Information An Introduction

Intelligent Systems, Interaction and Multimedia Seminar 2017/2018

10/26/2017 Daniel Castro Silva [email protected] SSIIM Presentation Outline

Introduction

Brief History

Semiology of Graphics

Graph Types and Examples

Best Practices

Tools and References

Topics for Coursework

FEUP / LIACC 2 SSIIM Introduction • We are generating more and more data • Over 1 ZB/year • tera

FEUP / LIACC 3 SSIIM Introduction What is Information Visualization?

• Graphical representation of data • Possibly interactive • Transform data into information • Necessary in decision-making processes • Leverage human cognition • Allows for information • Exploration • Exploratory data analysis / questions are not (well) formulated • Confirmation • Provide support for comparison, evaluation, decision • Presentation • Communicate and explain ideas / influence or persuade behavior

FEUP / LIACC 4 SSIIM Introduction Why vision?

• Of our five senses, it has the most advantages • Larger bandwidth • Fast and parallel • Easy recognition of visual patterns

• People think visually!

FEUP / LIACC 5 SSIIM Introduction What can we do with it?

• Simple tasks: • Maximum, minimum, average, standard deviation, percentages, and other simple descriptive statistics • Exact and known questions • More complex tasks: • Patterns, tendencies, distributions, temporal evolution • Outliers, exceptions • Relations and correlations • Tradeoffs • Groups, clusters, comparison, context • Anomalies, errors in the data • Paths • …

FEUP / LIACC 6 SSIIM Introduction Example

• Anscombe’s quartet

FEUP / LIACC 7 SSIIM Introduction Example

• Which state has the highest income? • What is the relation between education and income?

FEUP / LIACC 8 SSIIM Introduction

Example College Degree % Degree College

Per Capita Income FEUP / LIACC 9 SSIIM Brief History of InfoVis • Temporal evolution • Pre-1600 • Early and • 1600s • Measurements and Theory • 1700s • New graphic forms • 1800-1849 • Beginnings of modern graphics • 1850-1899 • Golden age • 1900-1949 • Modern dark ages • 1950 – 1974 • Rebirth of information visualization • 1975 – present day • High-density

FEUP / LIACC 10 SSIIM Brief History of InfoVis Early Maps and Diagrams

~6200 BC

~550 BC FEUP / LIACC 11 SSIIM Brief History of InfoVis Early Maps and Diagrams

• Peutinger (Roman Empire, ~350BC) • Painted parchment 34cm in height and almost 7m in length

FEUP / LIACC 12 SSIIM Brief History of InfoVis Early Maps and Diagrams

• Positions of the sun, moon and other planets throughout the year (~950)

FEUP / LIACC 13 SSIIM Brief History of InfoVis Early Maps and Diagrams

• Fra Mauro Map (Italy ~1450) • Over 2m in diameter

FEUP / LIACC 14 SSIIM Brief History of InfoVis Measurements and Theory

John Graunt, 1662 Beginning of demographic statistics (life expectancy, …) FEUP / LIACC 15 SSIIM Brief History of InfoVis Measurements and Theory

• Edmond Halley • Altitude vs. pressure

FEUP / LIACC 16 SSIIM Brief History of InfoVis Measurements and Theory

• Weather map (prevailing winds) • Edmond Halley, 1686

FEUP / LIACC 17 SSIIM Brief History of InfoVis Measurements and Theory

• Contour map (isogonic lines) • Edmond Halley, 1701

FEUP / LIACC 18 SSIIM Brief History of InfoVis New Graphic Forms

• Life span of 2000 famous people • Joseph Priestley, 1765 • Use of bars for comparison

FEUP / LIACC 19 SSIIM Brief History of InfoVis New Graphic Forms

• Monge’s method of projections

FEUP / LIACC 20 SSIIM Brief History of InfoVis New Graphic Forms

William Playfair, 1786 Price of wheat and wages bar/line National debt FEUP / LIACC 21 SSIIM Brief History of InfoVis Beginnings of Modern Graphics

• Pie chart • , 1801

FEUP / LIACC 22 SSIIM Brief History of InfoVis Beginnings of Modern Graphics

• Baron Pierre Charles Dupin 1826

FEUP / LIACC 23 SSIIM Brief History of InfoVis Beginnings of Modern Graphics

• Polar-area • André Michel Guerry 1829

FEUP / LIACC 24 SSIIM Brief History of InfoVis Beginnings of Modern Graphics

• Henry Drury Harness 1837

FEUP / LIACC 25 SSIIM Brief History of InfoVis Golden Age

• Cholera map • John Snow 1854

FEUP / LIACC 26 SSIIM Brief History of InfoVis Golden Age

• Mortality causes • 1857 • Uses the Polar Area charts, by Guerry

FEUP / LIACC 27 SSIIM Brief History of InfoVis Golden Age

• Napoleon's March on Moscow • , 1869

FEUP / LIACC 28 SSIIM Brief History of InfoVis Golden Age

• Bilateral histogram (age pyramid) • Francis Amasa Walker, 1874

FEUP / LIACC 29 SSIIM Brief History of InfoVis Golden Age

• Stereogram • Luigi Perozzo 1879

FEUP / LIACC 30 SSIIM Brief History of InfoVis Golden Age

• Train schedules using the Ibry method • Étienne-Jules Marey, 1885

FEUP / LIACC 31 SSIIM Brief History of InfoVis Modern Dark Ages

• Metro • Henry Beck 1933

FEUP / LIACC 32 SSIIM Brief History of InfoVis Rebirth of Information Visualization

• The Future of Data Analysis • John Tukey 1962

FEUP / LIACC 33 SSIIM Brief History of InfoVis Rebirth of Information Visualization

• Semiologie Graphique • 1967

FEUP / LIACC 34 SSIIM Brief History of InfoVis Rebirth of Information Visualization

• Chernoff Faces (multivariate data) • Herman Chernoff 1973

FEUP / LIACC 35 SSIIM Brief History of InfoVis High-Density Data Visualization

• Scatterplot Matrix • John Hartigan, 1975

FEUP / LIACC 36 SSIIM Brief History of InfoVis High-Density Data Visualization

• Bifocal Display • Mark D. Apperley Robert Spence 1980 Fisheye View

FEUP / LIACC George W. Furnas, 1981 37 SSIIM Brief History of InfoVis High-Density Data Visualization

• Parallel Coordinates • Alfred Inselberg 1985

FEUP / LIACC 38 SSIIM Brief History of InfoVis High-Density Data Visualization

• Treemap • 1991

FEUP / LIACC 39 SSIIM Brief History of InfoVis High-Density Data Visualization

Lens • Ramana Rao and Stuart K. Card 1994

FEUP / LIACC 40 SSIIM Brief History of InfoVis High-Density Data Visualization

• Word/Tag Cloud / Wordle • Jim Flanagan, 2002

FEUP / LIACC 41 SSIIM Brief History of InfoVis High-Density Data Visualization

• Moving Bubble Chart • Hans Rosling 2005

FEUP / LIACC 42 SSIIM Brief History of InfoVis High-Density Data Visualization

• Chord (radial • Danny Holten, 2006

FEUP / LIACC 43 SSIIM Semiology of Graphics

• Semiology (or semiotics) refers to the study of signals and communication • Meaning, relations, perception • A signal represents something other than itself • Mapping between the data and visual representation • Semiology of graphics • Based upon Semiologie Graphique (Jacques Bertin, 1967) • Theoretical foundation for information visualization • Considers printing on white paper as transmission medium

FEUP / LIACC 44 SSIIM Semiology of Graphics Categorization of Symbolic Displays

• Kosslyn (1989) divided the visual representation of information into graphs, charts, maps and diagrams.

FEUP / LIACC 45 SSIIM Semiology of Graphics Categorization of Symbolic Displays

• Lohese et al. (1994) conduced an experiment where 16 participants (half with a background) classified 60 different graphics into groups and were asked to name those groups. The resulting groups were: • Graphs • Tables (numerical and graphical) • Charts (time charts and network charts) • Diagrams (structure diagrams and network diagrams) • Maps • • Icons • Photo-realistic images

FEUP / LIACC 46 SSIIM Semiology of Graphics Visual Structure

• Visual structure composed of • Spatial substrate • Axes are often placed on space to assist • Marks • Graphical properties of marks

• Marks are things that occur in space • Point • Line • Area • (Volume)

FEUP / LIACC 47 SSIIM Semiology of Graphics Visual Variables

• Position • Size • Shape • Value • Orientation • Color • Texture

FEUP / LIACC 48 SSIIM Semiology of Graphics Additional Visual Variables

• Movement • Direction, speed, acceleration, … • Saturation of color • Flicker • Frequency, rhythm, … • Depth • 3D Perception, depth, occlusion, , binocular disparity, … • Illumination • Transparency

FEUP / LIACC 49 SSIIM Semiology of Graphics Visual Variables Characteristics • Selective • Is a change in the variable enough to select it from a group? • Associative • Is a change in the variable enough to be perceived as a group? • Quantitative • Can changes in the variable transmit a numeric value? • Order • Can changes in the variable be perceived as ordered? • Length (Dissociative) • How many changes in the variable can be perceived as distinct?

FEUP / LIACC 50 SSIIM Semiology of Graphics Impositions

FEUP / LIACC 51 SSIIM Semiology of Graphics Impositions

• Example • Victims of traffic accidents in France (1958)

Pedestrians 28.951 Bicycles 17.247 Motorcycles 74.887 4-Wheeled Vehicles 63.071

FEUP / LIACC 52 SSIIM Semiology of Graphics Impositions

FEUP / LIACC 53 SSIIM Semiology of Graphics Impositions

• Linear construction • Only one dimension used to show data • Quantities are shown in a proportional manner • Total is represented implicitly

FEUP / LIACC 54 SSIIM Semiology of Graphics Impositions

• Orthogonal construction • Categories and quantities represented in different axes • Total is not represented • Easier comparison between categories

FEUP / LIACC 55 SSIIM Semiology of Graphics Impositions

• Rectilinear elevation • Quantity is represented by area • Size of marks • Only one dimension used • Total is not represented • Comparison between categories is more difficult

FEUP / LIACC 56 SSIIM Semiology of Graphics Impositions

• Circular construction • Circular version of rectilinear construction • Quantity is represented by angle at the center of the circumference and size of the arc • Total is represented • Comparison is easier using angles than arc lengths

FEUP / LIACC 57 SSIIM Semiology of Graphics Impositions

• Polar construction • Circular version of orthogonal construction • Total is not represented • Comparison of quantities is more complex

FEUP / LIACC 58 SSIIM Semiology of Graphics Impositions

• Circular elevation • Circular version of rectilinear elevation • Quantity is represented by the area • Total is not represented

FEUP / LIACC 59 SSIIM Graph Types and Examples Hierarchical Data

• Node-link diagrams • Cartesian coordinates • Polar coordinates

FEUP / LIACC 60 SSIIM Graph Types and Examples Hierarchical Data

• Treemap and variations • Voronoi Treemap

FEUP / LIACC 61 SSIIM Graph Types and Examples Hierarchical Data

• Circular Treemap

FEUP / LIACC 62 SSIIM Graph Types and Examples Hierarchical Data

• Adjacency diagrams • Cartesian (icicle) • Polar (sunburst)

FEUP / LIACC 63 SSIIM Graph Types and Examples Graphs

Opte Project, 2003

FEUP / LIACC 64 SSIIM Graph Types and Examples Graphs

Opte Project, 2015

FEUP / LIACC 65 SSIIM Graph Types and Examples Graphs

FEUP / LIACC 66 SSIIM Graph Types and Examples Graphs

FEUP / LIACC 67 SSIIM Graph Types and Examples Graphs

• Arc Diagram

FEUP / LIACC 68 SSIIM Graph Types and Examples Graphs

• Force-Directed Graph

FEUP / LIACC 69 SSIIM Graph Types and Examples Graphs

• Matrix/Pixel-based representations

FEUP / LIACC 70 SSIIM Graph Types and Examples

FEUP / LIACC 71 SSIIM Graph Types and Examples Temporal Data

• Theme River / Streamgraph

FEUP / LIACC 72 SSIIM Graph Types and Examples Temporal Data

• Spiral Display

FEUP / LIACC 73 SSIIM Graph Types and Examples Temporal Data

• Spiral Display • Changing the time period can reveal temporal patterns

FEUP / LIACC 74 SSIIM Graph Types and Examples Temporal Data

FEUP / LIACC 75 SSIIM Graph Types and Examples Multivariate Data

• Easy to represent data up to three dimensions

FEUP / LIACC 76 SSIIM Graph Types and Examples Multivariate Data

• Use different for third dimension

FEUP / LIACC 77 SSIIM Graph Types and Examples Multivariate Data

• Scatterplot matrix • Parallel coordinates • Table lens • Chernoff faces

FEUP / LIACC 78 SSIIM Graph Types and Examples Multivariate Data

• Star (Radar chart)

FEUP / LIACC 79 SSIIM Graph Types and Examples Multivariate Data

FEUP / LIACC 80 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 81 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 82 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 83 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 84 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 85 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 86 SSIIM Graph Types and Examples Geospatial Data

FEUP / LIACC 87 SSIIM Graph Types and Examples Geospatial Data

• Lisbon’s Traffic • Pedro Cruz, 2010

FEUP / LIACC 88 SSIIM Graph Types and Examples

• Online Communities • Randall Munroe 2010

FEUP / LIACC 89 SSIIM Graph Types and Examples

FEUP / LIACC 90 SSIIM Graph Types and Examples

FEUP / LIACC 91 SSIIM Graph Types and Examples Social Visualizations

• Refugees and immigrants (Peter Orntoft, 2010)

FEUP / LIACC 92 SSIIM Graph Types and Examples Social Visualizations

FEUP / LIACC 93 SSIIM Graph Types and Examples Social Visualizations

FEUP / LIACC 94 SSIIM Graph Types and Examples Social Visualizations

• An ecosystem of corporate politicians • Pedro Cruz, 2013

FEUP / LIACC 95 SSIIM Graph Types and Examples

FEUP / LIACC 96 SSIIM Graph Types and Examples Infographics

FEUP / LIACC 97 SSIIM Graph Types and Examples Infographics

FEUP / LIACC 98 SSIIM Graph Types and Examples

FEUP / LIACC 99 SSIIM Graph Types and Examples Infoposter

FEUP / LIACC 100 SSIIM Graph Types and Examples vs Infoposter • Infographic • Manner of visualizing information or data • Uses small amount of text (especially short captions and explanations) • Visual elements (symbols, icons, ...) used to convey quantitative information • Other elements (color, size, shape) used to convey qualitative information • Infoposter • Uses text and numbers to convey various facts (quantitative) • Graphic elements (symbols, icons, graphics, ...) typically used just to make it more appealing visually • Typically vertical format

FEUP / LIACC 101 SSIIM Best Practices

defines principles of graphical integrity and guidelines to help create good visualizations • Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space

FEUP / LIACC 102 SSIIM Best Practices Graphical Integrity

• The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities measured. • Lie Factor Size of effect in the graphic Lie factor = Size of effect in the data

27,5 - 18 x 100 = 53% 18

5,3 – 0,6 x 100 = 783% 0,6 783 Lie factor = = 14,8 53

FEUP / LIACC 103 SSIIM Best Practices Graphical Integrity

• Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.

What America talked about in 2014, as viewed Echelon Insights FEUP / LIACC through 184.5 million Twitter mentions 104 SSIIM Best Practices Graphical Integrity

• Show data variation not design variation

FEUP / LIACC 105 SSIIM Best Practices Graphical Integrity

• In time-series displays of money, deflated and standardized units of monetary measurement are nearly always better than nominal units

FEUP / LIACC 106 SSIIM Best Practices Graphical Integrity

• The number of information‐carrying (variable) dimensions depicted should not exceed the number of dimensions in the data

FEUP / LIACC 107 SSIIM Best Practices Graphical Integrity

FEUP / LIACC 108 SSIIM Best Practices Graphical Integrity

• Graphics must not quote data out of context

FEUP / LIACC 109 SSIIM Best Practices Graphical Integrity

FEUP / LIACC 110 SSIIM Best Practices Graphical Integrity

Stock Market Crash?

FEUP / LIACC 111 SSIIM Best Practices Graphical Integrity

• Maximize data ink ratio (within reason) • The proportion of the graphic's ink devoted to non-redundant display of data information Data ink Data ink ratio = Total ink used in graphic

FEUP / LIACC 112 SSIIM Best Practices Graphical Integrity

• Data density should be maximized within reason • Data density is the proportion of the total area of the graph that is dedicated to display data • Most graphs can be shrunk way down without losing legibility or information (The Shrink Principle), economizing space and bringing room to the portrayal of more information

FEUP / LIACC 113 SSIIM Best Practices Graphical Integrity

• Use Small Multiples • The repeated application of the Shrink Principle leads to a powerful and effective design, the small multiples • Series of the same high-density graphic repeated in one layout • Small multiples are a great tool to visualize large quantities of data and with a high number of dimensions, enabling to rapidly compare, for example, the nature of a whole dataset across one selected dimension

FEUP / LIACC 114 SSIIM Best Practices Graphical Integrity

• Avoid chart junk

FEUP / LIACC 115 SSIIM Best Practices Choose an Appropriate Graph Type

• Dimensionality of the data • Nature of the data • Nominal variables? How many classes? • Ordinal variables? • Quantitative variables? • How many variables of each type? • Intent of the graph • Comparing items • Showing (temporal) evolution of data • Showing relationship between data • Showing data distribution • Showing data composition

FEUP / LIACC 116 SSIIM Best Practices Choose an Appropriate Graph Type

FEUP / LIACC 117 SSIIM Best Practices Funny Examples

FEUP / LIACC 118 SSIIM Best Practices Mind your target audience

• Familiarity with symbols • May vary from culture to culture

FEUP / LIACC 119 SSIIM Best Practices Mind your target audience

FEUP / LIACC 120 SSIIM Best Practices Mind your target audience

• Consider accessibility issues • Color combinations

FEUP / LIACC 121 SSIIM Best Practices Mind your target audience

• Consider accessibility issues • Color blindness

FEUP / LIACC 122 SSIIM Best Practices

Gustafson FEUP / LIACC 123 SSIIM Best Practices Consider Accessibility Issues

• Avoid optical ambiguity / illusions

FEUP / LIACC 124 SSIIM Best Practices What Not To Do (Fox News Edition)

FEUP / LIACC 125 SSIIM Best Practices What Not To Do (Fox News Edition)

FEUP / LIACC 126 SSIIM Best Practices What Not To Do (Fox News Edition)

FEUP / LIACC 127 SSIIM Tools and References

• Some Useful Tools • Gephi (https://gephi.org/) • D3 (https://d3js.org/) • FusionCharts (http://www.fusioncharts.com/)

• Processing (https://processing.org/) • Processing.js (http://processingjs.org/)

• Selection of Tools for Data Visualization • http://selection.datavisualization.ch/

• Gapminder (https://www.gapminder.org/)

FEUP / LIACC 128 SSIIM Tools and References Some Reference Websites • Information Aesthetics (http://infosthetics.com/) • Visual Complexity (http://www.visualcomplexity.com/vc/) • Data Visualization (http://www.data-visualization.org/) • Visualising Data (http://www.visualisingdata.com/) • Information is Beautiful (http://www.informationisbeautiful.net/) • InfoVis:Wiki (www.infovis-wiki.net/) • DataVis.ca (http://www.datavis.ca/)

• Edward Tufte (https://www.edwardtufte.com/tufte/)

FEUP / LIACC 129 SSIIM Tools and References Some Reference Books • Edward R. Tufte, The Visual Display of Quantitative Information. Graphics Press, 2007. • Jacques Bertin, Semiology of Graphics: Diagrams, Networks, Maps. ESRI Press, 2010. • Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann, 2012 (3rd edition) • Robert Spence, Information Visualization: An Introduction. Springer, 2014 (3rd edition). • Stephen Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis. Analytics Press, 2009. • Julie Steele e Noah Iliinsky (eds), Beautiful Visualization - Looking at Data Through the Eyes of Experts. O’Reilly, 2010. • Toby Segaran e Jeff Hammerbacher (eds), Beautiful Data: The Stories Behind Elegant Data Solutions. O’Reilly, 2009.

FEUP / LIACC 130 SSIIM Possible Topics for Course Work

• Survey on interaction with visualizations • Survey on recent information visualization methods • Exploratory visualization of a dataset • …

FEUP / LIACC 131 SSIIM Q & A

Information Visualization An Introduction

Daniel Castro Silva [email protected]

FEUP / LIACC 132