U·M·I Urllverslty Microfilms International a Bell & Howell Information Company 300 North Zeeb Road

Total Page:16

File Type:pdf, Size:1020Kb

U·M·I Urllverslty Microfilms International a Bell & Howell Information Company 300 North Zeeb Road Development of in vitro primary cell cultures from the penaeid shrimp, Penaeus stylirostris and Penaeus vannamei and evaluation of a potential application. Item Type text; Thesis-Reproduction (electronic) Authors Luedeman, Rene Annette. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 07:01:25 Link to Item http://hdl.handle.net/10150/144635 INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the .text directly from the original or copy submitted. Thus, some thesis and dissertation copies are. in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is depend,!nt upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 611 x 911 black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. U·M·I UrllVerslty Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313/761-4700 800/521-0600 Order Number 1339902 Development of in vitro primary cell cultures from the penaeid shrimp, Penaeus stylirostris and Penaeus vannamei and evaluation of a potential application Luedeman, Rene Annette, M.S. The University of Arizona, 1990 U·M·I 300 N. Zeeb Rd. Ann Arbor, MI 48106 DEVELOPMENT OF lHVIIRO PRIMARY CELL CULTURES FROM THE PENAEID SHRIMP, lENAEUS STYlJROSmIS AND PENAEUS VANNAMEI AND EVALUATION OF A POTENTIAL APPLICATION by Ren~ Annette Luedeman A Thesis Submitted to the Faculty of the DEPARTMENT OF NUTRITION AND FOOD SCIENCE In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN FOOD SCIENCE In the Graduate College TIlE UNIVERSITY OF ARIZONA 1 990 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. APPROVAL BY THESIS CO-DIRECTORS This thesis has been approved on the date shown below: '1po j'Q6 Dr. Charles P. Gerba Date Dr. Donald V. Lightner Date Assoc. Professor of Veterinary Science -------------------- ----- - -- 3 ACKNOWLEDGMENTS This work was supported by grants from the SeaGrant, United States Department of Commerce and from the U.S. Department of Agriculture through the U.S. Marine Shrimp Farming Program. I wish to thank Dr. Donald V. Lightner for his support, patience, and willingness to share his knowledge. I would like to express my appreciation to Leone Mohney for sharing her knowledge of tissue culture and to Thomas Bell for his computer assistance. I would also like to thank Rita Lightner for her help in preparing the histology slides and ultrathin sections for TEM. Also, thank you Rita for your advice and moral support. My thanks to David Bentley for his assistance on the TEM. I would like to express my appreciation to my family for their support and who made completing this thesis possible. ---_._------------_._-- - -- 4 TABLE OF CONTENTS LIST OF ILLUSTRATIONS .............................................................................................................................. 6 LIST OFTABLES ................................................................................................................................................ 7 ABSTRACT ........................................................................................................................................................... 8 INTRODUCTION................................................................................................................................................ 9 Commercial Shrimp Production ........................................................................................................... 9 Diseases ofPenaeid Shrimp ................................................................................................................ 11 Infectious hypodermal and hematopoietic necrosis disease ............................................ 12 Diagnosis ofIHHN disease .................................................................................................. 12 Tissue Culture ....................................................................................................................................... 13 History of Invertebrate Tissue Culture-Terrestrial Animals ........................................................... 14 History of Invertebrate Tissue Culture-Aquatic Animals ............................................................... 19 Mollusks .................................................................................................................................. 20 Crustaceans ............................................................................................................................ 23 MATERIALS AND METHODS ..................................................................................................................... 28 Development of a Primary Cell Culture System for Penaeid Shrimp ............................................ 28 Experimental Animals .......................................................................................................... 28 Tissue Culture Materials ...................................................................................................... 28 Assay Procedures .................................................................................................................. 28 Viral infectivity studies of IHHNV to f. stylirostris primary ovarian cell cultures ...................... 37 RESULTS ........................................................................................................................................................... .42 Deveiopment of a Primary Cell Culture System for Penaeid Shrimp ........................................... .42 Experimental Media .............................................................................................................. 44 Osmolality ................................................................................................................ 50 Culture Vessels ...................................................................................................... .52 Exposure to UV Light ........................................................................................... .52 Subsequent Tests using Grace's Insect medium ................................................. 52 Temperature and Gaseous Environment ............................................ .52 -------------------------- - -- --_. 5 TABLE OF CONTENTS (continued) Growth Factors ....................................................................................... .55 Alternate Species ..................................................................................... 55 Sub-culturing ............................................................................................ 55 IHHNV Exposure to Shrimp Ovary Cells ........................................................................................ .58 Detection of IHHNV using H & E staining ....................................................................... 58 Acridine orange staining of ovarian epithelioid cells exposed to IHHNV .................... .58 The use of transmission electron microscopy (TEM) for virus detection ...................... 59 BGM Infection with Poliovirus Model.. .............................................................. .59 IHHNV exposure to shrimp cell monolayers ...................................................... 59 DISCUSSION ...................................................................................................................................................... 61 Tissue Culture ......................................................................................................................................
Recommended publications
  • Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation
    Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation Recommended Citation J. Honculada Primavera, "Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation", trade and environment, September 25, 1994, https://nautilus.org/trade-an- -environment/shrimp-farming-in-the-asia-pacific-environmental-and-trade-issues-- nd-regional-cooperation-4/ J. Honculada Primavera Aquaculture Department Southeast Asian Fisheries Development Center Tigbauan, Iloilo, Philippines 5021 Tel 63-33-271009 Fax 63-33-271008 Presented at the Nautilus Institute Workshop on Trade and Environment in Asia-Pacific: Prospects for Regional Cooperation 23-25 September 1994 East-West Center, Honolulu Abstract Production of farmed shrimp has grown at the phenomenal rate of 20-30% per year in the last two decades. The leading shrimp producers are in the Asia-Pacific region while the major markets are in Japan, the U.S.A. and Europe. The dramatic failures of shrimp farms in Taiwan, Thailand, Indonesia and China within the last five years have raised concerns about the sustainability of shrimp aquaculture, in particular intensive farming. After a brief background on shrimp farming, this paper reviews its environmental impacts and recommends measures that can be undertaken on the farm, 1 country and regional levels to promote long-term sustainability of the industry. Among the environmental effects of shrimp culture are the loss of mangrove goods and services as a result of conversion, salinization of soil and water, discharge of effluents resulting in pollution of the pond system itself and receiving waters, and overuse or misuse of chemicals. Recommendations include the protection and restoration of mangrove habitats and wild shrimp stocks, management of pond effluents, regulation of chemical use and species introductions, and an integrated coastal area management approach.
    [Show full text]
  • Effects of Environmental Stress on Shrimp Innate Immunity and White
    Fish and Shellfish Immunology 84 (2019) 744–755 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection T ∗ Yi-Hong Chenb,c, Jian-Guo Hea,b, a State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China b Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China c Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China ARTICLE INFO ABSTRACT Keywords: The shrimp aquaculture industry is plagued by disease. Due to the lack of deep understanding of the relationship Shrimp between innate immune mechanism and environmental adaptation mechanism, it is difficult to prevent and Environmental stress control the diseases of shrimp. The shrimp innate immune system has received much recent attention, and the Innate immunity functions of the humoral immune response and the cellular immune response have been preliminarily char- Unfolded protein response acterized. The role of environmental stress in shrimp disease has also been investigated recently, attempting to White spot syndrome virus clarify the interactions among the innate immune response, the environmental stress response, and disease. Both the innate immune response and the environmental stress response have a complex relationship with shrimp diseases. Although these systems are important safeguards, allowing shrimp to adapt to adverse environments and resist infection, some pathogens, such as white spot syndrome virus, hijack these host systems.
    [Show full text]
  • Machrobrachium Rosenbergii)
    RESEARCH ARTICLE Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii) Utpal Bose1,2¤, Thanapong Kruangkum3,4, Tianfang Wang1, Min Zhao1, Tomer Ventura1, Shahida Akter Mitu1, Mark P. Hodson2,5, Paul N. Shaw5, Prasert Sobhon4,6, Scott F. Cummins1* 1 Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia, 2 Metabolomics Australia, a1111111111 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, a1111111111 Queensland, Australia, 3 Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, a1111111111 Thailand, 4 Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty a1111111111 of Science, Mahidol University, Bangkok, Thailand, 5 S chool of Pharmacy, The University of Queensland, a1111111111 Queensland, Australia, 6 Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand ¤ Current address: CSIRO Agriculture and Food, Queensland, Australia * [email protected] OPEN ACCESS Abstract Citation: Bose U, Kruangkum T, Wang T, Zhao M, Ventura T, Mitu SA, et al. (2017) Biomolecular In decapod crustaceans, the antennal gland (AnG) is a major primary source of externally changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium secreted biomolecules, and some may act as pheromones that play a major role in aquatic rosenbergii). PLoS ONE 12(6): e0177064. https:// animal communication. In aquatic crustaceans, sex pheromones regulate reproductive doi.org/10.1371/journal.pone.0177064 behaviours, yet they remain largely unidentified besides the N-acetylglucosamine-1,5-lac- Editor: Gao-Feng Qiu, Shanghai Ocean University, tone (NAGL) that stimulates male to female attraction.
    [Show full text]
  • Sensory Systems and Feeding Behaviour of the Giant Freshwater Prawn, Macrobrachium Rosenbergii, and the Marine Whiteleg Shrimp, Litopenaeus Vannamei
    Borneo Journal of Marine Science and Aquaculture Volume: 01 | December 2017, 80 - 91 Sensory systems and feeding behaviour of the giant freshwater prawn, Macrobrachium rosenbergii, and the marine whiteleg shrimp, Litopenaeus vannamei Gunzo Kawamura1*, Teodora Uy Bagarinao2 and Annita Seok Kian Yong1 1Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia 2Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines *Corresponding author: [email protected] Abstract Information on the sensory basis of shrimp feeding provides the means for assessment of the effectiveness of food items in terms of smell, taste, size, and colour. This chapter summarizes information about the sensory basis of the feeding behaviour of the giant freshwater prawn (Macrobrachium rosenbergii) and the marine whiteleg shrimp (Litopenaeus vannamei). Existing literature on these shrimp species and other decapod crustaceans is reviewed, and unpublished experiments using the selective sensory ablation technique to determine the involvement of vision, chemoreception, and touch sense in the feeding behavior of the juveniles of M. rosenbergii and L. vannamei are also described. To determine the role of vision in feeding, the eyes of the juveniles were painted over (deprived of vision) with white manicure and their feeding response to commercial pellets was compared with those with untreated eyes. The untreated eyed juveniles detected and approached a feed pellet right away, but the specimens blinded by the coating detected a pellet only after random accidental touch with the walking legs while roaming on the aquarium bottom. Juveniles that had learned to feed on pellets showed food search and manipulation responses to a pellet-like pebble without smell and taste.
    [Show full text]
  • 3Cda99c90f15b1ffaba68178fdbd
    A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon Farhana Mohd Ghani1,* and Subha Bhassu1,2,* 1 Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia 2 Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia * These authors contributed equally to this work. ABSTRACT The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes,hepatopancreasandmuscleofP. monodonwasstudiedusingIlluminaHiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulatedand2,194genessignificantlydown-regulatedasaresultoftheinfectionwith WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF andc-JuninP. monodonasnewpotentialcandidategenesforfurtherinvestigationforthe development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species. Submitted 18 February 2019 Accepted 27 October 2019 Published 20 December 2019 Subjects Aquaculture, Fisheries and Fish Science, Bioinformatics, Food Science and Technology, Corresponding author Genomics, Marine Biology Subha Bhassu, Keywords Novel discovery gene transcripts, Survived WSSV challenged shrimps, P.
    [Show full text]
  • O-Labs-Summary Al
    Vibrant America 1021 Howard Ave, Ste B. San Carlos, CA 94070 1(866) 364-0963 | [email protected] | www.vibrant-america.com Final Report Date: 07-12-2019 06:46 Specimen Collected: 06-19-2019 Accession ID: Specimen Received: 06-20-2019 15:53 LAST NAME FIRST NAME GENDER DATE OF BIRTH ACCESSION ID DATE OF SERVICE O B MALE 06-19-2019 PATIENT PROVIDER Gender: Male Age: 21 Height: 5'9'' Weight: 195 lbs Fasting: FASTING No. of hours: 10.0 The comments in this report are meant only for potential risk mitigation. Please consult your physician for medication, treatment or life style management. MK-0017-20 Page Page 1 1of of 6 47 Vibrant America | 1021 Howard Ave, Ste B. San Carlos, CA 94070 1(866) 364-0963 | [email protected] | www.vibrant-america.com PATIENT PROVIDER AGE: 21 HEIGHT: 5'9'' WEIGHT: 195 lbs P PHONE NUMBER: ADDRESS: ACCESSION ID: SPECIMEN COLLECTION TIME: 06-19-2019 SPECIMEN RECEIVED TIME: 06-20-2019 15:53 FINAL REPORT TIME: 07-12-2019 06:46 FASTING: FASTING NO. OF HOURS: 10.0 SUMMARY 1-4 L Low High Risk Moderate N/A - Not Ordered ALLERGEN SENSITIVITIES ALLERGEN SENSITIVITIES DIETARY ANTIGEN DIETARY ANTIGEN IgE (kU/L) IgG IgA IgE (kU/L) IgG IgA Alaska pollock - - - - Cherry L <0.10 L 2 L 2 Almond L <0.10 14 L 6 Chicken L <0.10 L 9 L 3 Amaranth L <0.10 L 2 L 1 Chickpea - - - - Anchovy - - - - Cinnamon L 0.26 L 2 L 3 Anise - - - - Clam L <0.10 L 5 L 3 Apple L <0.10 L 5 L 3 Cocoa L <0.10 L 1 L 1 Apricot L <0.10 13 20 Coconut L <0.10 L 3 L 3 Artichoke - - - - Codfish L <0.10 12 L 7 Asparagus - - - - Coffee L <0.10 14
    [Show full text]
  • Disease of Aquatic Organisms 100:211
    Vol. 100: 211–218, 2012 DISEASES OF AQUATIC ORGANISMS Published September 12 doi: 10.3354/dao02496 Dis Aquat Org OPENPEN ACCESSCCESS Susceptibility of juvenile Macrobrachium rosenbergii to different doses of high and low virulence strains of white spot syndrome virus (WSSV) Mathias Corteel1, João J. Dantas-Lima1, Vo Van Tuan1, Khuong Van Thuong1, Mathieu Wille2, Victoria Alday-Sanz3, Maurice B. Pensaert1, Patrick Sorgeloos2, Hans J. Nauwynck1,* 1Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium 2Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium 3Pescanova, 08010 Barcelona, Spain ABSTRACT: As some literature on the susceptibility of different life stages of Macrobrachium rosenbergii to white spot syndrome virus (WSSV) is conflicting, the pathogenesis, infectivity and pathogenicity of 2 WSSV strains (Thai-1 and Viet) were investigated here in juveniles using con- ditions standardized for Penaeus vannamei. As with P. vannamei, juvenile M. rosenbergii (2 to 5 g) injected with a low dose of WSSV-Thai-1 or a high dose of WSSV-Viet developed comparable clin- ical pathology and numbers of infected cells within 1 to 2 d post-infection. In contrast, a low dose of WSSV-Viet capable of causing mortality in P. vannamei resulted in no detectable infection in M. −1 rosenbergii. Mean prawn infectious dose 50% endpoints (PID50 ml ) determined in M. rosen- 5.3±0.4 −1 bergii were in the order of 100-fold higher for WSSV-Thai-1 (10 PID50 ml ) than for WSSV- 3.2±0.2 −1 Viet (10 PID50 ml ), with each of these being about 20-fold and 400-fold lower, respectively, −1 than found previously in P.
    [Show full text]
  • Penaeus Monodon) Promotoren: Prof
    Haemocytic defence in black tiger shrimp (Penaeus monodon) Promotoren: Prof. dr. E. A. Huisman Hoogleraar in de Visteelt en Visserij Prof. dr. W. B. van Muiswinkel Hoogleraar in de Celbiologie en Immunologie Co-promotoren: Dr. W. P. W. van der Knaap Toegevoegd onderzoeker, Leerstoelgroep Visteelt en Visserij Dr. J. H. W. M. Rombout Universitair hoofddocent, Leerstoelgroep Celbiologie en Immunologie Overige leden promotiecommissie: Prof. dr. R. W. Goldbach, Wageningen Universiteit Dr. E. O. Rijke, Intervet International BV, Boxmeer Prof. dr. T. Sminia, Vrije Universiteit, Amsterdam Dr. V. J. Smith, University of St. Andrews, Scotland, UK Haemocytic defence in black tiger shrimp (Penaeus monodon) Karin van de Braak Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 5 juni 2002 des namiddags te vier uur in de aula. Haemocytic defence in black tiger shrimp (Penaeus monodon) PhD thesis, Wageningen University – with ref. – with summary in Dutch ISBN 90-5808-651-8 C. B. T. van de Braak, 2002 Wageningen Institute of Animal Sciences PO Box 338, 6700 AH Wageningen, The Netherlands Aan mijn ouders Ter nagedachtenis aan Jan Boon 5h gi Tropical shrimp culture is highly affected by infectious pathogens and disease control is nowadays a priority. The defence mechanisms of crustaceans are poorly understood, but knowledge of these is a prerequisite for the development of intervention strategies. Therefore, the aim of this thesis was to obtain a better understanding of the cellular defence system of the major cultured shrimp species, the black tiger shrimp (Penaeus monodon).
    [Show full text]
  • Specific Molecular Signatures for Type II Crustins in Penaeid Shrimp
    marine drugs Article Specific Molecular Signatures for Type II Crustins in Penaeid Shrimp Uncovered by the Identification of Crustin-Like Antimicrobial Peptides in Litopenaeus vannamei Cairé Barreto 1, Jaqueline da Rosa Coelho 1, Jianbo Yuan 2, Jianhai Xiang 2, Luciane Maria Perazzolo 1 and Rafael Diego Rosa 1,* ID 1 Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900 SC, Brazil; [email protected] (C.B.); [email protected] (J.d.R.C.); [email protected] (L.M.P.) 2 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] (J.Y.); [email protected] (J.X.) * Correspondence: [email protected]; Tel.: +55-48-37216163 Received: 30 August 2017; Accepted: 16 October 2017; Published: 16 January 2018 Abstract: Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV).
    [Show full text]
  • Ambrose Checklist of Assassin Bugs 871 FINAL
    REVIEW ZOOS' PRINT JOURNAL 21(9): 2388-2406 A CHECKLIST OF INDIAN ASSASSIN BUGS (INSECTA: HEMIPTERA: REDUVIIDAE) WITH TAXONOMIC STATUS, DISTRIBUTION AND DIAGNOSTIC MORPHOLOGICAL CHARACTERISTICS Dunston P. Ambrose Entomology Research Unit, St. Xavier’s College (Autonomous), Palayankottai, Tamil Nadu 627002, India Email: [email protected] plus web supplement of 34 pages ABSTRACT from Indian faunal limits since 1976 (Ambrose, 1980; 1987a,b; A checklist of 464 Indian species of assassin bugs under 1988; 1991; 1996a,b; 1999; 2000; 2003; 2004a,b; Murugan, 1988; 144 genera and 14 subfamilies with their taxonomical status, Ravichandran, 1988; examinations of Oriental reduviid fauna of their distribution in India and world over and their morphological characteristics are given. Members of the Prof. Carl W. Schafer at University of Connecticut, USA in 1997 Harpactorinae are the most abundant group with 146 species and 1999, Smithsonian Institution, Washington D.C., USA and and 41 genera followed by the Reduviinae and the Natural History Museum, London, UK in 1999). The information Ectrichodiinae. The subfamilies such as the Physoderinae on biosystematics and diversity are pooled together into a check and the Ectinoderinae are represented each by two and lone list of Indian assassin bugs with their taxonomic status, species. Other characteristics of the family Reduviidae discussed in this overview include the rostrum structure, distribution and diagnostic morphological characteristics. tibial pads, habitat characteristics, microhabitats and
    [Show full text]
  • 2018 07 29 Bardera Et Al Shrimp
    UWS Academic Portal The importance of behaviour in improving the production of shrimp in aquaculture Bardera, Guillermo; Usman, Nafiha; Owen, Matthew; Pountney, Daniel ; Sloman, Katherine A.; Alexander, Mhairi E. Published in: Reviews in Aquaculture DOI: 10.1111/raq.12282 E-pub ahead of print: 22/08/2018 Document Version Peer reviewed version Link to publication on the UWS Academic Portal Citation for published version (APA): Bardera, G., Usman, N., Owen, M., Pountney, D., Sloman, K. A., & Alexander, M. E. (2018). The importance of behaviour in improving the production of shrimp in aquaculture. Reviews in Aquaculture, 11(4), [12282]. https://doi.org/10.1111/raq.12282 General rights Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01 Oct 2021 "This is the peer reviewed version of the following article: Bardera, Guillermo et al. (2018) The importance of behaviour in improving the production of shrimp in aquaculture. Reviews in Aquaculture, Vol.X. pp. xx. which has been published in final form at https://doi.org/10.1111/ raq.12282. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html To be completed on final publication.
    [Show full text]
  • Land Use Effects on Geometrid and Arctiine Moth Assemblages in the Tropical Lowlands of Southwestern Costa Rica
    TROPICAL AGRICULTURAL RESEARCH AND HIGHER EDUCATION CENTER GRADUATE SCHOOL Land use effects on geometrid and arctiine moth assemblages in the tropical lowlands of southwestern Costa Rica by Aura Mariela Alonso Rodríguez Thesis submitted to the consideration of the Graduate School as a requisite for the degree of Magister Scientiae in Management and Conservation of Tropical Forests and Biodiversity Turrialba, Costa Rica, 2014 DEDICATION To my parents, Alicia and Luis, for the unconditional love and support they have always given me. Thank you for your continuous understanding and encouragement. To Pablo, for his constant support and company during this process, and for offering words of encouragement when most needed. To all the new friends that I have gained in CATIE, for laughing and crying with me during this experience and for the wonderful company they provided. To all of the people who contributed with their knowledge and experience during the development of this project. To my beautiful country and my home in Puerto Rico, and to Costa Rica for letting me study its incredible biodiversity and making me feel welcome during my stay. III ACKNOWLEDGEMENTS Thank you to the members of the thesis committee, especially codirectors Konrad Fiedler and Bryan Finegan, for their support and guidance during the development of this study. Thank you to Sergio Vilchez for his much needed assistance during statistical analyses. Thank you to Christian Schulze for his guidance during the selection of the study sites as well as training in the use of light traps and processing of moth specimens. Thank you to the staff at the La Gamba Tropical Station, especially Luis Sánchez, José Rodolfo Durán and Mari Sánchez, for their support in project logistics and field work.
    [Show full text]