Shape Models of Asteroids Based on Lightcurve Observations with Blueeye600 Robotic Observatory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
Light Curve Analysis of Variable Stars Using Fourier Decomposition and Principal Component Analysis
A&A 507, 1729–1737 (2009) Astronomy DOI: 10.1051/0004-6361/200912851 & c ESO 2009 Astrophysics Light curve analysis of variable stars using Fourier decomposition and principal component analysis S. Deb1 andH.P.Singh1,2 1 Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India e-mail: [email protected],[email protected] 2 CRAL-Observatoire de Lyon, CNRS UMR 142, 69561 Saint-Genis Laval, France Received 8 July 2009 / Accepted 1 September 2009 ABSTRACT Context. Ongoing and future surveys of variable stars will require new techniques to analyse their light curves as well as to tag objects according to their variability class in an automated way. Aims. We show the use of principal component analysis (PCA) and Fourier decomposition (FD) method as tools for variable star light curve analysis and compare their relative performance in studying the changes in the light curve structures of pulsating Cepheids and in the classification of variable stars. Methods. We have calculated the Fourier parameters of 17 606 light curves of a variety of variables, e.g., RR Lyraes, Cepheids, Mira Variables and extrinsic variables for our analysis. We have also performed PCA on the same database of light curves. The inputs to the PCA are the 100 values of the magnitudes for each of these 17 606 light curves in the database interpolated between phase 0 to 1. Unlike some previous studies, Fourier coefficients are not used as input to the PCA. Results. We show that in general, the first few principal components (PCs) are enough to reconstruct the original light curves compared to the FD method where 2 to 3 times more parameters are required to satisfactorily reconstruct the light curves. -
Photometry of Asteroids: Lightcurves of 24 Asteroids Obtained in 1993–2005
ARTICLE IN PRESS Planetary and Space Science 55 (2007) 986–997 www.elsevier.com/locate/pss Photometry of asteroids: Lightcurves of 24 asteroids obtained in 1993–2005 V.G. Chiornya,b,Ã, V.G. Shevchenkoa, Yu.N. Kruglya,b, F.P. Velichkoa, N.M. Gaftonyukc aInstitute of Astronomy of Kharkiv National University, Sumska str. 35, 61022 Kharkiv, Ukraine bMain Astronomical Observatory, NASU, Zabolotny str. 27, Kyiv 03680, Ukraine cCrimean Astrophysical Observatory, Crimea, 98680 Simeiz, Ukraine Received 19 May 2006; received in revised form 23 December 2006; accepted 10 January 2007 Available online 21 January 2007 Abstract The results of 1993–2005 photometric observations for 24 main-belt asteroids: 24 Themis, 51 Nemausa, 89 Julia, 205 Martha, 225 Henrietta, 387 Aquitania, 423 Diotima, 505 Cava, 522 Helga, 543 Charlotte, 663 Gerlinde, 670 Ottegebe, 693 Zerbinetta, 694 Ekard, 713 Luscinia, 800 Kressmania, 1251 Hedera, 1369 Ostanina, 1427 Ruvuma, 1796 Riga, 2771 Polzunov, 4908 Ward, 6587 Brassens and 16541 1991 PW18 are presented. The rotation periods of nine of these asteroids have been determined for the first time and others have been improved. r 2007 Elsevier Ltd. All rights reserved. Keywords: Asteroids; Photometry; Lightcurve; Rotational period; Amplitude 1. Introduction telescope of the Crimean Astrophysics Observatory in Simeiz. Ground-based observations are the main source of knowledge about the physical properties of the asteroid 2. Observations and their reduction population. The photometric lightcurves are used to determine rotation periods, pole coordinates, sizes and Photometric observations of the asteroids were carried shapes of asteroids, as well as to study the magnitude-phase out in 1993–1994 using one-channel photoelectric photo- relation of different type asteroids. -
Observations from Orbiting Platforms 219
Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey. -
Propellantless Sail-Craft Design for the Main Belt Asteroid Exploration Mission
Propellantless Sail-craft Design for the Main Belt Asteroid Exploration Mission By Liu yufei1), 2), Cheng zhengai1), Huang xiaoqi1), Zhou lu1), Wang li1) 1)The Qian Xuesen Laboratory of Space Technology, CAST, Beijing,China 2) State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China (Received 1st Dec, 2016) Based on the propellantless characteristic, a multiple main belt asteroid exploration mission in which the solar sail is the only propeller is proposed by China academy of space technology (CAST). The mission aims to explore at least three main belt asteroids in seven years. The process of determining probe objects and the main nodes of the mission trajectory are first presented. To realize the mission, the spacecraft is a square solar sail with the areal density less than 12g/m2, the side length of 160m and the total mass of 200kg. Then the main subsystems of the solar sail are introduced. The cutting and splicing scheme, the fold and deployment scheme and the margin strengthen scheme are designed in the sail subsystem. A new four radius lenticular boom with two inflatable tubules is proposed to reduce the mass and improve the mechanical property. The slot and membrane antenna and the wireless network are used in the communication subsystem. Two mass blocks and four roll stabilizer bars are designed to control the attitude and orbit. The distribution installation thin film solar cells are used in the power subsystem, so that each sensor and actuator which is not in the central body could be supplied power by cells on itself. -
General Disclaimer One Or More of the Following Statements May Affect
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) WsA-Cg- 175b 13) l+ Z 5JA6CH IN F LA MISTABY N85 - 234bO STUDIES AMA OFRbATIC / CF rMki hYA Gf`i S6YATC1Y SesisoLual kLC99EFf Peport, Jaa. - DOC. 1984 judwjii UOIT., Honolulu.) Uncickr 61 p HC XC4 /dF 1G 1 CSCL 03A G3/89 14702 UNIVERSITY OF HAWAII INSTITUTE FOR ASTRONOMY 2680 Woodlawn Drive Honolulu, Hawaii 96822 il NASA GRANT NGL 12-001-057 SEMIANNUPL PROGRESS REPORTS #28 and #29 Donald N. B. Hall, Principal Investigator 0 N ^{Od^ 1lS tlSdN U3A13U'^^ }`3Gl ddtl ' For the Period Jan«ar7-December 1984 i 6 z TABLE OF CONTENTS Page I. PERSONNEL 3 II. THE RESEARCH PROGRAMS 4 A. Highlights 4 B. The Major Planets 5 C. Sa tell itee 18 D. Asteroids and Comets 37 E. -
Spectroscopy of Variable Stars
Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left. -
Constraining the Cometary Flux Through the Asteroid Belt
Astronomy & Astrophysics manuscript no. fams c ESO 2012 March 27, 2012 Constraining the cometary flux through the asteroid belt during the Late Heavy Bombardment M. Brozˇ1, A. Morbidelli2, W.F. Bottke3, J. Rozehnal1, D. Vokrouhlicky´1, D. Nesvorny´3 1 Institute of Astronomy, Charles University, Prague, V Holesoviˇ ckˇ ach´ 2, 18000 Prague 8, Czech Republic, e-mail: [email protected]ff.cuni.cz, [email protected], [email protected] 2 Observatoire de la Coteˆ d’Azur, BP 4229, 06304 Nice Cedex 4, France, e-mail: [email protected] 3 Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, USA, e-mail: [email protected], [email protected] Received ???; accepted ??? ABSTRACT Context. In the Nice model, the Late Heavy Bombardment (LHB) is related to an orbital instability of giant planets which causes a fast dynamical dispersion of a transneptunian cometary disk (Gomes et al. 2005). Aims. We study effects produced by these hypothetical cometary projectiles on main-belt asteroids. In particular, we want to check if the observed collisional families provide a lower or an upper limit for the cometary flux during the LHB. Methods. We present an updated list of observed asteroid families as identified in the space of synthetic proper elements by the hierarchical clustering method, colour data, albedo data and dynamical considerations and we estimate their physical parameters. We select 12 families which may be related to the LHB according to their dynamical ages. We then use collisional models and N-body orbital simulations to get insights into long-term dynamical evolution of synthetic LHB families over 4 Gyr. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
Deliverable H2020 COMPET-05-2015 Project "Small
Deliverable H2020 COMPET-05-2015 project "Small Bodies: Near And Far (SBNAF)" Topic: COMPET-05-2015 - Scientific exploitation of astrophysics, comets, and planetary data Project Title: Small Bodies Near and Far (SBNAF) Proposal No: 687378 - SBNAF - RIA Duration: Apr 1, 2016 - Mar 31, 2019 WP WP5 Del.No D5.3 Title Occultation candidates for 2018 Lead Beneficiary CSIC Nature Report Dissemination Level Public Est. Del. Date 20 Dec 2017 Version 1.0 Date 20 Dec 2017 Lead Author Pablo Santos-Sanz, Instituto de Astrofísica de Andalucía-CSIC, [email protected] WP5 Ground based observations Objectives: The main objective of WP5 is to execute observations from ground- based telescopes with the goal to acquire more data on the SBNAF targets. One of the scheduled observations is the occultation of a star by a Main Belt Asteroid (MBA), a Centaur or a Trans-Neptunian Object (TNO). For this particular stellar occultation technique the main tasks are: i) to predict the stellar occultation, ii) to coordinate the observations, and iii) to produce results on physical parameters of the MBAs, Centaurs and TNOs (i.e. sizes, shapes, albedos, densities, etc). Description of deliverable D5.3 The potential occultation candidates for 2018 are presented. This deliverable follows deliverables D5.1 and D5.2, and is related to milestones MS5 “Occultation predictions with 10 mas accuracy”, and MS12 “25 successful TNO occultation measurements”. In this document, we first give a short state of the art of the stellar occultation technique (Section 1), then we discuss about the expected goal to reach ~10 mas accuracy in the prediction of stellar occultations by TNOs (Section 2). -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.