REDUCING POST-BLEEDING MORTALITY of HORSESHOE CRABS (Limulus Polyphemus) USED in the BIOMEDICAL INDUSTRY

Total Page:16

File Type:pdf, Size:1020Kb

REDUCING POST-BLEEDING MORTALITY of HORSESHOE CRABS (Limulus Polyphemus) USED in the BIOMEDICAL INDUSTRY REDUCING POST-BLEEDING MORTALITY OF HORSESHOE CRABS (Limulus polyphemus) USED IN THE BIOMEDICAL INDUSTRY By Lenka Hurton Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN FISHERIES AND WILDLIFE SCIENCES Approved: Dr. Jim Berkson Advisory Chair Dr. Eric Hallerman Committee Member Dr. Stephen Smith Committee Member December 2003 Blacksburg, Virginia Keywords: mortality, blood volume, hemolymph, amebocyte, Limulus polyphemus, horseshoe crab Copyright 2003, Lenka Hurton REDUCING POST-BLEEDING MORTALITY OF HORSESHOE CRABS (Limulus polyphemus) USED IN THE BIOMEDICAL INDUSTRY by: Lenka Hurton Jim Berkson, Chair Fisheries and Wildlife Sciences (ABSTRACT) The biomedical industry bleeds horseshoe crabs (Limulus polyphemus) to produce a product from the blood cells that is used to test the sterility of medical and pharmaceutical products. This study examined the effects of blood extraction on the survival of horseshoe crabs and performed a preliminary investigation into amebocyte maintenance in vitro. Hemolymph volume of L. polyphemus was estimated over a representative size range of adults. Hemolymph volume expressed as a percentage of wet body weight was 25 ± 2.2% (mean ± S.D.) for males and 25 ± 5.1% for females. Relationships of hemolymph volume to weight (P = 0.0026, r2 = 0.8762), hemolymph volume to prosomal width (P < 0.0001), and hemolymph volume to inter- ocular width (P < 0.0001) were identified. Mortality associated with blood extraction was evaluated for horseshoe crabs bled 0, 10, 20, 30, and 40% of their estimated hemolymph volume (unstressed group, N = 200). Mortality associated with the same bleeding levels was evaluated in horseshoe crabs that underwent simulated transport and handling procedures of the biomedical industry’s bleeding process (stressed group, N = 195). Mortality rates of the unbled crabs were not significantly different between the stressed group and unstressed group. Of the bled animals, there was a higher (8.3%) mortality rate in the stressed group, than that (0%) in the unstressed group (P < 0.0001). Within the stressed group, mortality was significantly associated with bleeding (P = 0.0088), and overall mortality increased with increasing levels of blood extraction (P = 0.006, r2 = 0.994). The recovery of hemolymph volume over a 12-day period was monitored (N = 45). Total hemolymph protein levels in the 10, 20, 30, and 40%-bled groups all demonstrated decreased levels between days 0 and 3 (P < 0.0001) post-bleeding. Horseshoe crab serum and a variety of standard invertebrate and insect cell culture media were evaluated for their effects on amebocyte morphology and viability after 7 days of maintenance in vitro. Horseshoe crab serum-supplemented cultures had significantly higher cell viability than serum-free cultures (N = 6; P = 0.0147). Significant differences in amebocyte viability were identified among the six insect cell culture media tested (N = 36; P < 0.0001). Amebocytes in Grace’s Insect Medium without serum remained 77.2 ± 5.1% (mean ± S.D.) viable, followed distantly by Grace’s Modified Insect Medium without serum with a viability of 35.1 ± 8.7%. Taking amebocyte morphology and viability into consideration, this study indicated that Grace’s Insect Medium with horseshoe crab serum supplementation was the best candidate for future medium optimization for Limulus amebocyte requirements. Information gained from this study provides guidance on altering biomedical bleeding protocols to decrease horseshoe crab stress and mortality, and advances information on amebocyte culture medium selection, both of which contribute to decreasing the biomedical industry’s impact on the horseshoe crab population. III ACKNOWLEDGEMENTS I thank my advisor, Dr. Jim Berkson, for providing me with the opportunity to work on this project. His unwavering support, constructive advice, and dedicated effort over the course of this project are greatly appreciated. My committee members, Dr. Stephen Smith and Dr. Eric Hallerman, provided valuable guidance and input throughout this project, and their efforts are greatly appreciated as well. This work is a result of research sponsored in part by the NOAA Office of Sea Grant, US Dept of Commerce, under Grant No. NA96RG0025 to the Virginia Graduate Marine Science Consortium and Virginia Sea Grant College Program. Cambrex Bio Science Walkersville, Inc. generously supplied my project with horseshoe crabs and cell culture media. I would like to thank Dr. Ron Berzofsky and all of Cambrex Bio Science Walkersville, Inc. (Cambrex) for their support throughout this project. I would also like to thank Jeffrey Eustler and his boat crew for his patience and support when he supplied us with horseshoe crabs on behalf of Cambrex. Finally, I would like to thank my parents, friends, and fellow graduate students for their encouragement and invaluable assistance with my research. I would especially like to thank Vincent Caruso, Dr. Dave Hata, René Olsen, Michelle Davis, Whitney Grogan, Jay McGhee, Mary Tilton, Alison Williams, and Alison Sasnett for aiding in transporting, tagging, and/or bleeding horseshoe crabs for this study. In particular, Whitney Grogan provided much appreciated advice during the writing process. IV TABLE OF CONTENTS ACKNOWLEDGEMENTS .......................................................................................................IV LIST OF TABLES .................................................................................................................... VII LIST OF FIGURES .................................................................................................................VIII CHAPTER 1 – INTRODUCTION AND JUSTIFICATION.................................................... 1 INTRODUCTION ...................................................................................................................... 1 Commercial Fishery................................................................................................................ 1 Shorebirds and Conservationists ............................................................................................ 2 Biomedical Industry................................................................................................................ 4 PROJECT PURPOSE AND OBJECTIVES............................................................................... 9 REFERENCES ......................................................................................................................... 12 CHAPTER 2 - DETERMINATION OF TOTAL HEMOLYMPH VOLUME IN THE HORSESHOE CRAB ................................................................................................................. 15 ABSTRACT.............................................................................................................................. 15 INTRODUCTION .................................................................................................................... 16 METHODS ............................................................................................................................... 17 Calculations and statistical analyses.................................................................................... 19 RESULTS ................................................................................................................................. 19 DISCUSSION........................................................................................................................... 20 ACKNOWLEDGEMENTS...................................................................................................... 24 REFERENCES ......................................................................................................................... 25 CHAPTER 3 - POST-BLEEDING MORTALITY OF HORSESHOE CRABS .................. 31 ABSTRACT.............................................................................................................................. 31 INTRODUCTION .................................................................................................................... 32 METHODS ............................................................................................................................... 36 Bleeding mortality study 1 .................................................................................................... 37 Bleeding mortality study 2 .................................................................................................... 38 Statistical analyses................................................................................................................ 40 V RESULTS ................................................................................................................................. 40 DISCUSSION........................................................................................................................... 42 ACKNOWLEDGEMENTS...................................................................................................... 45 REFERENCES ......................................................................................................................... 46 CHAPTER 4 - SELECTION OF A CELL CULTURE MEDIUM FOR IN VITRO MAINTENANCE OF LIMULUS AMEBOCYTES................................................................. 53 ABSTRACT.............................................................................................................................
Recommended publications
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • Living Environment Glossary
    High School Level Living Environment Glossary y English | Punjabi Translation of Living Environment terms based on the Coursework for Living Environment Grades 9 to 12. Glossar This glossary is to PROVIDE PERMITTED TESTING ACCOMMODATIONS of ELL/MLL students. It should also be used for INSTRUCTION during the school year. The glossary may be downloaded, printed and disseminated to educators, parents and ELLs/MLLs. Please click here for the New York State Office of Bilingual Education and World Languages Webpage on "Assessment and Testing Accommodations" THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 Updated: October 2018 GLOSSARY ENGLISH LANGUAGE ARTS ENGLISH ‐ SPANISH THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 P‐16 Office of Elementary, Middle, Secondary and Continuing Education and Office of Higher Education Office of Bilingual Education and Foreign Language Studies http://www.emsc.nysed.gov/biling/ THE UNIVERSITY OF THE STATE OF NEW YORK Regents of the University BETTY A. ROSA, Chancellor, B.A., M.S. in Ed., M.S. in Ed., M.Ed., Ed.D. ............ Bronx T. ANDREW BROWN, Vice Chancellor, B.A., J.D. ………………......................................... Syracuse NAN EILEEN MEAD, B.A. ………….................................................................................. Manhattan JOSEPHINE VICTORIA FINN, B.A., J.D. ……………………................................................... Albany BEVERLY L. OUDERKIRK, B.S., M.S. ............................................................................
    [Show full text]
  • Homeowner Guide to Scorpions and Their Relatives
    HOMEOWNER Guide to by Edward John Bechinski, Dennis J. Schotzko, and Craig R. Baird CIS 1168 Scorpions and their relatives “Arachnid” is the scientific classification category for all eight-legged relatives of insects. Spiders are the biggest group of arachnids, with nearly 3800 species known from the U.S and Canada. But the arachnid category includes other types of eight-legged creatures that sometime cause concern. Some of Idaho’s non-spider arachnids – such as scorpions -- pose potential threats to human health. Two related non-spider arachnids – sun scorpions and pseudoscorpions – look fearsome but are entirely harmless. This publication will help you identify these three groups and understand the threats they pose. All three of these groups almost always are seen as lone individuals that do not require any control. Scorpions IDENTIFICATION AND BIOLOGY FLUORESCENT SCORPIONS Scorpions are easily identified by their claw-like pincers at the The bodies of some scorpions – normally pale tan to darker red-brown – front of the head and their thin, many-segmented abdomen that glow yellow-green when exposed to ultraviolet light. Even fossils millions ends in an enlarged bulb with a curved sting at the tip (figure 1). of years old fluoresce under ultraviolet light. Sun spiders similarly glow yel- Five species ranging in size from 2 to 7 inches long occur in low-green under UV light. Idaho. Scorpions primarily occur in the sagebrush desert of the southern half of Idaho, but one species – the northern scorpion (Paruroctonus boreus)– occurs as far north as Lewiston, along the Snake River canyon of north-central Idaho.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Giant Whip Scorpion Mastigoproctus Giganteus Giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H
    EENY493 Giant Whip Scorpion Mastigoproctus giganteus giganteus (Lucas, 1835) (Arachnida: Thelyphonida (=Uropygi): Thelyphonidae) 1 William H. Kern and Ralph E. Mitchell2 Introduction shrimp can deliver to an unsuspecting finger during sorting of the shrimp from the by-catch. The only whip scorpion found in the United States is the giant whip scorpion, Mastigoproctus giganteus giganteus (Lucas). The giant whip scorpion is also known as the ‘vinegaroon’ or ‘grampus’ in some local regions where they occur. To encounter a giant whip scorpion for the first time can be an alarming experience! What seems like a miniature monster from a horror movie is really a fairly benign creature. While called a scorpion, this arachnid has neither the venom-filled stinger found in scorpions nor the venomous bite found in some spiders. One very distinct and curious feature of whip scorpions is its long thin caudal appendage, which is directly related to their common name “whip-scorpion.” The common name ‘vinegaroon’ is related to their ability to give off a spray of concentrated (85%) acetic acid from the base of the whip-like tail. This produces that tell-tale vinegar-like scent. The common name ‘grampus’ may be related to the mantis shrimp, also called the grampus. The mantis shrimp Figure 1. The giant whip scorpion or ‘vingaroon’, Mastigoproctus is a marine crustacean that can deliver a painful wound giganteus giganteus (Lucas). Credits: R. Mitchell, UF/IFAS with its mantis-like, raptorial front legs. Often captured with shrimp during coastal trawling, shrimpers dislike this creature because of the lightning fast slashing cut mantis 1.
    [Show full text]
  • THESIS a COMPARATIVE ANALYSIS BETWEEN the Rfc and LAL ENDOTOXIN ASSAYS for AGRICULTURAL AIR SAMPLES Submitted by Laura Ann Kraus
    THESIS A COMPARATIVE ANALYSIS BETWEEN THE rFC AND LAL ENDOTOXIN ASSAYS FOR AGRICULTURAL AIR SAMPLES Submitted by Laura Ann Krause Department of Environmental and Radiological Health Sciences In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2016 Master’s Committee: Advisor: Stephen J. Reynolds Joshua W. Schaeffer Robert P. Ellis Copyright by Laura Ann Krause 2016 All Rights Reserved ABSTRACT A COMPARATIVE ANALYSIS BETWEEN THE rFC AND LAL ENDOTOXIN ASSAYS FOR AGRICULTURAL AIR SAMPLES Agricultural workers experience increased exposure to inhalable dust and endotoxins, which make up the outer membrane of Gram-negative bacteria species. Endotoxin has specifically been linked to an increased degree of pro-inflammatory symptoms from inhaled dust, leading to a variety of lung diseases. Because there is no standardized method of collection or analysis of endotoxin, there are paramount gaps in the knowledge of how best to collect and analyze samples. The aims of this study were to: (1) assess the recovery from PVC filters spiked with known endotoxin concentrations; and (2) compare two different biological endotoxin assay kits: Lonza rFC and Associates of Cape Cod Pyrochrome Chromogenic, in order to detect any significant variation in measured endotoxin concentrations and potentially establish a conversion factor for interstudy comparison purposes. The LAL assay uses a component found in the blood of horseshoe crabs in order to detect and quantify endotoxin concentrations. This process poses some concern with variability, as the reactivity of lysate with endotoxin can vary greatly between individual horseshoe crabs. The newer rFC assay offers an additional option for endotoxin analysis that does not require the use of horseshoe crabs.
    [Show full text]
  • Channeling the Power of Scorpion Venom
    NEWSFRONTS Channeling the power of scorpion venom Scorpions, cockroaches and clawed frogs desert scorpion, Leiurus quinquestriatus may sound like ingredients in an ancient hebraeus. Next, they engineered oocytes recipe for witches’ brew. But bringing these from clawed frogs (Xenopus) to express animals together in a series of experiments sodium channels from German cock- has uncovered a new understanding of a roaches (Blattella germanica). They then more mundane problem: pesticide resis- investigated the interaction between the tance in insects. The results of this recent toxin and the sodium channel (J. Biol. study may help scientists to develop better Chem. 286, 15781–15788; 2011). pesticides—no spell book required. They identified one sodium channel Scorpions produce a variety of toxins variant that was extremely sensitive to the that target different channels and recep- Río del Jiménez Carlos Luis scorpion toxin. Comparing it with other tors in their prey’s neuromuscular systems. less-sensitive variants, they found several Common targets of these toxins are the amino acid changes in the channel’s protein voltage-gated sodium channels, proteins set out to examine the mechanisms under- sequence that had affected its sensitivity to involved in rapid electrical signaling in lying the selectivity of scorpion toxin scorpion toxin. One of these changes, in nerve and muscle cells. Most organisms effects on insect sodium channels. Dong the voltage-sensing module of domain III have a broad array of sodium channel vari- hopes the findings will help researchers to of the pore-forming a-subunit, was respon- ants with different specific properties, and develop better insecticides and alternatives sible for the hypersensitivity of this channel some scorpion toxins selectively affect cer- to control resistant pests.
    [Show full text]
  • Scorpion Toxin Peptide Scaffolds
    Toxins 2013, 5, 2456-2487; doi:10.3390/toxins5122456 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds Kartik Sunagar 1,2,†, Eivind A. B. Undheim 3,4,†, Angelo H. C. Chan 3, Ivan Koludarov 3,4, Sergio A. Muñoz-Gómez 5, Agostinho Antunes 1,2 and Bryan G. Fry 3,4,* 1 CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, 4050-123 Porto, Portugal; E-Mails: [email protected] (K.S.); [email protected] (A.A.) 2 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal 3 Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; E-Mails: [email protected] (E.A.B.U.); [email protected] (A.H.C.C.); [email protected] (I.K.) 4 Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia 5 Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-400-193-182. Received: 21 November 2013; in revised form: 9 December 2013 / Accepted: 9 December 2013 / Published: 13 December 2013 Abstract: The episodic nature of natural selection and the accumulation of extreme sequence divergence in venom-encoding genes over long periods of evolutionary time can obscure the signature of positive Darwinian selection.
    [Show full text]
  • Spider and Scorpion Case
    Spider and Scorpion case Black widow spider (Lactrodectus hesperus) Black widows are notorious spiders identified by the colored, hourglass-shaped mark on their abdomens. Several species answer to the name, and they are found in temperate regions around the world. This spider's bite is much feared because its venom is reported to be 15 times stronger than a rattlesnake's. In humans, bites produce muscle aches, nausea, and a paralysis of the diaphragm that can make breathing difficult; however, contrary to popular belief, most people who are bitten suffer no serious damage—let alone death. But bites can be fatal—usually to small children, the elderly, or the infirm. Fortunately, fatalities are fairly rare; the spiders are nonaggressive and bite only in self-defense, such as when someone accidentally sits on them. These spiders spin large webs in which females suspend a cocoon with hundreds of eggs. Spiderlings disperse soon after they leave their eggs, but the web remains. Black widow spiders also use their webs to ensnare their prey, which consists of flies, mosquitoes, grasshoppers, beetles, and caterpillars. Black widows are comb- footed spiders, which means they have bristles on their hind legs that they use to cover their prey with silk once it has been trapped. To feed, black widows puncture their insect prey with their fangs and administer digestive enzymes to the corpses. By using these enzymes, and their gnashing fangs, the spiders liquefy their prey's bodies and suck up the resulting fluid. Giant desert hairy scorpion (Hadrurus arizonensis) Hadrurus arizonensis is distributed throughout the Sonora and Mojave deserts.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Endotoxins and Cell Culture
    Endotoxins and Cell Culture 1 Endotoxins and Cell Culture Table of Contents Introduction ..................................................................................................................... 1 What are Endotoxins? ................................................................................................... 1 Detection and Measurement ...................................................................................... 2 Sources of Endotoxins in Cell Culture ....................................................................... 2 Endotoxin Effects on In Vitro Cell Growth and Function ..................................... 3 Possible Mechanisms for These Effects .................................................................... 5 Conclusions ...................................................................................................................... 6 Introduction Contamination of cell cultures has long been a serious problem for researchers as well as for manufacturers producing cell-based parenteral (for injection) drug products. In the past, most efforts for avoiding contamination-induced cul ture losses have focused on biological contaminants: bacteria, mycoplasmas, yeasts, fungi, and even other cell lines19. However, for companies producing cell culture-based products, such as vaccines and injectable drugs, endotoxins, chemical contaminants produced by some bacteria, have also been a major concern. The presence of endotoxins in products for injec tion can result in pyrogenic responses ranging from fever
    [Show full text]
  • Limulus Amebocyte Lysate Chromogenic Endpoint Assay HIT302
    Limulus Amebocyte Lysate Chromogenic Endpoint Assay HIT302 Edition 12-17 ENDOTOXIN DETECTION KIT PRODUCT INFORMATION & MANUAL Read carefully prior to starting procedures! For use in laboratory research only Not for clinical or diagnostic use Note that this user protocol is not lot-specific and is representative for the current specifications of this product. Please consult the vial label and the Certificate of Analysis for information on specific lots. Also note that shipping conditions may differ from storage conditions. For research use only. Not for use in or on humans or animals or for diagnostics. It is the responsibility of the user to comply with all local/state and federal rules in the use of this product. Hycult Biotech is not responsible for any patent infringements that might result from the use or derivation of this product. TABLE OF CONTENTS Page 1. Intended use .................................................................................................................. 2 2. Introduction .................................................................................................................... 2 3. Kit features ..................................................................................................................... 2 4. Protocol overview ........................................................................................................... 3 5. Kit components and storage instructions ........................................................................ 4 Materials required but not provided
    [Show full text]