Pest Risk Analysis for Hymenoscyphus Pseudoalbidus for the UK and the Republic of Ireland Pest Risk Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Pest Risk Analysis for Hymenoscyphus Pseudoalbidus for the UK and the Republic of Ireland Pest Risk Analysis Pest Risk Analysis for Hymenoscyphus pseudoalbidus for the UK and the Republic of Ireland Pest Risk Analysis Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea ) for the UK and the Republic of Ireland 1 STAGE 1: PRA INITIATION 1. What is the name of the pest? Hymenoscyphus pseudoalbidus (teleomorph – sexual stage). This was first described by Queloz et al . (2011) (published online March 2010). Synonyms: Chalara fraxinea , first described by Kowalski (2006), is the anamorph (asexual) stage of H. pseudoalbidus , and, until recently, this has been the name ascribed to the disease-causing organism. However, as described below, it has become clear that the teleomorph H. pseudoalbidus is the epidemiologically important stage of the fungus, producing the infective sexually-produced ascospores. H. pseudoalbidus should, therefore, be the name now used for the pathogen responsible for ash dieback. In this PRA, irrespective of whether C. fraxinea is the term used in cited publications many of which pre-date the description of H. pseudoalbidus , the pathogen is referred to as H. pseudoalbidus in addition to or as an alternative to C. fraxinea. Common names of the pest: The pest (also referred to as the fungus or the pathogen in this PRA) does not have a common name. The disease caused by the fungus is known as ash dieback, but it is not the same as the ‘ ash dieback’ syndrome which has previously been investigated in the UK (Hull and Gibbs, 1991). It is also commonly referred to as Chalara dieback. Taxonomic position: Kingdom - Fungi; Phylum - Ascomycota; Class - Leotiomycetes; Order - Helotiales; Family – Helotiaceae. Special notes on nomenclature or taxonomy: The anamorph Chalara fraxinea was first described as a new species of fungus, isolated from shoots and twigs of Fraxinus excelsior (European or common ash) exhibiting symptoms of dieback in Poland (Kowalski, 2006). Although not proven to be the cause of the disease at that time, it was suspected. No teleomorph stage was reported at that time. Subsequently, the fungus was found to be pathogenic to young ash trees when they were artificially inoculated under field conditions (Kowalski and Holdenrieder, 2009). 1 Please cite this document as: Sansford, CE (2013). Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea ) for the UK and the Republic of Ireland. Forestry Commission. 2 PRA for Hymenoscyphus pseudoalbidus C.E. Sansford 23 rd May 2013 Pest Risk Analysis In 2009, C. fraxinea was considered to be the anamorph (asexual stage) of Hymenoscyphus albidus, a species first described in 1850 (assigned then to Peziza albida ) and considered to be non-pathogenic, native and widespread in Europe (Kowalski and Holdenrieder 2009a). Because of the disparity between the emergence of the disease in Europe (in Poland in the early 1990s without an identifiable cause at that time) and the apparent non-pathogenic status of the teleomorph, the authors commented that further investigation was needed in case the organism they described was a ‘ new mutant, a hybrid of H. albidus with an unknown introduced species or an exotic invasive species, which is indistinguishable morphologically from H. albidus’. Following on from this, molecular studies of Swiss isolates concluded that the teleomorph of C. fraxinea was not H. albidus but a new species, Hymenoscyphus pseudoalbidus (online paper March 2010, published as Queloz et al., 2011; Husson et al ., 2011), morphologically similar to but genetically distinct from H. albidus . Evidence from recent research (e.g. Gross et al ., 2012; Bengtsson et al ., 2012) supports the view that H. pseudoalbidus is the pathogen responsible for the current ash dieback epidemic in Europe including the recent findings in the UK and Ireland. 2. What is the pest’s status in the EC Plant Health Directive (Council Directive 2000/29/EC) (Anon., 2000)? H. pseudoalbidus /C. fraxinea is not listed in the EC Plant Health Directive. There is no emergency legislation in place in the EU. However, there is emergency legislation at the national level (Great Britain, Northern Ireland and Ireland – see 13. and Table 6) as well as for Jersey, Guernsey and the Isle of Man (see 6.). 3. What is the recommended quarantine status of the pest in the lists of the European and Mediterranean Plant Protection Organisation (EPPO)? Chalara fraxinea was added to the EPPO Alert List in September 2007 (EPPO, 2007). It is still listed. See: http://www.eppo.int/QUARANTINE/Alert_List/alert_list.htm At the time of listing, although C. fraxinea was suspected to be the main cause of ash dieback in Europe, many other fungi had been isolated from diseased ash trees in European countries, and it was not known which abiotic factors (e.g. frost, drought) were involved in the disease. EPPO felt it appropriate to add the fungus to the Alert List because they were concerned that the disease might pose a threat to ash trees growing in European forests, parks, and nurseries. 3 PRA for Hymenoscyphus pseudoalbidus C.E. Sansford 23 rd May 2013 Pest Risk Analysis EPPO (2007) considered that ‘ plants for planting and wood of F. excelsior could be pathways for spreading the disease over long distances’ and warned ‘that there may be a risk in moving diseased F. excelsior plants across the region without any precaution ’. However, the fungus has never been moved to the lists of organisms recommended for regulation by EPPO. Such a recommendation has to be based on a PRA. By the time H. pseudoalbidus was eventually confirmed as the causal pathogen (online paper March 2010, published as Queloz et al ., 2011) the disease was already quite widespread within the EPPO region. 4. What is the reason for the PRA? At the request of the Forestry Commission (FC) this PRA was initiated in January 2013 to update the Rapid Assessment (RA) produced by Forest Research (FR) in August 2012 (Webber and Hendry, 2012). At the time of the RA there had been a low number of interceptions of ash saplings infected with the fungus in UK nurseries and in recent plantings. Since the RA was published, surveillance has shown that the disease is present in the wider environment in parts of Great Britain (GB). Northern Ireland (NI) and the Republic of Ireland (ROI) (not considered in the 2012 RA) have found infected material in nurseries and recent plantings (See 6. and 7.). This PRA reflects the current status of the pathogen from surveillance in the PRA area. New findings of infected trees and nursery plants have been reported since the RA. Studies of the distribution and value of ash and the possible economic impact of the disease have been undertaken. Risk management activities have been carried out in the UK and the ROI. The PRA also examines additional pathways of entry (seeds, airborne ascospores) and all potential pathways (plants, wood, seeds, soil/growing media, airborne ascospores) are examined in depth. A more detailed consideration of pest risk management options has been undertaken. Suggestions for future controls and a list of uncertainties with associated research needs are provided. 5. What is the PRA area? The PRA area is the UK and the Republic of Ireland (ROI). For the UK, the Crown Dependencies of Guernsey, Jersey and the Isle of Man are not included except with respect to comments on the status of the pest. STAGE 2: PEST RISK ASSESSMENT 6. What is the pest’s present geographical distribution? H. pseudoalbidus /C. fraxinea is currently known to occur in at least 24 European countries outside of the UK and the ROI (see 7. for pest status). It has also been detected in imported material in the Crown Dependencies 4 PRA for Hymenoscyphus pseudoalbidus C.E. Sansford 23 rd May 2013 Pest Risk Analysis of Jersey and Guernsey. It has not been found on the Isle of Man. It is considered to be an exotic introduction in Europe, possibly from Asia where it has been reported from Japan (Zhao et al ., 2012). More detail is given below. Ash trees with symptoms of ash dieback were first observed in the early 1990s in Poland; however, the anamorph form of the causal organism of the disease was not named until 2006 (Kowalski, 2006). The fungus has spread across Europe since the early 1990s, and it was found causing disease, for the first time, in the UK and the ROI in 2012. Nearly all European disease records have been attributed (some retrospectively) to the anamorph C. fraxinea but it is now known that these should be attributed to H. pseudoalbidus. Dates of publication of records do not necessarily reflect the date at which the pest entered the affected country. For early records this is partly because the cause of the disease was unknown. For all records, this is because the detection of symptoms at an early stage of introduction of the fungus is unlikely. Because of this, no attempt has been made to document a geographical pattern of perceived spread over the period since diseased trees were first observed in Europe in this PRA. Table 1 below lists all known countries where the pest has been recorded. The EPPO Plant Quarantine Retrieval System (a database of pests of quarantine concern) confirms the status of ‘ No record ’ for the Americas, the Caribbean and Oceania (EPPO, 2013). A record in Japan has recently been published (Zhao et al ., 2012). Further commentary on the status of the pathogen in the UK and the ROI is given under 7. Whilst not considered further in this PRA, Jersey, Guernsey and the Isle of Man have all undertaken surveys for the disease, followed-up by diagnostic tests on symptomatic material; this is ongoing. Jersey began casual surveillance in 2011 with official surveillance of the whole island commencing in November 2012.
Recommended publications
  • The Phylogenetic Relationships of Torrendiella and Hymenotorrendiella Gen
    Phytotaxa 177 (1): 001–025 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.177.1.1 The phylogenetic relationships of Torrendiella and Hymenotorrendiella gen. nov. within the Leotiomycetes PETER R. JOHNSTON1, DUCKCHUL PARK1, HANS-OTTO BARAL2, RICARDO GALÁN3, GONZALO PLATAS4 & RAÚL TENA5 1Landcare Research, Private Bag 92170, Auckland, New Zealand. 2Blaihofstraße 42, D-72074 Tübingen, Germany. 3Dpto. de Ciencias de la Vida, Facultad de Biología, Universidad de Alcalá, P.O.B. 20, 28805 Alcalá de Henares, Madrid, Spain. 4Fundación MEDINA, Microbiología, Parque Tecnológico de Ciencias de la Salud, 18016 Armilla, Granada, Spain. 5C/– Arreñales del Portillo B, 21, 1º D, 44003, Teruel, Spain. Corresponding author: [email protected] Abstract Morphological and phylogenetic data are used to revise the genus Torrendiella. The type species, described from Europe, is retained within the Rutstroemiaceae. However, Torrendiella species reported from Australasia, southern South America and China were found to be phylogenetically distinct and have been recombined in the newly proposed genus Hymenotorrendiel- la. The Hymenotorrendiella species are distinguished morphologically from Rutstroemia in having a Hymenoscyphus-type rather than Sclerotinia-type ascus apex. Zoellneria, linked taxonomically to Torrendiella in the past, is genetically distinct and a synonym of Chaetomella. Keywords: ascus apex, phylogeny, taxonomy, Hymenoscyphus, Rutstroemiaceae, Sclerotiniaceae, Zoellneria, Chaetomella Introduction Torrendiella was described by Boudier and Torrend (1911), based on T. ciliata Boudier in Boudier and Torrend (1911: 133), a species reported from leaves, and more rarely twigs, of Rubus, Quercus and Laurus from Spain, Portugal and the United Kingdom (Graddon 1979; Spooner 1987; Galán et al.
    [Show full text]
  • The Entomologist's Record and Journal of Variation
    M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A.
    [Show full text]
  • Diversity of the Moth Fauna (Lepidoptera: Heterocera) of a Wetland Forest: a Case Study from Motovun Forest, Istria, Croatia
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 117, No 3, 399–414, 2015 CODEN PDBIAD DOI: 10.18054/pb.2015.117.3.2945 ISSN 0031-5362 original research article Diversity of the moth fauna (Lepidoptera: Heterocera) of a wetland forest: A case study from Motovun forest, Istria, Croatia Abstract TONI KOREN1 KAJA VUKOTIĆ2 Background and Purpose: The Motovun forest located in the Mirna MITJA ČRNE3 river valley, central Istria, Croatia is one of the last lowland floodplain 1 Croatian Herpetological Society – Hyla, forests remaining in the Mediterranean area. Lipovac I. n. 7, 10000 Zagreb Materials and Methods: Between 2011 and 2014 lepidopterological 2 Biodiva – Conservation Biologist Society, research was carried out on 14 sampling sites in the area of Motovun forest. Kettejeva 1, 6000 Koper, Slovenia The moth fauna was surveyed using standard light traps tents. 3 Biodiva – Conservation Biologist Society, Results and Conclusions: Altogether 403 moth species were recorded Kettejeva 1, 6000 Koper, Slovenia in the area, of which 65 can be considered at least partially hygrophilous. These results list the Motovun forest as one of the best surveyed regions in Correspondence: Toni Koren Croatia in respect of the moth fauna. The current study is the first of its kind [email protected] for the area and an important contribution to the knowledge of moth fauna of the Istria region, and also for Croatia in general. Key words: floodplain forest, wetland moth species INTRODUCTION uring the past 150 years, over 300 papers concerning the moths Dand butterflies of Croatia have been published (e.g. 1, 2, 3, 4, 5, 6, 7, 8).
    [Show full text]
  • Quantifying Dispersal in British Noctuid Moths
    Quantifying dispersal in British noctuid moths Hayley Bridgette Clarke Jones Doctor of Philosophy University of York Biology September 2014 1 Abstract Dispersal is an important process in the ecology and evolution of organisms, affecting species’ population dynamics, gene flow, and range size. Around two thirds of common and widespread British macro-moths have declined in abundance over the last 40 years, and dispersal ability may be important in determining whether or not species persist in this changing environment. However, knowledge of dispersal ability in macro-moths is lacking because dispersal is difficult to measure directly in nocturnal flying insects. This thesis investigated the dispersal abilities of British noctuid moths to examine how dispersal ability is related to adult flight morphology and species’ population trends. Noctuid moths are an important taxon to study because of their role in many ecosystem processes (e.g. as pollinators, pests and prey), hence their focus in this study. I developed a novel tethered flight mill technique to quantify the dispersal ability of a range of British noctuid moths (size range 12 – 27 mm forewing length). I demonstrated that this technique provided measures of flight performance in the lab (measures of flight speed and distance flown overnight) that reflected species’ dispersal abilities reported in the wild. I revealed that adult forewing length was a good predictor of inter- specific differences in flight performance among 32 noctuid moth species. I also found high levels of intra-specific variation in flight performance, and both adult flight morphology and resource-related variables (amount of food consumed by individuals prior to flight, mass loss by adults during flight) contributed to this variation.
    [Show full text]
  • Hymenoscyphus Fraxineus
    Hymenoscyphus fraxineus Synonyms: Chalara fraxinea Kowalski (anamorph), Hymenoscyphus pseudoalbidus (teleomorph). Common Name(s) Ash dieback, ash decline Type of Pest Fungal pathogen Taxonomic Position Class: Leotiomycetes, Order: Helotiales, Family: Helotiaceae Reason for Inclusion in Figure 1. Mature Fraxinus excelsior showing Manual extensive shoot, twig, and branch dieback. CAPS Target: AHP Prioritized Epicormic shoot formation is also present. Photo Pest List – 2010-2016 credit: Andrin Gross. Background An extensive dieback of ash (Fig. 1) was observed from 1996 to 2006 in Lithuania and Poland. Trees were dying in all age classes, irrespective of site conditions and regeneration conditions. A fungus, described as a new species Chalara fraxinea, was isolated from shoots and some roots (Kowalski, 2006). The fungal pathogen varied from other species of Chalara by its small, short cylindrical conidia extruded in chains or in slimy droplets, morphological features of the phialophores, and by colony characteristics. Initial taxonomic studies concerning Chalara fraxinea established that its perfect state was the ascomycete Hymenoscyphus albidus (Gillet) W. Phillips, a fungus that has been known from Europe since 1851. Kowalski and Holdenrieder (2009b) provide a description and photographs of the teleomorphic state, Hymenoscyphus albidus. A molecular taxonomic study of Hymenoscyphus albidus indicated that there was significant evidence for the existence of two morphologically very similar taxa, H. albidus, and a new species, Hymenoscyphus pseudoalbidus (Queloz et al., 2010). Furthermore, studies suggested that H. albidus was likely a non-pathogenic species, whereas H. pseudoalbidus was the virulent species responsible for the current ash dieback epidemic in Europe (Queloz et al., 2010). A survey in Denmark showed that expansion of H.
    [Show full text]
  • Lepidoptera, Noctuidae)
    Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use. Vol. 11 No. 5 (2018) Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology. www.eajbs.eg.net ------------------------------------------------------------------------------------------------------ Citation: Egypt. Acad. J. Biolog. Sci. (A. Entomology) Vol. 11(5)pp: 103- 125 (2018) Egypt. Acad. J. Biolog. Sci., 11(5):103– 125 (2018) Egyptian Academic Journal of Biological Sciences A. Entomology ISSN 1687- 8809 www.eajbs.eg.net Review of subfamily: Xyleninae of Egypt (Lepidoptera, Noctuidae) Abdelfattah, M. A. Salem1, Ashraf, M. El Torkey 2 and Salah, A. Al Azab 2 1. Senior Scientific Officer, Inter African Phytosanitary Council, African Union 2. Insect classification and survey Dept., Plant Protection Res. Inst., Agric. Res. Center E.Mail: [email protected] REVIEW INFO ABSTRACT Review History Based on material from the main reference collections in Egypt, Received:25/7/2018 light traps collections, National museums and other references, 44 species Accepted:29/8/2018 in 6 tribes (Apameini, Caradrinini, Cosmiini, Phlogophorini, Prodeniini and _________ ___ Xylenini) and 21 genera were listed. Some further taxonomic changed re Keywords: proposed. Taxonomic position, synonyms and types are included and Lepidoptera, photographs for available species are provided. This subfamily according to Noctuidae, the new taxonomy of Noctuidae and it is the first time to review in Egypt.
    [Show full text]
  • The Moths (Lepidoptera) of Glasgow Botanic Gardens
    The Glasgow Naturalist (online 2019) Volume 27, Part 1 The moths (Lepidoptera) of Glasgow Botanic Gardens R.B. Weddle 89 Novar Drive, Glasgow G12 9SS E-mail: [email protected] ABSTRACT At the end of 2018 the species list included 201 distinct The moths that have been recorded in the Glasgow moth species; this may be compared with the 859 moths Botanic Gardens, Scotland over the years are reviewed which had been recorded in Glasgow as a whole at the and assessed in the context of the City of Glasgow, the same date. In this account I shall comment on just a few vice-county of Lanarkshire (VC77), and the U.K. in of those 201 species, which seem to be significant in one general. The additions to the list since the last review in way or another. More detail on any of the records can be 1999 are highlighted. Some rare and endangered species obtained from Glasgow Museums Biological Record are reported, though the comparatively low frequency of Centre, and Scottish distribution maps of the various sightings of several normally common species suggests moths can be found at www.eastscotland- that the site is generally under-recorded. The same is butterflies.org.uk/mothflighttimes.html true of Glasgow and Lanarkshire in general. In the 2017 Bioblitz (including the Bat & Moth Night) INTRODUCTION 15 species of moth were recorded; two of these (rosy There are few records of moths in the Glasgow Botanic rustic and bulrush wainscot) are highlighted in the Gardens (GBG) prior to 1980-1999 when Dr Robin following sections.
    [Show full text]
  • Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan
    Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan 著者 趙 彦傑 内容記述 この博士論文は全文公表に適さないやむを得ない事 由があり要約のみを公表していましたが、解消した ため、2017年8月23日に全文を公表しました。 year 2014 その他のタイトル 日本産Lambertella属および基質性子座を形成する 類縁属の分類学的研究 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2013 報告番号 12102甲第6938号 URL http://hdl.handle.net/2241/00123740 Taxonomic Study of Lambertella (Rutstroemiaceae, Helotiales) and Allied Substratal Stroma Forming Fungi from Japan A Dissertation Submitted to the Graduate School of Life and Environmental Sciences, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Science (Doctoral Program in Biosphere Resource Science and Technology) Yan-Jie ZHAO Contents Chapter 1 Introduction ............................................................................................................... 1 1–1 The genus Lambertella in Rutstroemiaceae .................................................................... 1 1–2 Taxonomic problems of Lambertella .............................................................................. 5 1–3 Allied genera of Lambertella ........................................................................................... 7 1–4 Objectives of the present research ................................................................................. 12 Chapter 2 Materials and Methods ............................................................................................ 17 2–1 Collection and isolation
    [Show full text]
  • The Entomologist's Record and Journal of Variation
    . JVASV^iX ^ N^ {/) lSNrNVIN0SHilWS*^S3ldVaan^LIBRARIES SMITHSONIAN INSTITUTION Ni <n - M ^^ <n 5 CO Z ^ ^ 2 ^—^ _j 2 -I RIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVdan U r- ^ ^ 2 CD 4 A'^iitfwN r: > — w ? _ ISNI NVINOSHilWS SBiyVdan LIBRARIES'SMITHSONIAN INSTITUTION f^ <rt .... CO 2 2 2 s;- W to 2 C/J • 2 CO *^ 2 RIES SMITHSONIAN_INSTITUTlON NOIiniliSNI_NVINOSHilWS S3liiVyan_L; iiSNi"^NViNOSHiiNS S3iyvaan libraries smithsonian'^institution i^ 33 . z I/' ^ ^ (^ RIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS S3lbVHan Li CO — -- — "> — IISNI NVINOSHimS S3IMVHan LIBRARIES SMITHSONIAN INSTITUTION N' 2 -J 2 _j 2 RIES SMITHSONIAN INSTITUTION NOIifllliSNI NVINOSHIIWS SSIMVyail L! MOTITI IT I f\t _NviN0SHiiws'^S3iMvaan libraries'^smithsonian^institution NOlin z \ '^ ^—s^ 5 <^ ^ ^ ^ '^ - /^w\ ^ /^^\ - ^^ ^ /^rf^\ - /^ o ^^^ — x.ii:i2Ji^ o ??'^ — \ii Z ^^^^^""-^ o ^^^^^ -» 2 _J Z -J , ; SMITHSONIAN INSTITUTION NOIXniliSNI NVINOSHillMS $3 I M VH 8 !!_ LI BR = C/> ± O) ^. ? CO I NVINOSHimS S3iaVHan libraries SMITHSONIAN INSTITUTION NOIlf CO ..-. CO 2 Z z . o .3 :/.^ C/)o Z u. ^^^ i to Z CO • z to * z > SMITHS0NIAN_1NSTITUTI0N NOIiniliSNI_NVINOSHimS S3 I d ViJ 8 n_LI B R UJ i"'NViNOSHiiws S3ibvyan libraries smithsonian"^institution Noiir r~ > z r- Z r- 2: . CO . ^ ^ ^ ^ ; SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHillNS SSiyVMail LI BR CO . •» Z r, <^ 2 z 5 ^^4ii?^^ ^' X^W o ^"^- x life ^<ji; o ^'f;0: i >^ _NVIN0SHiIlMs'^S3iyVdan^LIBRARIEs'^SMITHS0NlAN INSTITUTION NOlif Z \ ^'^ ^-rr-^ 5 CO n CO CO o z > SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHimS S3 I ^Vd 8 11 LI BR >" _ . z 3 ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. SOKOLOFF fre s Assistant Editors J.A.
    [Show full text]
  • The Potential Ecological Impact of Ash Dieback in the UK
    JNCC Report No. 483 The potential ecological impact of ash dieback in the UK Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. January 2014 © JNCC, Peterborough 2014 ISSN 0963 8091 For further information please contact: Joint Nature Conservation Committee Monkstone House City Road Peterborough PE1 1JY www.jncc.defra.gov.uk This report should be cited as: Mitchell, R.J., Bailey, S., Beaton, J.K., Bellamy, P.E., Brooker, R.W., Broome, A., Chetcuti, J., Eaton, S., Ellis, C.J., Farren, J., Gimona, A., Goldberg, E., Hall, J., Harmer, R., Hester, A.J., Hewison, R.L., Hodgetts, N.G., Hooper, R.J., Howe, L., Iason, G.R., Kerr, G., Littlewood, N.A., Morgan, V., Newey, S., Potts, J.M., Pozsgai, G., Ray, D., Sim, D.A., Stockan, J.A., Taylor, A.F.S. & Woodward, S. 2014. The potential ecological impact of ash dieback in the UK. JNCC Report No. 483 Acknowledgements: We thank Keith Kirby for his valuable comments on vegetation change associated with ash dieback. For assistance, advice and comments on the invertebrate species involved in this review we would like to thank Richard Askew, John Badmin, Tristan Bantock, Joseph Botting, Sally Lucker, Chris Malumphy, Bernard Nau, Colin Plant, Mark Shaw, Alan Stewart and Alan Stubbs.
    [Show full text]
  • Towards a Unified Paradigm for Sequencebased Identification of Fungi
    Received Date : 10-May-2013 Revised Date : 08-Jul-2013 Accepted Date : 17-Jul-2013 Article type : Opinion Towards a unified paradigm for sequence-based identification of Fungi Authors Urmas Kõljalg1, 2, R. Henrik Nilsson3, Kessy Abarenkov2, Leho Tedersoo2, Andy FS Taylor4, 5, Mohammad Bahram1, Scott T. Bates6, Thomas D. Bruns7, Johan Bengtsson-Palme8, Tony Martin Callaghan9, Brian Douglas9, Tiia Drenkhan10, Ursula Eberhardt11, Margarita Dueñas12, Tine Grebenc13, Gareth W. Griffith9, Martin Hartmann14, 15, Paul M. Kirk16, Petr Kohout1, 17, Ellen Article 3 18 19 12 20 Larsson , Björn D. Lindahl , Robert Lücking , María P. Martín , P. Brandon Matheny , Nhu H. Nguyen7, Tuula Niskanen21, Jane Oja1, Kabir G. Peay22, Ursula Peintner23, Marko Peterson1, Kadri Põldmaa1, Lauri Saag1, Irja Saar1, Arthur Schüßler24, James A. Scott25, Carolina Senés24, Matthew E. Smith26, Ave Suija1, D. Lee Taylor27, M. Teresa Telleria12, Michael Weiß28, Karl- Henrik Larsson29. 1 Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia. 2 Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-40530 Göteborg, Sweden. 4 The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK. 5 Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: Accepted 10.1111/mec.12481 This article is protected by copyright.
    [Show full text]
  • Jumping Mechanisms and Strategies in Moths (Lepidoptera) Malcolm Burrows* and Marina Dorosenko
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 1655-1666 doi:10.1242/jeb.120741 RESEARCH ARTICLE Jumping mechanisms and strategies in moths (Lepidoptera) Malcolm Burrows* and Marina Dorosenko ABSTRACT providing the initial impetus before the wing movements start to To test whether jumping launches moths into the air, take-off by 58 generate lift and forward momentum. Jumping also ensures that species, ranging in mass from 0.1 to 220 mg, was captured in videos large wings are not damaged during their first depression at 1000 frames s−1. Three strategies for jumping were identified. First, movements by contact with the ground or plant upon which the rapid movements of both middle and hind legs provided propulsion insect was standing. while the wings remained closed. Second, middle and hind legs again Lepidoptera are amongst those insects that can have large wings. provided propulsion but the wings now opened and flapped after take- Analyses of the complex movements of the wings at take-off into off. Third, wing and leg movements both began before take-off and flight by butterflies (Sunada et al., 1993) indicate that the forces led to an earlier transition to powered flight. The middle and hind legs produced by the wings alone are insufficient to achieve take-off were of similar lengths and were between 10 and 130% longer than (Bimbard et al., 2013). The implication is that the propulsive the front legs. The rapid depression of the trochantera and extension movements of the legs in jumping contribute the necessary of the middle tibiae began some 3 ms before similar movements of additional force.
    [Show full text]