Ss It of the So Icon Bound-State Model of the Hyperons NUCLEAR PHYSICS A

Total Page:16

File Type:pdf, Size:1020Kb

Ss It of the So Icon Bound-State Model of the Hyperons NUCLEAR PHYSICS A Nuclear Physics 539 (1990 662-684 NUCLEAR North-Holland PHYSICS A ss it of the so icon bound-state model of the hyperons jërnberg, K. Dannbom and D.O. Riska Department ofPhysics, Universitr Qf Helsinki, 00170 Helsinki 17, Finland N.N. Scoccola Vie Kiels Rohr Institute, 2100 Copenhagen, Dentnark AIltract: We present a simple approximate version of the model for the heavy flavour hyperons, which describes them as bound states of an SU(2) soliton and heavy flavoured mesons, that applies in the limit of a large meson mass. The approximate model leads to an explicit expression for the energy of the bound meson, which reveals its sensitivity to the decay constant of the flavoured meson and also the presence ofa near degeneracy ofthe meson energies in states with equal values of 2j-l+2n_n being the principal quantum number. It also reveals that the contsistcrcy of the model' requires that the decay constant of the heavy flavour meson grow with the square root of the meson mass. The approximate model is finally u~ ::d to predict the magnetic moments of the battom. 'tlyperons. 1 . Introduction The structure ofthe strange hyperons can be fairly well accounted for by describing them as bound states of an SU(2) soliton and strangeness carrying kaons ' -4). A direct extension of this model has also recently been found to provide an at least qualitatively reasonable description of the structure of the charmed and bottom hyperons with resulting spectra that are remarkably close to those obtained by dynamically quite different phenomenological quark models'-"') . Finally it has been shown that if the complete flavour symmetry breaking implied by the differing values of the decay constants in the different flavour generations is taken into account the model leads to predictions for the spectra of both the strange and the charmed hyperons, which are in essentially quantitative agreement with available empirical data and remarkably similar to the values obtained with refined versions of the constituent quark model ") . The bound-state model is a dynamically complete model, which describes the structure of the SU2) soliton and the heavy flavour hyperons on the basis of the same lagrangian model. It is not numerically transparent, however, as the determina- tion of the meson energies requires numerical solutioa of the wave equation for the bound meson states, in addition to the numerical determination of the soliton profile. In the exteHion to the heavy flavour hyperons the very large masses of the D- and -mesons can, however, be exploited to simplify the model . This is because the large meson masses make the meson wave functions very peaked near the centre 0375-9474/92/SO5.00 (K) 1992 - Elsevier Science Publishers B.V. All rights reserved M. Bjbrnberg et al. / Large mass limit 66 3 of the soliton. In this situation the long-range behaviour of the soliton profile becomes unimportant, and it can be replaced by a simple power series expansion near the origin. This simplifies the wave equation to a form that can be solved by the standard methods for harmonic oscillators. A subsequent approximate solution of the resulting quartic equation for the meson energy leads to a simple closed form expression. This energy expression explicitly reveals the strong sensitivity to the decay constant of the flavoured mesons found numerically in ref. "). More impor- tantly it reveals a hitherto unnoticed but very prominent near degeneracy in the bound-meson spectrum of states with equal values of 2j -1+2n, where I and j are the orbital and total angular momentum quantum numbers, and n is the principal quantum number, which indicates the excitation number of the state in each partial wave. The energies of the B-meson states calculated numerically in ref. ') provide a clear demonstration of this degeneracy, which should be common to all versions of this bound-state mode!. Here we shall use the approximate version of the bound-state model to study the sensitivity of the predicted hyperon spectra to the lagrangian density and to calculate the magnetic moments of the bottom hyperons, an application to which it is well suited. In order to study the model dependent- of the spectra we consider, as alternatives to the usual quartic stabilizing (Skyrme) term 1,2,12,13) in the lagrangian density, two versions of a term of sixth order in the derivatives of the soliton 14,15 field ) . This study revealed that although those observables that only depend on the soliton profile - e.g. the nucleon observables - are fairly insensitive to the choice of stabilizing term, the calculated hyperon spectra do depend strongly on the choice. As long as the soliton profile is left unmodified by the meson field component it turns out that the most realistic hyperon spectra are in fact obtained by using the usual quartic stabilizing term. The final application to predict the magnetic moments of the bottom byperons revealed that the predictions obtained with the bound-state version of the topological soliton model are very similar to the results obtained with quark model based approaches. In contrast to the quark model the topological soliton model is, however, dynamically complete - i.e. it leads to predictions for all the magnetic moments in all the flavour generations, whereas in the quark model the magnetic moments of the heavy quarks have to be fitted, or alternatively the heavy quarks have to be assumed to behave as free Dirac particles. This paper is divided into seven sections. In sect. 2 we describe the effective meson interaction as obtained with the Skyrme model, and in sect. 3 we describe the approximate wave equation, and derive the explicit expression for the meson energy. In sect. 4 we analyze the predicted hyperon spectra using the approximate ciGJVd form results. In sect. 5 we discu:;s the consequences of the alternative sixth-order stabilizing terms on thehyperon spectra. In sect. 6 we usethe approximate model to predict the magnetic imoments of the bottom hyperons and in sect. i we give a concluding discussion. 664 M. Bjiirnberg et al. % Large mass limit he e éctive meson interaction 2.1 . THE S®LIT N LAGRANGIAN The bound-state model is based on a lagrangian density for a SU(3)-values soliton field , which is separated into a flavour carrying meson component UM and a SU(2) soliton component U, as`) U =Nf-VM UT~VM . (2.1) ere the soliton field component is defined as u 0) , U;~= (2.2) 0 1 with u being the usual SU(2) hedgehog field if! 1 r 1 ' u = ei: (2 .3) The chiral angle ®(r) is determined by the Euler-Lagrange equations of motion of the lagrangian density specified below. The flavoured meson field has the form i,~_2_ 0 M Um = expi _; , (2.4) . fm L M o where M is one of the isodoublets Du + B ) - (K') D = ( D- B = , (2.5) K° Bo and _fti, the corresponding decay constant. In general the soliton field U should be taken as an SU(5) field in order to encompass all the flavour components, but as long as the flavour carrying component is treated perturbatively to second order the, different flavour sectors can be treated as separate SU(3) flavour groups 5) . We shall first consider the usual Skyrme model lagrangian density ere the operators L,u are defined as L, = U'a,~U. In sect. 5 we shall consider two alternate stabilizing terms of sixth order in the lagrangian density. The lagrangian density has to be augmented by a chiral symmetry breaking term that contains the pion and the heavy meson masses and the corresponding decay constants. For this term we use the form ' 6 ) , ysH= ,' -,(f +2f%,) Tr JU+ U - 2} - ~(J M n7-.Î~m~) Tr{~hx(U+ U)} (2-',_(.i' ~t -.f=) Tr {(1-~1l~)(UL,~L' + L,~LI U' )} . .7) M. Björnberg et al. / Large mass limit 665 Below we shall for simplicity take the pion to be massless, as the pion mass plays no significant role at the heavy mass scales considered. The particular choice of symmetry-breaking term above has recently been shown to be that required for a consistent introduction of the different values of the decay constants of the mesons of different flavour, and in addition it solves the overbinding problem that otherwise plagues the bound-state model "). Finally the model has to be completed by the Wess-Zumino action i1il,. S = - 2 d'x E Tr { L~,L,,LgLßL,,} , (2.8) 240,ff f which contributes to the effective interaction for the flavoured mesons , 2). The Euler-Lagrange equation of motion for the lagrangian density (2.6) leads to the following differential equation for the chiral angle 0(r) [refs. f2 2 op _ 1 ) 1 1 1 . 0"+- , sin 20 -; sine 0 sin 20 -; (0'2 sin 20 + 20" sin' 0) = 0 . e2r r- [r4 r` (2.9) It is convenient to use the dimensionless variable x = 2ef~r. Near the origin the solution to this equation may then be expanded as 0=7r-X+ 2 X3 . (2.10) The coefficient of the linear term (-1) is in fact a numerically calculated number, which is very close to -1 . It should be noted that these coefcie%ts take different numerical values when the pion mass is not neglected. In the limit of a large mass for the flavoured meson this expansion can be used to simplify the effective interac- tion that binds the meson to the soliton. 2.2. THE EFFECTIVE INTERACTION The bound-state model for hyperon structure ;s obtained by expanding the field (eq.
Recommended publications
  • Selfconsistent Description of Vector-Mesons in Matter 1
    Selfconsistent description of vector-mesons in matter 1 Felix Riek 2 and J¨orn Knoll 3 Gesellschaft f¨ur Schwerionenforschung Planckstr. 1 64291 Darmstadt Abstract We study the influence of the virtual pion cloud in nuclear matter at finite den- sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter spectral function of the pion is obtained within a selfconsistent scheme of coupled Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso- nance is taken into account. The selfenergies are determined using a two-particle irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by Migdal’s short range correlations for the particle-hole excitations. The so obtained spectral function of the pion is then used to calculate the in-medium changes of the vector-meson spectral functions. With increasing density and temperature a strong interplay of both vector-meson modes is observed. The four-transversality of the polarisation tensors of the vector-mesons is achieved by a projector technique. The resulting spectral functions of both vector-mesons and, through vector domi- nance, the implications of our results on the dilepton spectra are studied in their dependence on density and temperature. Key words: rho–meson, omega–meson, medium modifications, dilepton production, self-consistent approximation schemes. PACS: 14.40.-n 1 Supported in part by the Helmholz Association under Grant No. VH-VI-041 2 e-mail:[email protected] 3 e-mail:[email protected] Preprint submitted to Elsevier Preprint Feb. 2004 1 Introduction It is an interesting question how the behaviour of hadrons changes in a dense hadronic medium.
    [Show full text]
  • J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
    J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett.
    [Show full text]
  • Mass Shift of Σ-Meson in Nuclear Matter
    Mass shift of σ-Meson in Nuclear Matter J. R. Morones-Ibarra, Mónica Menchaca Maciel, Ayax Santos-Guevara, and Felipe Robledo Padilla. Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, México. Facultad de Ingeniería y Arquitectura, Universidad Regiomontana, 15 de Mayo 567, Monterrey, N.L., 64000, México. April 6, 2010 Abstract The propagation of sigma meson in nuclear matter is studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in medium effect of sigma-omega mixing. We have also considered, by completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases respect to its value in vacuum and that the contribution of the sigma omega mixing effect on the mass shift is relatively small. Keywords: scalar mesons, hadrons in dense matter, spectral function, dense nuclear matter. PACS:14.40;14.40Cs;13.75.Lb;21.65.+f 1. INTRODUCTION The study of matter under extreme conditions of density and temperature, has become a very important issue due to the fact that it prepares to understand the physics for some interesting subjects like, the conditions in the early universe, the physics of processes in stellar evolution and in heavy ion collision. Particularly, the study of properties of mesons in hot and dense matter is important to understand which could be the signature for detecting the Quark-Gluon Plasma (QGP) state in heavy ion collision, and to get information about the signal of the presence of QGP and also to know which symmetries are restored [1].
    [Show full text]
  • Kaon Pair Production in Pp, Pd, Dd and Pa Collisions at COSY
    Kaon pair production in pp, pd, dd and pA collisions at COSY Michael Hartmann Institut für Kernphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: [email protected] An overview of experiments at the Cooler Synchrotron COSY on kaon-pair production in pp, pd, dd collisions in the close-to-threshold regime is given. These include results on f-meson production, where the meson is detected via its K+K− decay. The study of f production on a range of heavier nuclear targets allows one to deduce a value of the f width in nuclei and its variation with the f momentum. XLIX International Winter Meeting on Nuclear Physics, BORMIO2011 January 24-28, 2011 Bormio, Italy c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Kaon pair production at COSY 1. Introduction The cooler synchrotron COSY [1] at the Forschungszentrum Jülich in Germany can accelerate protons and deuterons up to about 3.7 GeV/c. Both polarized and unpolarized beams are available. Excellent beam quality is achieved with the help of electron and/or stochastic cooling. COSY can be used as an accelerator for external target experiments and as a storage ring for internal target experiments. Kaon pair production experiments have been performed at the internal spectrometer ANKE by the COSY-ANKE collaboration, at the internal COSY-11 spectrometer by the COSY-11 collaboration, and at the external BIG KARL spectrograph by the COSY-MOMO collaboration. 103 102 10 pn → dφ total corss section [nb] pp → ppφ 1 pp → ppφ pd → 3Heφ pn → dK+K­ pp → ppK+K­ ­1 10 pp → ppK+K­ pp → ppK+K­ o pp → dK+K pd → 3HeK+K­ ­2 10 dd → 4HeK+K­ 0 20 40 60 80 100 Excess energy [MeV] Figure 1: World data set on total cross sections for kaon-pair production in terms of the excess energy for each reaction.
    [Show full text]
  • Researcher 2015;7(8)
    Researcher 2015;7(8) http://www.sciencepub.net/researcher Curie Particle And The Relation Between The Masses Of Sub-Atomic Particles, Supporting (Bicep2`S) Experiments, Mass Of Neutrino, Present “The Lhcb Collaboration” & “Atlas” Experiments. Nirmalendu Das Life Member (1): THE VON KARMAN SOCIETY for Advanced Study and Research in Mathematical Science (UKS), Old Post Office line, Jalpaiguri, Life Member (2): Indian Science Congress Association, India. Resident Address: MUKUL DEEP, Saratpally, W.No.- 40, 74/48, Meghlal Roy Road Haiderpara, Siliguri – 734006, Dist: Jalpaiguri, West Bengal, India. Mob: +91-9475089337, Email: [email protected], [email protected] Abstract: Light is very sensitive matter. In terms of mass of a photon is important in every field of matter thus for the universe. The scientists of many countries are trying to find the mass of photon by experiment since 1936 and continuing this work in various countries. But the obtained results are differing to each other. So, we cannot consider these mass of a photon. On the other hand matter is made by the photons. We get this idea from the Einstein equation E = mc2. Again, energy is nothing but the bunch of photons. I calculate the mass of a photon (1.6596x10-54 gm) [1] and this mass is applicable to all fields. Here, in this article, we can calculate the mass of “Curie particle” (Unknown to us) by using this mass of photon & is related to Higgs and other sub-atomic particles. The energy of Higgs particle is very low as per BICEP2`s experimental report [2] and I reported about this matter in the year 2011 to “The Authority of CERN, Editor of Press release of CERN and many other places” by emailing, but did not get answer in this regards.
    [Show full text]
  • [Phi] Production and the OZI Rule in [Greek Letter Pi Superscript +]D Interactions at 10 Gev/C Joel Stephen Hendrickson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 [Phi] production and the OZI rule in [Greek letter pi superscript +]d interactions at 10 GeV/c Joel Stephen Hendrickson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Elementary Particles and Fields and String Theory Commons Recommended Citation Hendrickson, Joel Stephen, "[Phi] production and the OZI rule in [Greek letter pi superscript +]d interactions at 10 GeV/c " (1981). Retrospective Theses and Dissertations. 7428. https://lib.dr.iastate.edu/rtd/7428 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
    [Show full text]
  • Saturation Properties and Density-Dependent Interactions Among Nuclear and Hyperon Matter
    The Open Nuclear & Particle Physics Journal, 2009, 2, 47-60 47 Open Access Saturation Properties and Density-dependent Interactions among Nuclear and Hyperon Matter Hiroshi Uechi1,* and Schun T. Uechi2 1Department of Distributions and Communication Sciences, Osaka Gakuin University 2-36-1 Kishibe-minami, Suita, Osaka 564-8511, Japan 2Research Center for Nuclear Physics ( RCNP ), Osaka University, Ibaraki, Osaka 567-0047, Japan Abstract: The density-dependent interrelations among properties of nuclear matter and hyperonic neutron stars are studied by applying the conserving nonlinear mean-field theory of hadrons. The nonlinear interactions that will be renormalized as effective coupling constants, effective masses and sources of equations of motion are constructed self- consistently by maintaining thermodynamic consistency (the Hugenholtz-Van Hove theorem, conditions of conserving approximations) to the nonlinear mean-field (Hartree) approximation. The characteristic density-dependent properties among nuclear matter and hyperonic neutron stars appear by way of effective coupling constants and masses of hadrons; they are mutually interdependent and self-consistently constrained via the bulk properties of infinite matter, such as incompressibility, K , symmetry energy, α4, and maximum masses of neutron stars. Consequently, the density- dependence induced by nonlinear interactions of hadrons will determine and restrict the saturation properties (binding energy and density) of hyperons, hyperon-onset density and equation of state in high densities. The nonlinear hadronic mean-field and quark-based hadronic models will predict essentially different density-dependent behavior for hadrons in terms of effective masses and coupling constants, and discrepancies between the models are shown and discussed, which would improve and compensate for both approaches to nuclear physics.
    [Show full text]
  • Electromagnetic Radiation from Hot and Dense Hadronic Matter
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Electromagnetic Radiation from Hot and Dense Hadronic Matter Pradip Roy, Sourav Sarkar and Jan-e Alam Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700 064 India Bikash Sinha Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700 064 India Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Calcutta 700 064 India The modifications of hadronic masses and decay widths at finite temperature and baryon density are investigated using a phenomenological model of hadronic interactions in the Relativistic Hartree Approximation. We consider an exhaustive set of hadronic reactions and vector meson decays to estimate the photon emission from hot and dense hadronic matter. The reduction in the vector meson masses and decay widths is seen to cause an enhancement in the photon production. It is observed that the effect of ρ-decay width on photon spectra is negligible. The effects on dilepton production from pion annihilation are also indicated. PACS: 25.75.+r;12.40.Yx;21.65.+f;13.85.Qk Keywords: Heavy Ion Collisions, Vector Mesons, Self Energy, Thermal Loops, Bose Enhancement, Photons, Dileptons. I. INTRODUCTION Numerical simulations of QCD (Quantum Chromodynamics) equation of state on the lattice predict that at very high density and/or temperature hadronic matter undergoes a phase transition to Quark Gluon Plasma (QGP) [1,2]. One expects that ultrarelativistic heavy ion collisions might create conditions conducive for the formation and study of QGP. Various model calculations have been performed to look for observable signatures of this state of matter.
    [Show full text]
  • Medium Modifications of Mesons
    Medium Modifications of Mesons Chiral Symmetry Restoration, in-medium QCD Sum Rules for D and ρ Mesons, and Bethe-Salpeter Equations Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium vorgelegt von Thomas Uwe Hilger geboren am 29.09.1981 in Eisenhüttenstadt Institut für Theoretische Physik Fachrichtung Physik Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden Dresden 2012 Eingereicht am 11.04.2012 1. Gutachter: Prof. Dr. B. Kämpfer 2. Gutachter: Prof. Dr. S. Leupold Kurzdarstellung Das Zusammenspiel von Hadronen und Modifikationen ihrer Eigenschaften auf der einen Seite und spontaner chiraler Symmetriebrechung und Restauration auf der anderen Seite wird untersucht. Es werden die QCD Summenregeln für D und B Mesonen in kalter Materie berechnet. Wir bestimmen die Massenaufspaltung von D D¯ und B B¯ Mesonen als Funktion der Kerndichte und untersuchen den − − Einfluss verschiedener Kondensate in der Näherung linearer Dichteabhängigkeit. Die Analyse beinhaltet ∗ ebenfalls Ds und D0 Mesonen. Es werden QCD Summenregeln für chirale Partner mit offenem Charm- freiheitsgrad bei nichtverschwindenden Nettobaryonendichten und Temperaturen vorgestellt. Es wird die Differenz sowohl von pseudoskalaren und skalaren Mesonen, als auch von Axialvektor- und Vek- tormesonen betrachtet und die entsprechenden Weinberg-Summenregeln hergeleitet. Basierend auf QCD Summenregeln werden die Auswirkungen eines Szenarios auf das ρ Meson untersucht, in dem alle chiral ungeraden Kondensate verschwinden wohingegen die chiral
    [Show full text]
  • U.S. ATOMIC ENERGY COMMISSION Division of Technical Information Microstructure of MATTER by Clifford E
    U.S. ATOMIC ENERGY COMMISSION Division of Technical Information MiCROSTRUCTURE OF MATTER by Clifford E. Swartz CONTENTS iNTRODUCTION 1 NATURE OF THE PARTICLES 4 Their Reality 4 Wave-Particle Duality 5 Relativistic Effects ." 10 Nuclear energy is playing a vital role in Identification Properties 12 the life of every man, vi^oman, and chjld in the INTERACTIONS, OR FORCES 22 United States today. In the years ahead it will Gravity 22 affect increasingly all the peoples of the earth. Electromagnetism 24 It is essential that all Americans gain an Strong Nuclear Force 26 Weak Interaction 27 understanding of this vital force if they are to Comparison of the Interactions 28 discharge thoughtfully their responsibilities as Model of the Way Particles Interact 29 citizens and if they are to realize fully the CONSERVATION LAWS 32 myriad benefits that nuclear energy offers Mass-Energy 32 them. Momentum 34 The United States Atomic Energy Com­ Angular (Rotational) Momentum 34 Electric Charge 35 mission provides this booklet to help you Leptons and Baryons 35 achieve such understanding. Strangeness and Isotopic Spin 35 Parity 36 THE PARTICLES 37 Particles Stable Against Decay Through the Strong Nuclear Interaction 37 Particles That Decay Through the Strong Nuclear Interaction 42 APPENDIX I THETOOLS OF EXPLORATION 46 APPENDIX II THELANGUAGEOFTHE MICROWORLD 53 APPENDIX III TRACKING THE PARTICLES 54 SUGGESTED REFERENCES 58 United States Atomic Energy Commission Division of Technical Information Library of Congress Catalog Card Number 65-61766 1965, 1967(rev.) MICROSTRUCTURE OF MATTER by Clifford E. Swartz CONTENTS INTRODUCTION 1 NATURE OF THE PARTICLES 4 Their Reality 4 Wave-Particle Duality 5 Relativistic Effects ." 10 Nuclear energy is playing a vital role in Identification Properties 12 the life of every man, woman, and child in the INTERACTIONS, OR FORCES 22 United States today.
    [Show full text]
  • Tuning Effects in Nuclear Excitations and Nuclear Binding Energies Is Confirmed with New Analysis of Data from PNPI Compilations (Vols
    Discreteness in parameters of the Standard Model S.I. Sukhoruchkin Petersburg Nuclear Physics Institute 188300 Gatchina Russia Introduction I • The Standard Model is a general theory of all interactions. • Several well known facts include a vector character of all three interactions (strong, weak and electromagnetic), which are united in the SM with representation • • SU(3) × SU(2)L × U(1)Y 풄풄풄 • Quantum chromodynamics (QCD), the first of these three SM components deals with the strong interaction of colored quarks and gluons and is considered as a commonly accepted theoretical base of the nuclear physics. • • R. Feynman wrote : • "The theories about the rest of physics are very similar to the theory of • quantum electrodynamics: they all involve the interaction of spin 1/2 • objects (like electrons and quarks) with spin 1 objects (like photons, • gluons, or W's) …. Why are all the theories of physics so similar in their structure?” Introduction II • Particle masses are parameters of the Standard Model. There is an important suggestion by Y.Nambu (1998) that empirical relations in particle masses could be used for the development of the Standard Model. • Nonstrange pion and ρ-meson are well- known particles composed of light quarks. They are participants of nuclear forces acting between nucleons and form “tuning effect in particle masses” which includes also masses of leptons and scalar/vector bosons. Introduction III • Nucleon masses are result of the quark-gluon interaction estimated within QCD-lattice calculations. They are parameters of NRCQM -- Constituent Quark Model with meson interaction between quarks ( for example, Goldstone-boson interaction). NRCQM is a part of QCD which itself is a part of the Standard Model - theory of all interactions.
    [Show full text]
  • Functional Renormalization Group Study of the Quark-Meson Model with Ω Meson
    Functional renormalization group study of the Quark-Meson model with ω meson Defu Hou Central China Normal University, Wuhan Hui Zhang, Toru Kojo, Bin Qin e-Print: arXiv:1709.05654 EMMI Workshop on Critical Fluctuations near the QCD Phase Boundary in HIC, Oct.10-13 Wuhan Defu Hou, EMMI Workshop, 2017, Wuan 1 Outlines 1. Motivations 2. The Quark‐Meson Model with ω Meson (MF & FRG) 3. Numerical Results 4. Summary and Outlooks Defu Hou, EMMI Workshop, 2017, Wuan 2 Motivation 3 Defu Hou, EMMI Workshop, 2017, Wuan Many interesting phenomena in QCD ie in the strongly- coupled region. Non-perturbative methods Lattice: Powerful QCD first principle numerical method, though sign problem at finite chemical potential (see F. Karsch’s talk) DSE: See the talk by Y.X. Liu FRG: no sign problem . See the talk by J. Pawlowski AdS/CFT: Notable success in RHIC physics, Viscosity, Jet quenching… Defu Hou, EMMI Workshop, 2017, Wuan 4 FRG– A variety of applications The Functional Renormalization Group (FRG) method can be applied to variety of physical systems. 1. Strong interaction Powlowski, Wambach 2. electroweak phase transition Reuter & Wetterich, NPB(1993) 3. effective models in nuclear physics Drews & Weise, (2013-2015) 4. condensed matter systems e.g. Hubbard model, liquid He 4 , frustrated magnets,superconductivity . 5. ultra-cold atoms Diehl, Gies, Pawlowski & Wetterichb (2007) 6. quantum gravity Wetterich, PRD92, 083507 (2015) Defu Hou, EMMI Workshop, 2017, Wuan 5 Applications of FRG in HEP 1. Quark-Meson Model: B. J. Schaefer and J. Wambach (2004), (2008) T. K. Herbst, J. M. Pawlowski and B.
    [Show full text]