa N. Gilmore, P.E. is a Senior Lecturer in the Department of Computer and Electronics Engineering at the University of Nebraska - Lincoln. Since 2006, she has served as Senior Staff for administering NSF grants in the ITEST and Discovery K-12 programs associated with using robotics in the K-12 arena to educate teachers and motivate student achievement in STEM. At the University, she has developed and taught courses in robotics, electrical circuits and telecommunications. Prior to coming to UNL, Ms. Gilmore worked in telecommunications and controls R&D and manufacturing. She has used her indus- try background to foster industrial partnerships at the University, and to develop courses and supervise students in projects that support educational robotics. Mr. Jose M. Santos, University of Nebraska-Lincoln Mr. Santos is an undergraduate student at the University of Nebraska-Lincoln (Omaha Campus) where he’s currently earning a double-major in Computer Engineering and Mathematics. He also holds a Bach- elor’s Science degree in Electronics Engineering Technology (EET) from DeVry Institute of Technology (now DeVry University). He is the creator and lead software architect of the CEENBoT-API (Application Programming Interface) presently in use in various engineering curricula at the University of Nebraska. Aaron Joseph Mills, Iowa State University Aaron Mills graduated in 2010 from the University of Nebraska - Lincoln and the University of Nebraska at Omaha with degrees in Computer Engineering and Computer Science.