Evidence for Binarity and Possible Disk Obscuration in Kepler Observations of the Pulsating RV Tau Variable DF Cygni
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summer Constellations
Night Sky 101: Summer Constellations The Summer Triangle Photo Credit: Smoky Mountain Astronomical Society The Summer Triangle is made up of three bright stars—Altair, in the constellation Aquila (the eagle), Deneb in Cygnus (the swan), and Vega Lyra (the lyre, or harp). Also called “The Northern Cross” or “The Backbone of the Milky Way,” Cygnus is a horizontal cross of five bright stars. In very dark skies, Cygnus helps viewers find the Milky Way. Albireo, the last star in Cygnus’s tail, is actually made up of two stars (a binary star). The separate stars can be seen with a 30 power telescope. The Ring Nebula, part of the constellation Lyra, can also be seen with this magnification. In Japanese mythology, Vega, the celestial princess and goddess, fell in love Altair. Her father did not approve of Altair, since he was a mortal. They were forbidden from seeing each other. The two lovers were placed in the sky, where they were separated by the Celestial River, repre- sented by the Milky Way. According to the legend, once a year, a bridge of magpies form, rep- resented by Cygnus, to reunite the lovers. Photo credit: Unknown Scorpius Also called Scorpio, Scorpius is one of the 12 Zodiac constellations, which are used in reading horoscopes. Scorpius represents those born during October 23 to November 21. Scorpio is easy to spot in the summer sky. It is made up of a long string bright stars, which are visible in most lights, especially Antares, because of its distinctly red color. Antares is about 850 times bigger than our sun and is a red giant. -
September 2016
11/20/2016 11:13 AM CHECK RECONCILIATION REGISTER PAGE: 1 COMPANY: 04 - COMMUNITY DEVELOPMENT CHECK DATE: 9/01/2016 THRU 9/30/2016 ACCOUNT: 10010 CASH C.D.B.G. - CHECKING CLEAR DATE: 0/00/0000 THRU 99/99/9999 TYPE: Check STATEMENT: 0/00/0000 THRU 99/99/9999 STATUS: All VOIDED DATE: 0/00/0000 THRU 99/99/9999 FOLIO: All AMOUNT: 0.00 THRU 999,999,999.99 CHECK NUMBER: 000000 THRU 999999 ACCOUNT --DATE-- --TYPE-- NUMBER ---------DESCRIPTION---------- ----AMOUNT--- STATUS FOLIO CLEAR DATE CHECK: ---------------------------------------------------------------------------------------------------------------- 10010 9/08/2016 CHECK 006680 LOWER RIO GRANDE VALLEY 1,702.00CR CLEARED A 10/10/2016 10010 9/08/2016 CHECK 006681 MISSION CRIME STOPPERS 2,726.60CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006682 A ONE INSULATION 5,950.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006683 A ONE INSULATION 5,950.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006684 A ONE INSULATION 5,850.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006685 A ONE INSULATION 5,850.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006686 CHILDREN'S ADV.CENTER HDL 911.62CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006687 G&G CONTRACTORS 23,920.00CR CLEARED A 10/10/2016 10010 9/29/2016 CHECK 006688 AMIGOS DEL VALLE 1,631.05CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006689 DELL MARKETING L.P. 1,148.00CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006690 LOWER RIO GRANDE VALLEY 2,682.54CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006691 SILVER RIBBON COMMUNITY PARTNE 815.04CR -
A Large Hα Line Forming Region for the Massive Interacting Binaries Β
A&A 532, A148 (2011) Astronomy DOI: 10.1051/0004-6361/201116742 & c ESO 2011 Astrophysics AlargeHα line forming region for the massive interacting binaries β Lyrae and υ Sagitarii D. Bonneau1, O. Chesneau1, D. Mourard1, Ph. Bério1,J.M.Clausse1, O. Delaa1,A.Marcotto1, K. Perraut2, A. Roussel1,A.Spang1,Ph.Stee1, I. Tallon-Bosc3, H. McAlister4,5, T. ten Brummelaar5, J. Sturmann5, L. Sturmann5, N. Turner5, C. Farrington5, and P. J. Goldfinger5 1 Lab. H. Fizeau, Univ. Nice Sophia Antipolis, CNRS UMR 6525, Obs. de la Côte d’Azur, Av. Copernic, 06130 Grasse, France e-mail: [email protected] 2 UJF-Grenoble 1/CNRS-INSU, Inst. de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble 38041, France 3 Univ. Lyon 1, Observatoire de Lyon, 9 avenue Charles André, Saint-Genis Laval 69230, France 4 Georgia State University, PO Box 3969, Atlanta GA 30302-3969, USA 5 CHARA Array, Mount Wilson Observatory, 91023 Mount Wilson CA, USA Received 17 February 2011 / Accepted 1 July 2011 ABSTRACT Aims. This study aims at constraining the properties of two interacting binary systems by measuring their continuum-forming region in the visible and the forming regions of some emission lines, in particular Hα, using optical interferometry. Methods. We have obtained visible medium (R ∼ 1000) spectral resolution interferometric observations of β Lyr and of υ Sgr using the VEGA instrument of the CHARA array. For both systems, visible continuum (520/640 nm) visibilities were estimated and differential interferometry data were obtained in the Hα emission line at several epochs of their orbital period. -
Our Place in the Universe Research Earth Orbits the Sun, Slowly Traveling Around in a Circular Path
Earth, Sun, and Moon System Explore 2 Our Place in the Universe Research Earth orbits the Sun, slowly traveling around in a circular path. The Sun is a middle sized star. All of the planets in our solar system orbit this star. But when you look up at the night sky, you will see many other stars. Some of those have their own planets orbiting away in space. These other solar systems are called exosolar systems to distinguish between our solar system and these alien systems. Almost all of the objects you see in the night sky are part of the Milky Way, which is a giant collection of stars that all orbit a common center due to gravity. But if you look at the constellation Pegasus, which makes a giant square in the summer sky, you might see what appears to be a puffy cloud nearby. It is not a cloud, though. It is the Andromeda galaxy. It is an even bigger collection of stars that orbit a common center, and is over a million light-years away! There are many millions of galaxies in our universe, some close by and others very distant. Your group will choose one of these types of objects (stars, exosolar systems, and galaxies) and research its properties and location in the universe. You will then create a poster and a presentation about your star, galaxy, or exosolar system to present to the class. Procedure: 1. With your group, research one of the following objects. These are not the only options, but simply suggestions. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Arxiv:2010.13762V1 [Astro-Ph.EP] 26 Oct 2020
Draft version October 27, 2020 Typeset using LATEX default style in AASTeX63 A Framework for Relative Biosignature Yields from Future Direct Imaging Missions Noah W. Tuchow 1 and Jason T. Wright 1 1Department of Astronomy & Astrophysics and Center for Exoplanets and Habitable Worlds and Penn State Extraterrestrial Intelligence Center 525 Davey Laboratory The Pennsylvania State University University Park, PA, 16802, USA ABSTRACT Future exoplanet direct imaging missions, such as HabEx and LUVOIR, will select target stars to maximize the number of Earth-like exoplanets that can have their atmospheric compositions charac- terized. Because one of these missions' aims is to detect biosignatures, they should also consider the expected biosignature yield of planets around these stars. In this work, we develop a method of computing relative biosignature yields among potential target stars, given a model of habitability and biosignature genesis, and using a star's habitability history. As an illustration and first application of this method, we use MESA stellar models to calculate the time evolution of the habitable zone, and examine three simple models for biosignature genesis to calculate the relative biosignature yield for different stars. We find that the relative merits of K stars versus F stars depend sensitively on model choice. In particular, use of the present-day habitable zone as a proxy for biosignature detectability favors young, luminous stars lacking the potential for long-term habitability. Biosignature yields are also sensitive to whether life can arise on Cold Start exoplanets that enter the habitable zone after formation, an open question deserving of more attention. Using the case study of biosignature yields calculated for θ Cygni and 55 Cancri, we find that robust mission design and target selection for HabEx and LUVOIR depends on: choosing a specific model of biosignature appearance with time; the terrestrial planet occurrence rate as a function of orbital separation; precise knowledge of stellar properties; and accurate stellar evolutionary histories. -
An October 2003 Amateur Observation of HD 209458B
Tsunami 3-2004 A Shadow over Oxie Anders Nyholm A shadow over Oxie – An October 2003 amateur observation of HD 209458b Anders Nyholm Rymdgymnasiet Kiruna, Sweden April 2004 Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Abstract This paper describes a photometry observation by an amateur astronomer of a transit of the extrasolar planet HD 209458b across its star on the 26th of October 2003. A description of the telescope, CCD imager, software and method used is provided. The preparations leading to the transit observation are described, along with a chronology. The results of the observation (in the form of a time-magnitude diagram) is reproduced, investigated and discussed. It is concluded that the HD 209458b transit most probably was observed. A number of less successful attempts at observing HD 209458b transits in August and October 2003 are also described. A general introduction describes the development in astronomy leading to observations of extrasolar planets in general and amateur observations of extrasolar planets in particular. Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Contents 1. Introduction 3 2. Background 3 2.1 Transit pre-history: Mercury and Venus 3 2.2 Extrasolar planets: a brief history 4 2.3 Early photometry proposals 6 2.4 HD 209458b: discovery and study 6 2.5 Stellar characteristics of HD 209458 6 2.6 Characteristics of HD 209458b 7 3. Observations 7 3.1 Observatory, equipment and software 7 3.2 Test observation of SAO 42275 on the 14th of April 2003 7 3.3 Selection of candidate transits 7 3.4 Test observation and transit observation attempts in August 2003 8 3.5 Transit observation attempt on the 12th of October 2003 8 3.6 Transit observation attempt on the 26th of October 2003 8 4. -
By John Dobson San Francisco Sidewalk Astronomers
the newsletter of the QUEEN ELIZABET H PLANETARIUM SUMMER 198 0 and the EDMONTON CENTRE, RAS C 50$ y SPECIAL TELESCOP E ISSU E NOW PLAYIN G AT QUEEN PlANETARiUM A spectacular celestial event was witnessed by th e ancien t Sumeria n civilizatio n an d ""VELA recorded i n thei r mysteriou s cuneifor m writing. Wha t wa s it ? Th e Vela Apparition APPARITION blends archaeolog y wit h astronom y i n a search for the origins o f civilzation. 3 P M and 8 P M Daily one The night sk y i s a fascinating -realm. Stars, nebulae, an d galaxie s ar e scattere d SUMMER'S throughout infinity . Join us for a tour of the sights o f th e summertim e sky . Rela x and NIGHT enjoy an evening at the Planetarium durin g One Summer's Night. 9PM Dail y A special show for special people age 3 to 7. A Fantasy O f Stars chronicle s th e FANTASY adventures o f Harol d th e Her o a s h e ventures int o th e nigh t sk y t o mee t th e constellations. A reduced admission of only o, STARS 50C for everyon e applies to thi s 3 5 minute live presentation. For more •information , „ , please phone th re Planetariu•• , , 1:3m at 0 P M Wed . and Sun . 455-0119 Vol. 2 5 No . 1 0 StOPCll SUMMER 198 0 Have Telescopes , Will Travel JOH N DOBSO N 1 0 People came from all over the city by bus, by car, by bicycle, and by foot to look through the telescope. -
Gaia Data Release 2 Special Issue
A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D. -
Lick Observatory Records: Photographs UA.036.Ser.07
http://oac.cdlib.org/findaid/ark:/13030/c81z4932 Online items available Lick Observatory Records: Photographs UA.036.Ser.07 Kate Dundon, Alix Norton, Maureen Carey, Christine Turk, Alex Moore University of California, Santa Cruz 2016 1156 High Street Santa Cruz 95064 [email protected] URL: http://guides.library.ucsc.edu/speccoll Lick Observatory Records: UA.036.Ser.07 1 Photographs UA.036.Ser.07 Contributing Institution: University of California, Santa Cruz Title: Lick Observatory Records: Photographs Creator: Lick Observatory Identifier/Call Number: UA.036.Ser.07 Physical Description: 101.62 Linear Feet127 boxes Date (inclusive): circa 1870-2002 Language of Material: English . https://n2t.net/ark:/38305/f19c6wg4 Conditions Governing Access Collection is open for research. Conditions Governing Use Property rights for this collection reside with the University of California. Literary rights, including copyright, are retained by the creators and their heirs. The publication or use of any work protected by copyright beyond that allowed by fair use for research or educational purposes requires written permission from the copyright owner. Responsibility for obtaining permissions, and for any use rests exclusively with the user. Preferred Citation Lick Observatory Records: Photographs. UA36 Ser.7. Special Collections and Archives, University Library, University of California, Santa Cruz. Alternative Format Available Images from this collection are available through UCSC Library Digital Collections. Historical note These photographs were produced or collected by Lick observatory staff and faculty, as well as UCSC Library personnel. Many of the early photographs of the major instruments and Observatory buildings were taken by Henry E. Matthews, who served as secretary to the Lick Trust during the planning and construction of the Observatory. -
Using Asteroseismology to Characterise Exoplanet Host Stars
Using asteroseismology to characterise exoplanet host stars Mia S. Lundkvist, Daniel Huber, Victor Silva Aguirre, and William J. Chaplin Abstract The last decade has seen a revolution in the field of asteroseismology – the study of stellar pulsations. It has become a powerful method to precisely characterise exoplanet host stars, and as a consequence also the exoplanets themselves. This syn- ergy between asteroseismology and exoplanet science has flourished in large part due to space missions such as Kepler, which have provided high-quality data that can be used for both types of studies. Perhaps the primary contribution from aster- oseismology to the research on transiting exoplanets is the determination of very precise stellar radii that translate into precise planetary radii, but asteroseismology has also proven useful in constraining eccentricities of exoplanets as well as the dy- namical architecture of planetary systems. In this chapter, we introduce some basic principles of asteroseismology and review current synergies between the two fields. Mia S. Lundkvist Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Landessternwarte, Konigstuhl¨ 12, 69117 Hei- delberg, DE, and Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, DK, e-mail: [email protected] Daniel Huber Institute for Astronomy, University of Hawai‘i, 2680 Woodlawn Drive, Honolulu, HI 96822, US and Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Aus- tralia, e-mail: [email protected] Victor Silva Aguirre arXiv:1804.02214v2 [astro-ph.SR] 9 Apr 2018 Stellar Astrophysics Centre, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, DK, e-mail: [email protected] William J. -
Discovery of Japan's Oldest Photographic Plates of a Starfield
国立天文台報 第 15 巻,37 – 72(2013) 日本最古の星野写真乾板の発見 佐々木五郎,中桐正夫,大島紀夫,渡部潤一 (2012 年 11 月 11 日受付;2012 年 11 月 27 日受理) Discovery of Japan’s Oldest Photographic Plates of a Starfield Goro SASAKI, Masao NAKAGIRI, Norio OHSHIMA, and Jun-ichi WATANABE Abstract We discovered 441 historical photographic plates taken from the end of the 19th century to the beginning of the 20th century at the Azabu in central part of Tokyo out of tens of thousands of old plates which were stocked in the old library. They contain precious plates such as the first discovery of asteroid “(498) Tokio”. They are definitely the oldest photographic plates of star filed in Japan. We present an archival catalogue of these plates and the statistics along with the story of our discovery. 要旨 われわれは,倉庫に眠っていた数万枚の古い乾板類の中から,三鷹に移転する前の 19 世紀末から 20 世紀初 頭にかけて東京都心・麻布で撮影された星野写真乾板 441 枚を発見した.この中には日本で初めて発見された 小惑星「(498) Tokio」など,歴史的に貴重な乾板が含まれており,日本最古の星野写真乾板である.本稿では, この乾板についてのカタログおよび統計データについて,その発見の経緯とともに紹介する. 1 はじめに して明確に位置づけ,より統一的・効率的・系統的に 整理保存を行うため,国立天文台発足 20 年の節目の 国立天文台は,前身の東京大学東京天文台の時代を 年である 2008 年に「歴史的価値のある天文学に関す 含めると,120 年以上の長い歴史をもつ日本でも希有 る資料(観測測定装置,写真乾板,貴重書・古文書) な研究所である.1924 年頃,当時の都心・麻布飯倉 の保存・整理・活用・公開を行う」ことを当初のミッ の地から,三鷹に順次移転してきたこともあって,三 ションと掲げ,天文情報センター内にアーカイブ室を 鷹構内には古い建物や観測装置などが存在し,それら 設けた[1]. のいくつかは登録有形文化財に指定されている.また, このアーカイブ室の活動の一環として,三鷹構内に それらの古い観測装置や望遠鏡で撮影した乾板類も多 残されていた多数の天体写真乾板類の整理を開始した. 数残されている. 総数 2 万枚にも及ぶと思われる乾板類の多くは未整理 われわれは,かねてよりこれら歴史的に価値のある のまま,75 箱の段ボール箱に詰め込まれ,乱雑に旧 建物・観測装置・乾板類や古文書・貴重書等の保存整 図書庫に積み上げられていたままであった.本論文の 理にも力を入れてきた.しかし,これまでは個々の研 筆頭著者である佐々木が中心となって,それぞれの箱 究者の興味に基づいて,あるいは外部から要請や必要