Novel Variants of the Zwitterionic Claisen Rearrangement and the Total Synthesis of Erythronolide B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis of Y,Δ-Unsaturated Amino Acids by Claisen Rearrangement - Last 25 Years
The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2021, part ii, 0-0 Organic Chemistry to be inserted by editorial office Synthesis of y,δ-unsaturated amino acids by Claisen rearrangement - last 25 years Monika Bilska-Markowska,a Marcin Kaźmierczak,*a,b and Henryk Koroniaka aFaculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland bCentre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland Email: [email protected] In dedication to Professor Zbigniew Czarnocki on the occasion of his 66th anniversary Received mm-dd-yyyy Accepted mm-dd-yyyy Published on line mm-dd-yyyy Dates to be inserted by editorial office Abstract This mini review summarizes achievements in the synthesis of y,δ-unsaturated amino acids via Claisen rearrangements. The multitude of products that can be obtained using the discussed protocol shows that it is one of the most important reactions in organic synthesis. Moreover, many Claisen rearrangement products are building blocks in the synthesis of more complex molecules with potential biological activity. Keywords: y,δ-Unsaturated amino acids, Claisen rearrangement, fluorine-containing γ,δ-unsaturated amino acids, diastereoselectivity, optically active compounds DOI: https://doi.org/10.24820/ark.5550190.p011.335 Page 1 ©AUTHOR(S) Arkivoc 2021, ii, 0-0 Bilska-Markowska, M. et al. Table of Contents 1. Introduction 2. Chelated Claisen Rearrangement 3. Related Versions of Claisen Rearrangement for γ,δ-Unsaturated Amino Acids 4. Application of Claisen Rearrangement to the Synthesis of Fluorine-containing γ,δ-Unsaturated Amino Acids 5. -
Curriculum Vitae Kazimer Lennon Skubi
CURRICULUM VITAE KAZIMER LENNON SKUBI Skidmore College Department of Chemistry Office: (518) 580-5147 815 North Broadway Email: [email protected] Saratoga Springs, NY 12866 ORCID: 0000-0002-9689-1842 EDUCATION AND TRAINING Yale University 2017–2020 NIH F32 Postdoctoral Fellow (Advisor: Patrick Holland) University of Wisconsin–Madison 2011–2017 Ph.D. in Chemistry (Advisor: Tehshik Yoon) Thesis Title: “New Strategies for Catalytic Stereocontrol in Photochemical Synthesis” Carleton College 2007–2011 B.A. in Chemistry, summa cum laude ACS-Certified Degree, Distinction in Major, Distinction in Senior Integrative Exercise PROFESSIONAL EXPERIENCE Visiting Assistant Professor of Chemistry, Skidmore College, Saratoga Springs, NY 2020–present NIH F32 Postdoctoral Fellow, Yale University, New Haven, CT 2018–2020 Postdoctoral Associate, Yale University, New Haven, CT 2017–2018 Graduate Student Research Assistant, University of Wisconsin–Madison, Madison, WI 2015–2017 Graduate Student Teaching Assistant, University of Wisconsin–Madison, Madison, WI 2011–2015 TEACHING EXPERIENCE Skidmore College CH 125: Principles of Chemistry + Lab Fall 2020 University of Wisconsin–Madison (Teaching Assistant) CHEM 344: Organic Chemistry Laboratory Fall 2011, Spring 2012 CHEM 345: Organic Chemistry II Spring 2014 CHEM 346: Intermediate Organic Chemistry Laboratory Fall 2013, Fall 2014, Fall 2015 CHEM 636: Introduction to NMR Fall 2012, Spring 2013 CHEM 637: Advanced Methods in NMR Summer 2013 Carleton College (Teaching Assistant) CHEM 123: Introductory Chemistry Fall 2009 CHEM 233: Organic Chemistry I Winter 2010, Fall 2010, Winter 2011 CHEM 234: Organic Chemistry II Spring 2010, Spring 2011 MENTORING EXPERIENCE Graduate Student Mentor, Holland Research Group 2017–2020 Fundamentals of Inclusive Teaching (Yale Center for Teaching and Learning) Fall 2018 Teaching in Science and Engineering: The College Classroom (UW–Madison Dept. -
Ring Opening of Donor–Acceptor Cyclopropanes with N-Nucleo- Philes
SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2017, 49, 3035–3068 short review 3035 en Syn thesis E. M. Budynina et al. Short Review Ring Opening of Donor–Acceptor Cyclopropanes with N-Nucleo- philes Ekaterina M. Budynina* Konstantin L. Ivanov Ivan D. Sorokin Mikhail Ya. Melnikov Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1-3, Moscow 119991, Russian Federation [email protected] Received: 06.02.2017 Accepted after revision: 07.04.2017 Published online: 18.05.2017 DOI: 10.1055/s-0036-1589021; Art ID: ss-2017-z0077-sr Abstract Ring opening of donor–acceptor cyclopropanes with various N-nucleophiles provides a simple approach to 1,3-functionalized com- pounds that are useful building blocks in organic synthesis, especially in assembling various N-heterocycles, including natural products. In this review, ring-opening reactions of donor–acceptor cyclopropanes with amines, amides, hydrazines, N-heterocycles, nitriles, and the azide ion are summarized. 1 Introduction 2 Ring Opening with Amines Ekaterina M. Budynina studied chemistry at Lomonosov Moscow 3 Ring Opening with Amines Accompanied by Secondary Processes State University (MSU) and received her Diploma in 2001 and Ph.D. in Involving the N-Center 2003. Since 2013, she has been a leading research scientist at Depart- 3.1 Reactions of Cyclopropane-1,1-diesters with Primary and Secondary ment of Chemistry MSU, focusing on the reactivity of activated cyclo- Amines propanes towards various nucleophilic agents, as well as in reactions -
Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers: a Synthetic and Mechanistic Approach Kassem M
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2011 Gold (I)-Catalyzed Claisen Rearrangement of Allenyl Vinyl Ethers: A Synthetic and Mechanistic Approach Kassem M. Hallal Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES GOLD (I)-CATALYZED CLAISEN REARRANGEMENT OF ALLENYL VINYL ETHERS; A SYNTHETIC AND MECHANISTIC APPROACH By KASSEM M. HALLAL A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2011 The members of the committee approve the dissertation of Kassem M. Hallal defended on March 18, 2011. _______________________________________ Marie E. Krafft Professor Directing Dissertation _______________________________________ Thomas C. S. Keller III University Representative _______________________________________ Robert A. Holton Committee Member _______________________________________ Gregory B. Dudley Committee Member _______________________________________ William T. Cooper Committee Member Approved: ____________________________________________________________ Joseph B. Schlenoff, Chair, Department of Chemistry and Biochemistry The Graduate School has verified and approved the above-named committee members. ii This work is dedicated To My soul mate, lovely wife zeinab, My baby Mohammad And also to my parents Mohammad & Kamela And to My brothers and lovely sister Youssef, Hamzeh and Fatima & My Great professor Prof. Marie E. Krafft iii ACKNOWLEDGEMENTS Starting my PhD career at Florida State University was one of the most important stages in my life. Throughout the past five years, I learned a lot of things about chemistry and science, however, the most important thing which I learned was the chemistry of life. -
A New Reaction Mechanism of Claisen Rearrangement Induced by Few-Optical-Cycle Pulses: Demonstration of Nonthermal Chemistry by Femtosecond Vibrational Spectroscopy*
Pure Appl. Chem., Vol. 85, No. 10, pp. 1991–2004, 2013. http://dx.doi.org/10.1351/PAC-CON-12-12-01 © 2013 IUPAC, Publication date (Web): 13 August 2013 A new reaction mechanism of Claisen rearrangement induced by few-optical-cycle pulses: Demonstration of nonthermal chemistry by femtosecond vibrational spectroscopy* Izumi Iwakura1,2,3,‡, Atsushi Yabushita4, Jun Liu2, Kotaro Okamura2, Satoko Kezuka5, and Takayoshi Kobayashi2 1Innovative Use of Light and Materials/Life, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; 2University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan; 3Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan; 4Department of Electrophysics, National Chiao-Tung University, Hsinchu 300, Taiwan; 5Department of Applied Chemistry, School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan Abstract: Time-resolved vibration spectroscopy is the only known way to directly observe reaction processes. In this work, we measure time-resolved vibration spectra of the Claisen rearrangement triggered and observed by few-optical-cycle pulses. Changes in molecular structure during the reaction, including its transition states (TSs), are elucidated by observ- ing the transient changes of molecular vibration wavenumbers. We pump samples with visi- ble ultrashort pulses of shorter duration than the molecular vibration period, and with photon energies much lower than the minimum excitation energy of the sample. The results indicate that the “nonthermal Claisen rearrangement” can be triggered by visible few-optical-cycle pulses exciting molecular vibrations in the electronic ground state of the sample, which replaces the typical thermal Claisen rearrangement. -
Rearrangement Reactions
Rearrangement Reactions A rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. 1, 2-Rearrangements A 1, 2-rearrangement is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1, 2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In general straight-chain alkanes, are converted to branched isomers by heating in the presence of a catalyst. Examples include isomerisation of n-butane to isobutane and pentane to isopentane. Highly branched alkanes have favorable combustion characteristics for internal combustion engines. Further examples are the Wagner-Meerwein rearrangement: and the Beckmann rearrangement, which is relevant to the production of certain nylons: Pericyclic reactions A pericyclic reaction is a type of reaction with multiple carbon-carbon bonds making and breaking wherein the transition state of the molecule has a cyclic geometry and the reaction progresses in a concerted fashion. Examples are hydride shifts [email protected] and the Claisen rearrangement: Olefin metathesis Olefin metathesis is a formal exchange of the alkylidene fragments in two alkenes. It is a catalytic reaction with carbene, or more accurately, transition metal carbene complexintermediates. In this example (ethenolysis, a pair of vinyl compounds form a new symmetrical alkene with expulsion of ethylene. Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions. -
The Mechanism of the Para-Claisen Rearrangement
THE MECHANISM OF TIlE PARA-CLAISEN REARRANGEME NT by ROY TERANISHI A THESIS submitted to OREGON STAT COLLEGE in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY June 1954 APPROVED: Assistant Professor of Chemistry In Charge of Major Chairman of Chemistry Department Chairman of School Graduate Conimittee Dean of Graduate School ,-:, Date thesis is presented _ ?/, fgr'/ Typed by Mary Willits TABLE OF CONTENTS Page Introduction. e . e . i History ........ e s e s . 3 Dicuson ...... 9 Experimental ..... 19 Tables. * ...... 22 Summary ........ s s s . 27 13 i bi i ogr aphy ........ 28 THE MECHANISM OF THE PARA-CLAISEN REARRANGEMENT INTRODUCTION The mechanism of the Claisen rearrangement to the para position has not been satisfactorily explained or proved, although that postulated for the rearrangement to the ortho position is in good agreement with experimental data. D. Stanley Tarbell (22, p.497) sug:ested that the rearrangement to the para position involved a dissociation of the allyl group, either as an ion or a radical, although he mentions that serious objections can be raised to both. liurd and Pollack (10, p.550) have suggested that rearrange- ment to the para position might go by two steps: first, a shift of the allyl group to the ortho position with inver- sion, as described for the ortho rearrangement, followed by another shift to the para position with inversion. Very recently, in view of new data presented, there has been a tendency to accept this mechanism. In this mochanism,first postulated by Hurd and Pollack (lo, p.550), the intermediate formed in the first step would be a dienone, III. -
The Claisen Rearrangement (Transition State Analog/Monoclonal Antibody/Chorismate Mutase Model) DONALD HILVERT*, STEPHEN H
Proc. Natl. Acad. Sci. USA Vol. 85, pp. 4953-4955, July 1988 Chemistry Catalysis of concerted reactions by antibodies: The Claisen rearrangement (transition state analog/monoclonal antibody/chorismate mutase model) DONALD HILVERT*, STEPHEN H. CARPENTER, KAREN D. NARED, AND MARIA-TERESA M. AUDITOR Department of Molecular Biology, Research Institute of Scripps Clinic, 10666 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Emil Thomas Kaiser, March 28, 1988 (receivedfor review March 15, 1988) ABSTRACT Monoclonal antibodies were prepared against The oxabicyclic compound 4a, which mimics the putative a transition state analog inhibitor of chorismate mutase (EC transition state structure, is the best known inhibitor of 5.4.99.5). One ofthe antibodies catalyzes the rearrangement of chorismate mutase (13). It binds approximately 100 times chorismate to prephenate with rate accelerations of more than more tightly to the enzyme than does chorismate (13). We 2 orders of magnitude compared to the uncatalyzed reaction. have synthesized a derivative of4a and used it as a hapten to Saturation kinetics were observed, and at 250C the values of elicit monoclonal antibodies. Having completed a prelimi- k,.t and Km were 1.2 x 1O-3 S-' and 5.1 x 10-5 M respec- nary screen of 15 ofthe 46 resulting antibodies, we report that tively. The transition state analog was shown to be a compet- one of these significantly accelerates the rearrangement of itive inhibitor of the reaction with Ki equal to 0.6 JIM. These chorismate to prephenate. results demonstrate the feasibility of using rationally designed immunogens to generate antibodies that catalyze concerted MATERIALS AND METHODS reactions. -
Iron-Catalyzed Amino-Oxygenation and Aminofluorination of Olefins
Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry 8-11-2015 Iron-Catalyzed Amino-Oxygenation and Aminofluorination of Olefins Jeffrey Sears [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Sears, Jeffrey, "Iron-Catalyzed Amino-Oxygenation and Aminofluorination of Olefins." Thesis, Georgia State University, 2015. https://scholarworks.gsu.edu/chemistry_theses/77 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. IRON-CATALYZED AMINO-OXYGENATION AND AMINOFLUORINATION OF OLEFINS by JEFFREY D. SEARS Under the Direction of Hao Xu, PhD ABSTRACT The first chapter of the thesis describes an iron(II)-catalyzed intermolecular amino- oxygenation of alkenes. This amino-oxygenation method is found to be compatible with a broad range of synthetically valuable alkenes and affords the corresponding 1,2-amino alcohols with excellent regio- and diastereoselectivity. Additionally, practical synthetic procedures for the amino-oxygenation of styrene, a fully functionalized glycal, and indene are described. The second chapter of the thesis describes a regioselective and diastereoselective iron(II)-catalyzed intermolecular aminofluorination of alkenes using nucleophilic fluorinating reagents. This method affords new vicinal amino fluorides that were previously difficult to prepare. In both the amino-oxygenation and aminofluorination reactions, bench-stable hydroxylamine derivatives functioned as both the oxidant and amination reagents. Preliminary mechanistic studies suggested that an iron-nitrenoid is a possible reactive intermediate on both reaction pathways. -
Read Laura's Thesis Chapter
Communicating Research to the General Public At the March 5, 2010 UW-Madison Chemistry Department Colloquium, Prof. Bassam Z. Shakhashiri, the director of the Wisconsin Initiative for Science Literacy (WISL), encouraged all UW-Madison chemistry Ph.D. candidates to include a chapter in their Ph.D. thesis communicating their research to non-specialists. The goal is to explain the candidate’s scholarly research and its significance to a wider audience that includes family members, friends, civic groups, newspaper reporters, program officers at appropriate funding agencies, state legislators, and mem- bers of the U.S. Congress. Over 20 Ph.D. degree recipients have successfully completed their theses and included such a chapter. WISL encourages the inclusion of such chapters in all Ph.D. theses everywhere through the cooperation of Ph.D. candidates and their mentors. WISL is now offering additional awards of $250 for UW-Madison chemistry Ph.D. candidates. The dual mission of the Wisconsin Initiative for Science Literacy is to promote literacy in science, mathematics and technology among the general public and to attract future generations to careers in research, teaching and public service. UW-Madison Department of Chemistry 1101 University Avenue Madison, WI 53706-1396 Contact: Prof. Bassam Z. Shakhashiri [email protected] www.scifun.org May 2014 Controlling the Chemistry of Photogenerated Radicals with Lewis and Brønsted Acid Co-Catalysts By Laura Ruiz Espelt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) at the UNIVERSITY OF WISCONSIN!MADISON 2014 Date of final oral examination: 08/06/2014 The dissertation is approved by the following members of the Final Oral Committee: Tehshik Yoon, Professor, Chemistry Clark Landis, Professor, Chemistry Shannon Stahl, Professor, Chemistry Jennifer Schomaker. -
Badger Chemist the Newsletter of the Department of Chemistry at the University of Wisconsin-Madison
Badger Chemist The Newsletter of the Department of Chemistry at the University of Wisconsin-Madison Established 1953, No. 57, 2014 BADGER CHEMIST Ten People, Ten Stories Ever since joining the faculty at the University of Wisconsin-Madison 25 years ago, one of the things that has most impressed me is the astounding variety of science, classes, and other activities that happen in our department each day. If you were to explore the Chemistry Building and talk to 10 people, each one might easily tell you a different story about an exciting new research project, a meaningful class experience, a poster or publication in progress, or a new program for students or the community. With this issue of the Badger CONTENTS Chemist, we aim to give you a taste of this great diversity of teaching, research, and outreach. New Badger Chemists .................................... 2 Whether you have fond memories of learning the ins and outs Alumni News ................................................... 4 of the department’s chemical instruments (page 15), you want to Chemistry News .............................................. 5 find out the latest update on the Chemistry Building Project (page Awards and Honors ....................................... 11 Features ......................................................... 15 6), you’re curious what chemistry majors are learning in the lab Shakhashiri ACS Presidency Reflections ...... 19 these days (page 17), or you want to meet our newest professor New Faculty Profile ...................................... -
42 National Organic Chemistry Symposium Table of Contents
42nd National Organic Chemistry Symposium Princeton University Princeton, New Jersey June 5 – 9, 2011 Table of Contents Welcome……………………………………………………………………………….......... 2 Sponsors / Exhibitors…..……………………………………………………………........... 3 DOC Committee Membership / Symposium Organizers………………………….......... 5 Symposium Program (Schedule)……...…………………………………………….......... 9 The Roger Adams Award…………………………………………………………….......... 14 Plenary Speakers………………………………………………………………………........ 15 Lecture Abstracts..…………………………………………………………………….......... 19 DOC Graduate Fellowships……………………………………………………………....... 47 Poster Titles…………………………...……………………………………………….......... 51 General Information..………………………………………………………………….......... 93 Attendees………………………………..……………………………………………........... 101 Notes………..………………………………………………………………………….......... 117 (Cover Photo by Chris Lillja for Princeton University Facilities. Copyright 2010 by the Trustees of Princeton University.) -------42nd National Organic Chemistry Symposium 2011 • Princeton University Welcome to Princeton University On behalf of the Executive Committee of the Division of Organic Chemistry of the American Chemical Society and the Department of Chemistry at Princeton University, we welcome you to the 42nd National Organic Chemistry Symposium. The goal of this biennial event is to present a distinguished roster of speakers that represents the current status of the field of organic chemistry, in terms of breadth and creative advances. The first symposium was held in Rochester NY, in December 1925, under the auspices of