Diploma Thesis Development of a Virtual Toolchain for Toyota Hybrid System Powertrain NV Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Czech Technical University in Prague Faculty of Mechanical Engineering Department of Automotive, Combustion Engine and Railway Engineering Diploma Thesis Development of a virtual toolchain for Toyota Hybrid System powertrain NV assessment Supervisors: Ing. Rastislav Toman Satrio Wicaksono ST, M.Eng., Ph.D. Eng. Jeroen De Smet 2020 Bc. Ivo Vodička 1 Annotation Author: Bc. Ivo Vodička Title in English: Development of a virtual toolchain for Toyota Hybrid System powertrain NV assessment Title in Czech: Vývoj virtuálního toolchainu pro vyhodnocení charakteristik hluku a vibrací pohonných řetězců Toyota Hybrid System Academic year: 2019/2020 Study program: Master of Automotive Engineering Branch of study: Advanced Powertrains Department, faculty: Department of Automotive, Combustion Engine and Railway Engineering, Faculty of Mechanical Engineering (CTU in Prague) Faculty of Mechanical and Aerospace Engineering (ITB) Supervisors: Ing. Rastislav Toman (CTU in Prague) Satrio Wicaksono ST, M.Eng., Ph.D. (ITB) Eng. Jeroen De Smet (TME) Abstract: This thesis consists of a review of hybrid vehicles and NV problematics of Toyota Hybrid System powertrain, development and validation of a MBD methodology for the low speed booming noise prediction. Keywords: Toyota Hybrid System, noise and vibration, MBD methodology, toolchain model, validation Number of pages: 113 Number of pictures: 95 Number of tables: 15 2 Declaration I hereby declare that I have completed this thesis independently and that I have listed all the literature and publication used in accordance with the methodological guidelines about adhering to ethical principles in the preparation of the final thesis. In Prague, 20th of January, 2020 Bc. Ivo Vodicka 3 Acknowledgements I would like to thank my mentor Ing. Martin Halámek and supervisor Eng. Jeroen De Smet for the support, guidance and help with the diploma thesis. I would also like to thank my supervisors Ing. Rastislav Toman and Satrio Wicaksono ST, M.Eng., Ph.D. for a patient help with this work. A big thank you belongs to my family and friends who have supported me throughout my studies. 4 All the results shown in this thesis have been approved and accepted by my supervisor Jeroen De Smet, as a representative of Toyota Motor Europe. For reasons of confidentiality, most of the data and results shown in this document have been masked or replaced by dummy values, in accordance to Toyota Motor Europe’s confidentiality guidelines. 5 Contents 1. Introduction ..................................................................................................................................... 9 1.1. Motivation ............................................................................................................................. 10 2. Toyota Hybrid System .................................................................................................................. 12 2.1. Introduction to hybrid vehicles architecture ......................................................................... 12 2.1.1. Level of hybridization ................................................................................................... 12 2.1.2. Hybrid vehicles architecture ......................................................................................... 13 2.2. Toyota Hybrid System Gen4................................................................................................. 16 2.2.1. Working principles ........................................................................................................ 21 3. Noise, vibration and harshness...................................................................................................... 25 3.1. Sources of NVH .................................................................................................................... 25 3.2. Transfer paths ........................................................................................................................ 26 3.3. Powertrain NVH ................................................................................................................... 27 3.3.1. Shuffle ........................................................................................................................... 28 3.3.2. Driveline clonk .............................................................................................................. 29 3.3.3. Gear rattle ...................................................................................................................... 29 3.3.4. Booming noise .............................................................................................................. 30 4. Toolchain development ................................................................................................................. 35 4.1. Software in Loop ................................................................................................................... 36 4.1.1. Driver model ................................................................................................................. 36 4.1.2. Control model ............................................................................................................... 36 4.1.3. Plant and vehicle models ............................................................................................... 37 4.2. Initial powertrain model ........................................................................................................ 37 4.2.1. Amesim model components .......................................................................................... 38 4.3. Coupling into the toolchain ................................................................................................... 42 4.3.1. SiL modifications .......................................................................................................... 44 4.3.2. Powertrain model modifications ................................................................................... 46 4.4. Evaluation of developed toolchain ........................................................................................ 46 5. Toolchain validation ..................................................................................................................... 47 5.1. Vehicle instrumentation ........................................................................................................ 47 6 5.2. Road load measurement ........................................................................................................ 50 5.3. Top-level validation .............................................................................................................. 53 5.3.1. Driving scenarios definition .......................................................................................... 53 5.3.2. Measurement ................................................................................................................. 54 5.3.3. Evaluation ..................................................................................................................... 55 5.3.4. Summary ....................................................................................................................... 65 5.4. Low frequency validation ..................................................................................................... 66 5.4.1. Driving scenarios definition .......................................................................................... 66 5.4.2. Measurement ................................................................................................................. 67 5.4.3. Evaluation ..................................................................................................................... 67 5.4.4. Model improvements .................................................................................................... 70 5.4.5. Summary ....................................................................................................................... 76 5.5. Powertrain block movement validation ................................................................................ 77 5.6. High frequency validation ..................................................................................................... 83 5.6.1. Driving scenario definition ........................................................................................... 83 5.6.2. Measurement ................................................................................................................. 84 5.6.3. Evaluation ..................................................................................................................... 84 5.6.4. Model improvements .................................................................................................... 88 5.6.5. Summary ..................................................................................................................... 100 6. Model accuracy improvements ................................................................................................... 101 6.1. SiL model improvements .................................................................................................... 101 6.2. Powertrain model improvements ........................................................................................ 101 6.3. Co-simulation level improvements ..................................................................................... 102 7. Conclusion .................................................................................................................................