African Armyworm Outbreaks: Why Do They Occur After Drought?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The African Scare of Fall Armyworm: Are South African Farmers Immune?
INTERNATIONAL JOURNAL OF SOCIAL SCIENCES AND HUMANITY STUDIES Vol 12, No 1, 2020 ISSN: 1309-8063 (Online) THE AFRICAN SCARE OF FALL ARMYWORM: ARE SOUTH AFRICAN FARMERS IMMUNE? Witness Maluleke University of Limpopo Email: [email protected] Orcid ID: https://orcid.org/0000-0002-6228-1640 –Abstract– The manifestations of Fall Armyworm [FAW] (Spodoptera frugiperda) in South Africa were all clearly reminders of the seriousness of this epidemic in 2019. The scare caused by FAW as an African Moth continues to multiple largely. This is becoming a factor for African farmers, seeking urgent acknowledgement of the associated detrimental effects mapped with economic, social, environmental opportunities and fully exploitation of sustainable agriculture in the country and elsewhere. This study adopted qualitative research approach, with an aid of non- empirical research design: Systematic review, closely looking at recent reputable reports across globe, while using South Africa as a case study, from 1995-2019 (i.e. 24 years’ projection). This study found that South African readiness against FAW is [currently] highly questionable, with the consequences of failing to act clearly felt by many South African farmers, therefore, the strategies geared towards this pandemic [might] not be able to totally stop the clock on its effects on farming practices, however, revisiting and adding to the available strategies can be beneficial to this sector to holistically affirm and sustain agriculture in South Africa as one of the two sectors at the core of economic development. It is concluded that there is no single solution to respond to this elusive spread, thus, multi-agency approach is highly sought. -
Fall Armyworm
How to identify... Fall armyworm Fall armyworm or ‘American armyworm’ is a new pest in Africa that is currently attacking maize. This pest originates from the Americas, but it has recently been found in several countries in West and Southern Africa. This guide will help you to recognize fall armyworm and tell it apart from similar caterpillars such as other armyworms, stalk borers and cut worms. IDENTIFICATION Half-grown or fully grown caterpillars are the easiest to identify. Fall armyworm caterpillars have a characteristic pattern of dark pimples (spots) on their backs, each spot has a short bristle (hair). Although the skin looks rough it is smooth to the touch. Look out for four dark spots forming a square on the second to last segment (red circle). Each of the other body segments also has four spots, but they do not from a square pattern (yellow circle). The head is dark and shows a characteristic upside down Y-shaped pale marking on the front (blue circle). ©Russ Ottens, Bugwood.org ✔ ©Russ Ottens, Bugwood.org ✔ ©Russ Ottens, Bugwood.org ✔ Other armyworms, maize stem borer and cotton bollworm ©Donald Hobern, Denmark Hobern, ©Donald ✘ Denmark Hobern, ©Donald ✘ The cotton bollworm (Helicoverpa armigera) often shows a similar pattern of dots on its back, but its head is usually paler, and although they can also show an inverted Y this is usually a similar colour to the rest of the head. Unlike the fall armyworm they feel rough to the touch due to tiny spines. us Kloppers/PANNAR us ©Rik ✘ Bugwood.org Cranshaw, ©Whitney ✘ Flickr Reyes, Marquina ©David ✘ African armyworm Beet armyworm African cotton leafworm Spodoptera exempta Spodoptera exigua Spodoptera littoralis ©NBAIR ✘ CABI ©R.Reeder, ✘ Spotted stem borer African maize stalk borer Chilo partellus Busseola fusca Damage caused by Fall armyworm (Spodoptera frugiperda) ©J. -
Occurrence and Distribution of Fall Armyworm, Spodoptera Frugiperda (Lepidoptera: Noctuidae) and Other Moths on Maize in Ghana B
OCCURRENCE AND DISTRIBUTION OF FALL ARMYWORM, SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) AND OTHER MOTHS ON MAIZE IN GHANA By DJIMA KOFFI ID: 10600839 A THESIS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF PHILOSOPHY (M.PHIL.) DEGREE IN ENTOMOLOGY. AFRICAN REGIONAL POSTGRADUATE PROGRAMME IN INSECT SCIENCE (ARPPIS) UNIVERSITY OF GHANA, LEGON, ACCRA, GHANA AUGUST, 2018 * JOINT INTER-FACULTY INTERNATIONAL PROGRAMME FOR THE TRAINING OF ENTOMOLOGISTS IN WEST AFRICA COLLABORATING DEPARTMENTS: ANIMAL BIOLOGY AND CONSERVATION SCIENCE (SCHOOL OF BIOLOGICAL SCIENCES) AND CROP SCIENCE (SCHOOL OF AGRICULTURE) COLLEGE OF BASIC AND APPLIED SCIENCES DECLARATION I hereby declare that this thesis is the result of the original work personally done by me for the award of a Master of Philosophy Degree in Entomology at the African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon. All the references to other people’s work have been duly acknowledged and this thesis has not been submitted in part or whole for the award of a degree elsewhere. Signature……………....................................... Date………………………………………….. DJIMA KOFFI (STUDENT) Signature……………....................................... Date………………………………………….. DR. ROSINA KYEREMATEN (PRINCIPAL SUPERVISOR) Signature……………....................................... Date………………………………………….. DR. VINCENT Y. EZIAH (CO-SUPERVISOR) Signature……………....................................... Date………………………………………….. DR. -
Fall Armyworm Field Handbook Identification and Management FAO and CABI (2019) Fall Armyworm Field Handbook: Identification and Management, First Edition
Fall Armyworm Field Handbook Identification and Management FAO and CABI (2019) Fall Armyworm Field Handbook: Identification and Management, First Edition. Cover Photo: Fall armyworm larva ©Georg Goergen, IITA This field handbook is an adapted version of FAO and CABI (2019) Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early warning and Management, Training of Trainers Manual, First Edition. Licence: CC BY-NC-SA 3.0 IGO. It is intended to help extension workers and farmers in the field to identify fall armyworm and know how to manage it. The Training of Trainers Manual was funded by US Foreign Disaster Assistance, Bureau for Democracy, Conflict and Humanitarian Assistance, US Agency for International Development (USAID). The editing and printing of this handbook was made possible with the kind financial support of the Netherlands Directorate General for International Cooperation (DGIS). The author’s views expressed in this publication do not necessarily reflect the views and policies of FAO, CABI, USAID, UKAID or DGIS. © FAO and CABI, 2019 Further information Fall armyworm portal: www.cabi.org/fallarmyworm Fall armyworm FAO: www.fao.org/fall-armyworm/en Contents How to identify fall armyworm ........................................... 4 How to monitor fall armyworm in the field ....................... 19 How to manage fall armyworm ....................................... 25 Find out more................................................................... 36 4 FALL ARMYWORM FIELD HANDBOOK IDENTIFICATION AND MANAGEMENT How to identify fall armyworm Fall armyworm larvae (or caterpillars) are similar to caterpillars of other related pests (Figure 1). Look for the following features to determine if the caterpillar you have found in your maize is fall armyworm or belongs to another species. • A dark head with a pale, upside-down Y-shaped marking (Figure 2, black circle). -
Fall Armyworm: Impacts and Implications for Africa Evidence Note Update, October 2018
Fall armyworm: impacts and implications for Africa Evidence Note Update, October 2018 Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda. W., Phiri, N., Pratt, C., Tambo, J. KNOWLEDGE FOR LIFE Executive Summary This Evidence Note provides new evidence on the distribution and impact of FAW in Africa, summarises research and development on control methods, and makes recommendations for sustainable management of the pest. FAW biology FAW populations in Africa include both the ‘corn strain’ and the ‘rice strain’. In Africa almost all major damage has been recorded on maize. FAW has been reported from numerous other crops in Africa but usually there is little or no damage. At the moment managing the pest in maize remains the overriding priority. In Africa FAW breeds continuously where host plants are available throughout the year, but is capable of migrating long distances so also causes damage in seasonally suitable environments. There is little evidence on the relative frequency of these two scenarios. Studies show that natural enemies (predators and parasitoids) in Africa have “discovered” FAW, and in some places high levels of parasitism have already been found. Distribution and Spread FAW in Africa Rapid spread has continued and now 44 countries in Africa are affected. There are no reports from North Africa, but FAW has reached the Indian Ocean islands including Madagascar. Environmental suitability modelling suggests almost all areas suitable for FAW in sub-Saharan Africa are now infested. -
Development of a Species Diagnostic Molecular Tool for an Invasive Pest, Mythimna Loreyi, Using LAMP
insects Article Development of a Species Diagnostic Molecular Tool for an Invasive Pest, Mythimna loreyi, Using LAMP Hwa Yeun Nam 1, Min Kwon 1, Hyun Ju Kim 2 and Juil Kim 1,3,* 1 Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Korea; [email protected] (H.Y.N.); [email protected] (M.K.) 2 Crop foundation Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; [email protected] 3 Program of Applied Biology, Division of Bio-resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected]; Tel.: +82-33-250-6438 Received: 20 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Simple Summary: Mythimna loreyi is a serious pest of grain crops and reduces yields in maize plantations. M. loreyi is a native species in East Asia for a long time. However, this species has recently emerged as a migration (or invasive from other Asian countries) pest of some cereal crops in Korea. Little is known about its basic biology, ecology, and it is difficult to identify the morphologically similar species, Mythimna separate, which occur at the cornfield in the larvae stage. Species diagnosis methods for invasive pests have been developed and utilized for this reason. Currently, the molecular biology method for diagnosing M. loreyi species is only using the mtCO1 universal primer (LCO1490, HCO2198) and process PCR and sequencing to compare the degree of homology. However, this method requires a lot of time and effort. In this study, we developed the LAMP (loop-mediated isothermal amplification) assay for rapid, simple, and effective species diagnosis. -
Armyworms and Loopers
Information Sheet IS13052 Armyworms and loopers Night-feeding armyworms Armyworm infestations occur only now and then. Trash- blanketed ratoon fields are often attacked. Where trash Sugarcane armyworm: Leucania loreyi, Leucania stenographa, blanketing has only recently been tried, damage seems to be Leucania abdominalis worse than in fields where the practice has been ongoing. This Common armyworm: Mythimna convecta may be because predators and diseases of armyworms have built up with longer-term trashblanketing. Northern armyworm: Mythimna separata Day-feeding armyworms Infestations of sugarcane looper are rare. Day-feeding armyworm: Spodoptera exempta Loopers Sugarcane looper: Mocis frugalis Distribution All species occur in all sugar-producing regions of Australia. In mixed groups on sugarcane, northern armyworm is found in higher numbers than common armyworm. Damage Armyworm caterpillars eat the leaves of cane. Bare leaf midribs are all that remain after heavy attack (Photo 1). Photo 2: The upper larva is a night feeding and the one below is day feeding. Description Night-feeding armyworms Night-feeding armyworms hide in rolled spindle leaves or under leaf litter during the day, and feed mostly at night. Caterpillars of sugarcane, common and northern armyworm occur in similar areas and are hard to tell apart. They curl up when disturbed. Photo 1: Armyworm damage. They range from pale olive-green to red/brown with stripes of white, red-brown and black running down the body. Fully A single stripping of leaves in spring or early summer rarely grown caterpillars are up to 40 mm long. Pupae form under causes any crop loss. A wave of attacks in December-February trash or 1 cm underground in small chambers. -
DAMAGE ASSESSMENT and MANAGEMENT of ARMYWORM [Mythimna Separata, Walker] in WINTER MAIZE at RAMPUR, CHITWAN
J. Inst. Agric. Anim. Sci. 35: 161-166 (2018) 161 DAMAGE ASSESSMENT AND MANAGEMENT OF ARMYWORM [Mythimna separata, Walker] IN WINTER MAIZE AT RAMPUR, CHITWAN. A. Shrestha*, A. Pandey and R. Sapkota Lamjung Campus, Institute of Agriculture and Animal Science *[email protected] ABSTRACT Mythimna separata Walker commonly known as armyworm (Rice Ear-Cutting Caterpillar), belonging to Lepidoptora: Noctuidae is one of the major insect pests of maize in Nepal. Application of selective pesticide is mostly used approach to control the pest population to minimize its possible damage. A field experiment was carried out to find out the loss by armyworm in maize field (variety RML32/17) during winter season of 2016/17. The experiment was laid under Randomized Complete Block Design with eight treatments and three replications in the research field of National Maize Research Program (NMRP), Rampur. The treatments consisted of: i)Metarrhizium anisopliae ii)Nuclear Polyhedrosis Virus iii)Spinosad iv)Furadon v)Magik vi)Lara-909 vii)Multineem viii)Control. The treatments were applied three times at 30DAS, 45DAS and 60DAS for each replication and armyworm damaged plants were counted after a week of application among the 30 sample plants tagged in each plot. Number of damaged plants by armyworm after each spraying and maize yield in each plot were recorded and analyzed by GenStat. It was found that least number of plants were damaged in plots applied with treatments Lara-909, subsequently followed by Spinosad while more plants were damaged successively in control and M. anisopliae. The highest average yield (6.73 ton/ha) was found in Lara-909 treated plot followed by Spinosad (6.67 ton/ha) which were significant with the lowest average yield found in control (5.76 ton/ha) but only statistical at par with rest of the treatments. -
Manual on Integrated Fall Armyworm Management
Manual on Integrated fall armyworm management Manual on Integrated fall armyworm management Food and Agriculture Organization of the United Nations Nay Pyi Taw, 2020 Required citation: FAO and PPD, 2020. Manual on Integrated fall armyworm management. Yangon, FAO. https://doi.org/10.4060/ca9688en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132903-0 [FAO] © FAO, 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. -
Studies on Mythimna Separata at Icrisat
SORGHUM ENTOMOLOGY Progress Report-6 STUDIES ON MYTHIMNA SEPARATA AT ICRISAT Progress Report 1980-81 H.C. Sharma, V.S. Bhatnagar and J.C. Davies 4, ICRISAT International Crops Research Institute for the Semi-Arid Tropics ICRISAT Patancheru P.O. Andhra Pradesh 502 324, India 1982 ACKNOWLEDGEMENTS The assistance received from support staff of the sorghum and cropping entomology is duely acknowledged. The keen interest and tireless efforts of Mr V Venkateswara Rao need special mention. Our thanks are also due to our co-operators namely; Drs F R Biddinger, V Mahalakshmi, B S Talukdar, S V R Shetty and M V Natarajan, who willingly offered their experiments to collect observations on various aspects and for making available their own data for purposes of comparision. The encouragement received during the course of this work from Dr L R House and Mr D J Andrews is gratefully acknowledged. The authors are also thankful to Drs K Leuschner, W. Reed, A.B. Mohamed, R P Thakur and S.L. Taneja for going through the manuscript, and making valuable suggestions. STUDIES ON MYTHIMNA SEPARATA AT ICRIFAT H.C. Sharma, V.S. Bhatnagar and J.C. Davies 1 INTRODUCTION The oriental armyworm, Mythimna (Pseudaletia)(Leucania) separata Walker is a pest of cereals in Asia and Australia between 450N to 450 S latitude and 60 E to beyond 170 W longitude. It has been reported to feed in nature on 33 plant species and. some un specified grasses belonging to eight plant families (Sharma & Davies, 1982). Prior to 1950 it was of minor importance in India. -
Influence of Female and Male Age and Association Periods of the Adults of Oriental Armyworm (Lepidoptera: Noctuidae) on Oviposition, Egg Hatch and Longevity
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomologie = Contributions to Entomology Jahr/Year: 1991 Band/Volume: 41 Autor(en)/Author(s): Singh Daya Ram, Chaudhary J.P. Artikel/Article: Influence of female and male age and association periods of the adults of oriental armyworm (Lepidoptera: Noctuidae) on oviposition, egg hatch and longevity. 271-275 ©www.senckenberg.de/; download www.contributions-to-entomology.org/ Beitr. Ent. Berlin41 (1991) 1, S. 271-275 Department of Entomology Haryana Agricultural University Hisar, India. R am Singh and J. P. Chaudhary Influence of female and male age and association periods of the adults of oriental armyworm (Lepidoptera: Noctuidae) on oviposition, egg hatch and longevity 1. Introduction The oriental armyworm, Mythimna separata (Wlk .) is a serious polyphagous pest of over 33 species of cereals and grasses in Asia and Australia(S harma and D avies 1983; Singh et al. 1987). Larvae remain unnoticed till they reach final instars when maximum damage (over 96%) is caused to crops(R ice et al. 1982). To control this stage, higher doses of insecticides are required which may not be desirable in integrated pest control. Use of biocontrol agents and resistant plants has also not yielded promising results(S harma and D avies 1983). Continuing concern about the need for new approaches to control armyworm has resulted in research exploing the potential of light trap catches(P ersson 1977) and mating disruption with the sex pheromones(Sato et al. 1980). These approaches focus on manipulation of the reproductive biology of insect to achieve population suppression and for their success, knowledge of reproductive behaviour and biology is an essential component. -
Lepidoptera: Noctuidae)
PHYSIOLOGICAL AND CHEMICAL ECOLOGY Determination and Consideration of Flight Potential in a Laboratory Population of True Armyworm (Lepidoptera: Noctuidae) LIZHI LUO,1, 2 S. J. JOHNSON,1, 3 A. M. HAMMOND,1 J. D. LOPEZ,4 J. P. GEAGHAN,5 4 4 K. R. BEERWINKLE, AND J. K. WESTBROOK Environ. Entomol. 31(1): 1Ð9 (2002) ABSTRACT Flight potential, a poorly understood phenomenon in the migratory true armyworm, Pseudaletia unipuncta (Haworth), was investigated in a laboratory population using tethered-ßight techniques. True armyworm exhibited strong ßight potential relative to other known migratory noctuids whose ßight potentials were previously determined by similar techniques. Flight potential was generally low for 1-d-old moths and increased with age to day 5 of adult life. Flight speed and distance ßown decreased for female moths from day 5 to day 10as their reproductive system developed. The greatest average ßight speed, total ßight duration, and distance ßown was exhibited by 5-d-old females and 10-d-old males, suggesting that ßight potential may differ by sex. Ten-day-old moths had the longest ßight duration. Factor analysis showed that total ßight distance, total ßight duration, and average ßight speed are strongly correlated to the factor variable, but the correlation for longest ßight duration was weaker. The signiÞcance of these Þndings to migratory ßight and reproductive behavior of P. unipuncta is discussed in the light of published Þndings. KEY WORDS Pseudaletia unipuncta, ßight potential, age, sex, tethered-ßight, migration. INSECT FLIGHT POTENTIAL, a characteristic affecting in- Cooter 1991; Sappington and Showers 1991, 1992; Luo sect habitat persistence (Southwood 1962, 1977), is an et al.